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Abstract 

A new theory of condensation in an open end slit pore, based on the concept of temperature dependent 

undulation, at the interface separating the adsorbed phase and the gas-like region, is presented. The theory, 

describes, for the first time, the microscopic origin of the critical hysteresis temperature and the critical 

hysteresis pore size, properties which are not accessible to any classical theories.   
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1. Introduction 

Adsorption isotherms of gases in mesoporous solids exhibit hysteresis at temperatures below 

a critical hysteresis temperature, above which the adsorption isotherm is reversible 1-4.  

Hysteresis has become a subject of great interest to adsorption scientists and engineers 

especially because of the advances in synthesis of ordered mesoporous materials 5, 6, which 

can be tailored, and are sufficiently well structured for the fundamental study of the 

phenomena of condensation and evaporation.   

Adsorption in mesoporous solids is often modelled using simple pore models, typically slits 

or cylinders with both ends open to the gas phase.  The classical view of hysteresis originates 

from the work of Cohan 7, who argued that adsorption and desorption in a cylindrical pore 

followed different paths because of the difference in the curvature (cylindrical on adsorption 

and spherical on desorption) of the meniscus separating the adsorbed phase and the gas-like 

phase.  This simplified view cannot explain why hysteresis disappears as temperature is 

increased and moreover the Cohan-Kelvin model takes no account of the external adsorbent 

field.  Several subsequent theories have attempted to remedy the latter defect by accounting 

for the influence of the surface force from the adsorbent; Schuchowitzki and Derjaguin were 

the first to study the contribution from this to capillary condensation 8, 9, and it was 

considered later by Broekhoff and de Boer 10-14 and in the statistical theory of Cole and Saam 

15.   

Everett and Haynes developed a more general thermodynamic theory for hysteresis in 

cylinders, in which critical curvature could arise in a third way through the establishment of 

an unduloidal interface 16.  However, none of these theories offer a mechanism for hysteresis 

in slit pores, evidence for which is well established from molecular simulation 17-21 and from 

experimental studies of adsorption in adsorbents with lamellar structure.  Several theoretical 

studies have also confirmed that hysteresis does occur in pores with slit-shaped geometry: for 

example the lattice gas model of Marconi and van Swol 22, 23, density functional theories 

pioneered by Evans et al. 4, 24, and by Balbuena and Gubbins 25 and the gauge-cell method 

used by Jorge and Seaton 26.  

Gas adsorption in simple pore models such as slits or cylinders is usually explained as a 

process of two sequential steps: molecular layering on the pore wall, followed by 

condensation when the gas-like core has become sufficiently narrow.  This general picture is 

supported by several computational studies 17, 20, 22, 27.  Recent experimental and simulation 
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investigations of the effects of temperature on adsorption in open ended pores have provided 

several interesting observations: (1) the reduced pressure at condensation shifts to a lower 

value as temperature is increased while reduced pressure at evaporation shifts to a higher 

value, resulting in a smaller hysteresis loop, (2) the magnitude of the steep change in the 

adsorbed density at condensation and the adsorbed density just before condensation is smaller 

at higher temperatures and (3) the hysteresis loop disappears at a so-called critical hysteresis 

temperature (Tch), but a sharp jump in density is still observed and the jump is smaller with 

temperature until the temperature reaches the pore critical temperature (Tcp).  A search for the 

molecular mechanisms underlying these observations in slit shaped pores is the objective of 

this paper. 

 

2. Theory 

2.1 Grand Canonical Monte Carlo simulation 

We used argon as a model adsorbate with an intermolecular potential energy of interaction 

described by the 12-6 Lennard-Jones (LJ) equation with 𝜎𝑓𝑓= 0.3405 nm and 𝜀𝑓𝑓 𝑘⁄  = 119.8 

K.  The slit pore model was constructed from graphitic walls that are finite in the y-direction 

and infinite in the x-direction. The solid-fluid potential energy was calculated from the Bojan-

Steele equation 28-30.  The pore walls consisted of three homogeneous layers of constant 

surface density 𝜌𝑠= 38.2 nm-2 and a spacing ∆=0.3354 nm. The molecular parameters for a 

carbon atom in a layer were: 𝜎𝑠𝑠= 0.34 nm and 𝜀𝑠𝑠 𝑘⁄  = 28 K.  The cross collision diameter 

and well-depth of the solid-fluid interaction energy were calculated by the Lorentz-Berthelot 

mixing rule.   

