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Abstract 

An adaptive nonlinear observer design for the planar solid oxide fuel cell (SOFC) is 

presented in this work. This observer is based on a lumped parameter model of the SOFC and 

it can simultaneously estimate the inputs and the states of the system. Considering the inputs 

as unknown parameters is advantageous because some of the input parameters are not 

practically measurable in a SOFC stack. The asymptotic stability of the proposed observer is 

proven using the Lyapunov function method and is based on the concept of input-to-state 

stability for cascaded systems. The simulations show that the developed observer can track 

the temperature and species concentration profiles in the planar SOFC during step changes in 

the input variables and can simultaneously predict the input variables. The adaptive observer 

presented is valid for a wide operating range, requires fewer variables to be measured, and is 

robust to fluctuations in the input variables. 

Keywords: Adaptive non-linear observer; Solid oxide fuel cell; Lyapunov function method; 

Input and state estimation. 
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1. Introduction 

The challenges in commercializing solid oxide fuel cells (SOFC’s) may be classified as those 

pertaining to material science, reaction kinetics and control and operation. Even if the 

materials and kinetics related issues are sorted out, there are several technological challenges 

relating to control and operation that must be addressed before successful commercialisation. 

One of the important issues in the planar configuration SOFC is the non-uniform spatial 

temperature distribution in the cell, which places serious limitations on its performance. The 

non-uniformity of the temperature in the cell will lead to hot spots and thermal stresses that in 

turn increases the probability of failure and degradation of the cell [1, 2]. These issues are 

especially predominant during the transient operation of the SOFC. The thermal gradients are 

especially high in the case of methane fuelled SOFC with internal reforming. Thermal 

gradients would also be significant in SOFC systems intended for load following and 

frequent on/off applications. This thermal management problem has an important bearing on 

the efficiency, life and reliability of the cell. Therefore, thermal management is essential not 

only to prevent the damage to the fuel cell and thereby maximise the cell life, but also to 

improve its efficiency and performance [3, 4]. For effective thermal management, 

information about the temperature distributions inside the cell is required. Since this is 

generally not measurable, dynamic estimation is one option for obtaining this information. 

The need to minimise the temperature gradients in the cell has been realised  in the past  and 

methods have been presented [2] for designing control strategies to minimise the spatial 

temperature variation in a molten carbonate fuel cell. A numerical bifurcation analysis of the 

SOFC was performed in [5], which gave guidelines to avoid high over-temperatures in the 

SOFC. [6, 7] proposed state estimators based on Kalman filter that can estimate the 

temperature and the concentration profiles inside the molten carbonate fuel cell. In [8], an 
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observer was presented for estimating the spatial temperature profiles of a single cell SOFC, 

which is based on a linearised model. Observers designed using linearization techniques are 

not very suitable for the SOFC, which is a highly non-linear system.  

The limited amount of research in the open literature use linerisation approaches to observer 

design and consider a single cell design. Many models in the literature consider the cell 

current as the input [6, 7] and treat other inputs to the system like the cathodic and anodic 

flow rates and temperatures as constant parameters. Some designs consider the inlet mole 

flow rates as known inputs that are measured [8], which is quite possible if a single cell is 

considered or if the whole stack is lumped together as a single unit for the design.  However, 

considering the whole stack as single unit may give an unrealistic picture of the temperature 

distribution within the stack because in a planar SOFC stack, different cells will have 

different temperature profiles [9] both during steady state and transient operation. If on the 

other hand, if it is desired to include many cells into the model based observer design, it may 

not possible to measure the inlet flow rates or the current for each cell. In this situation, it is 

beneficial to consider the inputs as unknowns and estimate their values in addition to the state 

variables. 

The SOFC system being an inherently nonlinear one requires a nonlinear observer for the 

purpose of a wider range of applicability and accuracy. Unlike for linear systems, there is no 

systematic procedure for designing a state observer for a given nonlinear model. Empirical 

observers and converging observers are the two kinds of observers available for non-linear 

systems. Kalman filter is a common converging observer which is very useful in the case of 

linear systems. However, its extension to the nonlinear system, namely the extended Kalman 

filter is an empirical observer based on some approximation of the nonlinear system or 

approximation of a theoretical best estimation. It is based on a linearization of the nonlinear 
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system in a neighbourhood of its estimation. Hence, the extended Kalman filter is not a 

globally converging observer. On the other hand theoretically converging observers are only 

applicable for a certain class of non-linear systems and are usually very difficult to design. 

Some nonlinear converging observer designs such as sliding mode observers suffer from 

problems like chattering. Therefore, a Lyapunov function based adaptive observer design has 

been undertaken, which is a converging observer. Lyapunov function based designs suffer 

from the problem that there are no systematic methods for