GCMC simulations were run with 100,000 cycles for both the equilibration and sampling 

stages.  Each cycle consisted of 1000 displacement moves and exchanges, which included 

insertion and deletion, with equal probability.  For each simulation, we collected control 

charts, of the running mean of the ensemble averages of the configuration energy and the 

particle number, to monitor convergence to equilibrium.  In the equilibration stage, the 

maximum displacement length was initially set as half of the largest dimension of the box 

and was adjusted at the end of each cycle to give an acceptance ratio for displacement of 20% 

31, 32.  The length of the simulation box in the x-direction was 10 times the collision diameter 

of argon, and the lengths of the other two directions were determined by the pore dimensions.  

The gas reservoir had a length of 3nm along the pore axis, and the dimensions in the other 

two directions were the same as those of the pore.  Periodic boundary conditions were applied 
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at the boundaries in the x-direction, and the cut-off radius was 5 times the collision diameter.  

For a given pressure, the chemical potential was calculated from the equation of state of 

Johnson et al. 33 and was used as the input in GCMC simulation. 

To examine mass transfer in the adsorbed layer in more detail, we collected particle number 

fluctuations defined as:  

 
22

, N Nf N N

N N


  

The pore space was divided into bins along the pore, and the local number fluctuation in each 

bin was calculated.  The particle number fluctuation would be unity in an ideal gas bin 34. 

 

3. Results and Discussion 

3.1 Argon Adsorption in 3nm Pore 

For a given slit of uniform width and finite length, we carried out GCMC simulations to 

obtain adsorption isotherms at each temperature and pore width.  The adsorption isotherm for 

argon at 87 K in a pore of width 3 nm and length 14 nm is shown in Figure 1.  As expected 

for a uniform slit pore, the hysteresis loop is type H1, however, an interesting feature that is 

worth noting is the gap between the adsorption and desorption branches after condensation, 

i.e. from point D onwards.  This gap indicates that the condensed fluid inside the pore is more 

cohesive during desorption than that during adsorption, i.e. after the fluid has condensed at 

point D, it is restructured to optimise the molecular packing while the two interfaces proceed 

to the pore mouths and eventually fill the pore.  

  

Figure 1: Adsorption isotherm of argon at 87 K in a slit pore of width 3 nm and length 14 nm. The saturation pressure used 
in this work is calculated based on the equation developed by Lotfi et al. 35 

The singlet particle density distribution 𝜌(𝑧) as a function of the distance from one of the 

pore walls is shown in Figure 2 for the pressure points (A, B and C) indicated in Figure 1, 

 
Relative Pressure (P/P

0
)

0.2 0.4 0.6 0.8 1.0

A
b
s
o
lu

te
 P

o
re

 D
e
n
s
it
y
 (

k
m

o
l/
m

3
)

10

20

30

40

50

A 

B 

C 

D 



5 
 

together with the corresponding particle number fluctuation (PNF).  From this plot we can 

identify two distinct regions: a region of “dense” adsorbed layer (I), where the PNF is less 

than unity, and a fluctuation region (II), the PNF is greater than unity; this indicates that there 

is considerable freedom of movement of the molecules, and that there is frequent mass 

exchange between the adsorbed phase and the gas-like phase 34.   

   

Point A                Point B    Point C 

Figure 2: Local density distribution (circles) and particle number fluctuation (solid lines) as a function of distance from a 
wall for argon adsorption at 87 K in a slit pore of width 3 nm and length 14 nm, for the three pressure points labelled in 
Figure 1. 

 

The dense adsorbed layer here refers to the area under 𝜌(𝑧) where the PNF is <1 and not to 

the total area under 𝜌(𝑧) which includes second and higher layers that may contribute to a 

statistical monolayer.  The region of the statistical monolayer does not reveal its microscopic 

behaviour, but as will be shown below the PNF highlights the important influence of 

temperature on the behaviour of the adsorbed phase. 

Adsorption proceeds by molecular layering on the pore walls (points A, B and C in Figure 1) 

as the pressure increases up to point C.  The thickness of the dense adsorbed layer (region I) 

increases with pressure, and as a consequence the fluctuation region (region II) moves away 

from the pore walls.  The movement of molecules in and out of this region creates a diffuse 

interface which has on average a wave-like structure and provides a microscopic basis for the 

concept of an unduloid interface discussed by Everett and Haynes in 1972 16.  For a given 

temperature, the dense adsorbed layer advances, and the core region becomes smaller as 

pressure is increased.  This core region is gas-like, as seen from the PNF close to unity in 

Figure 2.  

Figure 3 shows the thickness of the two dense adsorbed layers combined and that of the two 

fluctuation zones combined as a function of reduced pressure before condensation occurs.  
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The PNF plots at various pressures, from which the plots in Figure 3 are extracted, are given 

in Appendix 1.   

  

Figure 3:  The thickness of the dense adsorbed layer and that of the fluctuation zone as a function of pressure for adsorption 
of argon at 87 K in slit pore with width of 3 nm and length of 14 nm, the values shown in this plot are the sum of the 
thickness from two walls except for the core size. 

 

In this figure, the horizontal line at 3nm is drawn at the physical pore width.  The region 

below the dashed line is close to the pore walls and is inaccessible to adsorbate because of the 

strong repulsion between the adsorbate and the solid.  The thickness of the dense adsorbed 

layers on each wall increases with pressure, and as a consequence, the width of the gas-like 

core is reduced and is found to be about 0.76 nm at condensation.  Hereafter, we refer to the 

position demarcating the fluctuation layer and the inner core as the fluctuation front.   

If we denote the width of the dense adsorbed layer as dA and that of the fluctuation zone as 

dF, then the width of the gas-like core is given by  

𝐻𝐶 = 𝐻 − 2(𝑑𝐴 + 𝑑𝐹)    (1) 

where H is the physical pore width, defined as the distance from the plane passing through 

carbon atoms in the outermost layer of one wall to the corresponding plane on the opposite 

wall.  At the condensation pressure the average size of the gas-like core is 𝐻𝐶
∗  =0.76 nm, and 

when a molecule is inserted into the core, it will interact strongly with molecules in the two 

opposing fluctuation zones because this is the centre to centre distance between the outer 

molecules in a triplet of argon molecules separated by 21 6⁄ 𝜎𝑓𝑓 , which is the pairwise 

separation distance at which the potential energy is minimum.  This separation is the critical 

value for the onset of condensation.  Figure 4 shows a snapshot taken from the simulation at a 

pressure just before condensation, showing the initiation of a liquid bridge joining the 
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opposing adsorbed layers.  To our knowledge this is the first time that a microscopic 

explanation has been offered for the mechanism of condensation in a pore.  

 

Figure 4:  Snapshot of argon molecule at the point just prior to condensation at 87 K for the pore with 3 nm width and 20 
nm length. 

 

Figure 4 also illustrates the undulatory structure of the interface in the fluctuation zone which 

is in accord with the concept of an unduloid interface proposed by Everett and Haynes 16.  

Figure 5 is a schematic diagram showing the various adsorbate regions in the pore: the dense 

adsorbed layer, the fluctuation zone and the gas-like core.  Since this new concept involves 

unduloid interfaces from the two opposing walls, we shall call our theory the undulation 

theory. 

 

Figure 5:  The schematic diagram of various phases inside the pore.  

 

Thus we can define the sufficient condition for the condensation as: 

[𝐻𝐶 = 𝐻 − 2(𝑑𝐴 + 𝑑𝐹)]𝑃𝑐𝑜𝑛𝑑 = 𝐻𝐶
∗    (2) 

where 𝑃𝑐𝑜𝑛𝑑 is the condensation pressure. 

 

3.2 Effects of Temperature 

The thickness of the fluctuation region increases with increasing temperature, therefore for a 

given pore size the condition for condensation in eq. (2) can be satisfied by a smaller 

thickness of the adsorbed layer at higher temperatures.  This means that the reduced pressure 

and the loading just prior to condensation are lower at higher temperatures, as seen in the 
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isotherms in Figure 6a for the pore of 3 nm width and 14 nm length.  Figure 6b shows the 

corresponding particle number fluctuation versus distance at the pressure just prior to 

condensation.  The pattern of the PNF is fairly insensitive to temperature.  This suggests that 

eq. (2) may be valid for all temperatures, and is therefore suitable for the determination of the 

critical hysteresis temperature, provided that we know the thickness of the adsorbed layer as a 

function of temperature and pressure, and the thickness of the fluctuation zone as a function 

of temperature.  These can be obtained from simulations on a flat surface (see Section 3.6).  

   

 (a)     (b) 
Figure 6:  (a) Argon adsorption isotherms in a slit pore of width 3 nm and length 14 nm from 60 K to 100 K; the saturation 
vapour pressure is calculated from 35, (b) the PNF just before condensation at various temperatures as a function of distance, 
the curves are shifted by every 40 kmol/m3 and 1.0 for isotherms and PNF, respectively.  

 

The thickness of the dense adsorbed layer and that of the fluctuation zone just before 

condensation for the 3 nm pore width are shown as a function of temperature in Figure 7a.  

Also plotted in the same figure is the reduced condensation pressure versus temperature.  We 

see that the width of the fluctuation zone increases while that of the adsorption layer 

decreases, with increasing temperature.  The same results for the 4 nm pore are shown in 

Figure 7b for comparison, i.e. the same trends are observed for dA and dF, and the reduced 

pressure of condensation decreases with temperature. 
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(a)      (b) 

Figure 7:  Plots of dA, dF measured on one of the pore walls and the reduced condensation pressure as a function of 

temperature, (a) 3 nm pore width, (b) 4 nm pore width. 

 

Critical Hysteresis Temperature, Tch 

We can now define the critical hysteresis temperature, Tch to be the temperature at which 

equation (2) is satisfied when 𝑑𝐴 = 𝑑𝐴
∗     

[𝐻𝐶 = 𝐻 − 2(𝑑𝐴
∗ + 𝑑𝐹)]𝑃𝑐𝑜𝑛𝑑 = 𝐻𝐶

∗     (3) 

This implies that at Tch there is still a transition in the adsorbate density at the condensation 

pressure (which is the same as the evaporation pressure).  In Figures 8a and b, the isotherm 

and the PNF obtained at 125 K for the 3 nm pore are presented; this temperature corresponds 

to Tch for this pore and therefore there is no longer any hysteresis loop here, but a sharp 

transition is still observed.  The PNF just before condensation in Figure 8b has the same 

pattern as those at lower temperatures.  However, the fluctuation front in the central pore 

region where it is greater than unity is not well defined, and the difference between the 

particle number fluctuation at the peaks at 10 and 20 A and the core region is much smaller 

than at the subcritical temperatures. 

   

(a)     (b) 

Figure 8:  Argon adsorption in a slit pore of width 3 nm and length 14 nm at 125 K, (a) isotherms, (b) the density 

distribution and PNF just before condensation.  
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3.3 Critical Hysteresis Pore Size 

Eq. (3) defines the critical hysteresis temperature for a given pore size.  Conversely, for a 

given temperature it can be used to define the critical hysteresis pore size.  This establishes a 

connection between the critical hysteresis pore size and the critical hysteresis temperature. 

 

3.4 Effects of Pore Size 

Figure 9a shows the isotherms of argon at 87 K for pores having width 3 nm, 4 nm and 5 nm 

and length 14 nm, and the PNFs for these pores just before condensation are shown in Figure 

9b.  As before, the critical core size just before condensation, highlighted by the shaded area 

in Figure 9b, is the same for all pore sizes. .   

 

(a) 

  
(b) 

Figure 9: Adsorption isotherms of argon at 87 K in slit pores whose widths are 3, 4 and 5 nm and length is 14 nm, (a) 

adsorption isotherms, (b) particle number fluctuation just before condensation.  
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The fluctuation zone is not just a function of temperature, but also of the distance from the 

surface (because the solid-fluid interaction decreases with distance from the surface), and this 

is manifested in Figure 9 where we see that the fluctuation zone at the point just before 

condensation becomes larger as the pore size is increased.  Figure 10a illustrates the 

evolution of the particle fluctuation number as a function of pressure for the points marked on 

the isotherm in Figure 10b for a pore of 4 nm width. The demarcation boundary of the 

fluctuation front is shaded in blue.  Appendix 2 shows the corresponding figures for a pore of 

5 nm width.   

   

   (a)      (b) 

Figure 10:  The evolution of the particle number fluctuation with pressure for Ar adsorption at 87 K in pores of width of 4 

nm.  The blue cone demarks the boundary of the fluctuation front, showing the gradual narrowing as pressure, indicated on 

the isotherm (b), increases. 

 

The effects of pore width on the particle number fluctuation just before condensation at 

different temperatures are summarized in Appendix 3.   

 

3.5 Effects of Solid Affinity 

The effects of solid affinity on the behaviour of the adsorbate before condensation are 

presented in Figure 11, where we show the isotherms and the PNFs just before condensation 

for argon adsorption at 87 K in a slit pore of width 3 nm and length 14 nm, with 𝜀𝑠𝑠 𝑘⁄  

reduced from 28 K to 10 K.  On this weaker surface, the condensation occurs at a higher 

pressure as expected, and the adsorbed amount just before condensation is less; however, the 

plot of PNF versus distance in Figure 11b shows that the fluctuation front is identical to that 
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for the 28 K pore walls (i.e. the same core size), and the thickness of the fluctuation region is 

increased at the expense of the adsorbed layer, 𝑑𝐴 and 𝑑𝐹 are marked as regions I and II in 

the figure, respectively.  As can be seen in Figure 11b, on the weaker surface since the pore 

walls exert less force on the fluid, there are two fluctuation peaks before the condensation, 

one on each side of the pore walls, compared to only one for the 28 K pore walls.  The same 

is observed for 4 nm pore (Appendix 4).  

   

   (a)      (b) 

Figure 11:  Comparisons of (a) isotherms and (b) PNF just before condensation, for argon adsorption at 87K in a slit pore of 

3nm width and 14nm length with ss/k of the adsorbent equal to 28K and 10K, respectively.  
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that the values of dA and dF can indeed be determined from simulations of adsorption on a 

single flat surface.  The results are summarized in Figure 13 where we have plotted dA and dF 

as functions of pressure at 87 K.  From this graph, the condensation pressure for pores with 

different pore widths can be estimated.  For example, for the 4 nm pore (shown as a 

horizontal dashed line) the reduced condensation pressure is 0.77.  

 

  

 

 

Figure 12:  Comparison of particle number fluctuations just before condensation for argon adsorption at 87 K in slit pores 
and on a graphite surface at the same pressures; the pore size are as shown on the graphs. 

 

  

Figure 13:  The values of dA and dF as a function of pressure for argon adsorption on a graphite surface at 87K. 
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In Figure 14, we show the values of dA and dF as a function of reduced pressure based on the 

PNF of argon adsorption on a graphite surface at 87 K and 110 K.  As temperature is 

increased, we see that at the same reduced pressure, the thickness of the dense adsorbed layer 

decreases and the thickness of the fluctuation layer increases.  As a consequence, for a given 

pore size, condensation occurs at a lower reduced pressure than at a lower temperature.  For 

example, for a 4 nm pore the reduced pressure at condensation at 87 K is 0.77 while at 110 K 

it is 0.7.  

  

Figure 14:  Comparison of dA and dF as a function of reduced pressure for argon adsorption on a graphite surface between 
87 K and 110 K. 
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4. Conclusions 

The theory presented here emphasises the importance of fluctuations at the boundary of the 

growing adsorbate layer.  By measuring number fluctuations during the course of a 

simulation, we have been able to show that the undulations in layer structure to which they 

give rise, are of critical importance to the condensation process in slit pores.  It is 

demonstrated that when gaps between the growing adsorbate layers reduce to a width where 

intermolecular separations at the bridges are close to the adsorbate potential minimum, 

condensation is nucleated.  This observation has not been reported previously.   

By measuring number fluctuations we have been able to identify three regions in the 

adsorbate: a dense region I, a more rarefied region II and a gas-like region.  As adsorption 

proceeds I and II grow at the expense of the gas-like region.  The high values of the particle 

fluctuation number (PNF) in II gives rise to a transient accumulation of adsorbate atoms 

which is manifested at the statistical level as non localised wave-like undulations in the 

adsorbate structure, these can be captured in snapshots and are strongly reminiscent of the 

thermodynamic theory proposed by Everett and Haynes 1.  

The properties of the fluctuation region are dependent on temperature and on the strength of 

the adsorbent well depth parameter and can be deduced from independent simulations on a 

conjugate planar surface. 

The theory gives a direct means of estimating the critical hysteresis temperature and the 

critical pore width. 
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Appendix 1 

 
(a)  

 

(b) 

 
Figure A1:  (a) The PNF of Ar adsorption at 87 K in slit pore of width of 3 nm and length 14 nm at different pressures 

points labelled on the adsorption isotherm (b) as crosses. 

 

Appendix 2 

   

Figure A2:  The evolution of the particle number fluctuation with pressure for Ar adsorption at 87 K in the pores of width of 

5 nm.  
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Appendix 3 

 

100K 

  
110K 

  
120K 

  
 

Figure A3.1:  Adsorption isotherms for argon at 100 K – 120 K in slit pores whose widths are 3, 4 and 5 nm and length 14 
nm, LHS: adsorption isotherms, RHS: particle number fluctuation just before condensation.  
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Figure A3.2:  Particle number fluctuation just before condensation for argon adsorption in a slit pore whose widths are (a) 4 
nm and (b) 5 nm, at different temperatures. 

 

Appendix 4 

 

   

   (a)      (b) 

Figure A4:  Comparisons of (a) isotherms and (b) PNFs just before condensation, for argon adsorption at 87 K in a slit pore 

of pore of 4 nm width and 14 nm length, with ss/k of the adsorbent equal to 28 K and 10 K, respectively.  
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Appendix 5 

 

77K 

 

 

100K 

  

 

 
Figure A5:  Comparison of particle number fluctuations just before condensation for argon adsorption in a slit pore and on a 
graphite surface at the same pressures; the temperatures and pore sizes are shown in the graphs. 
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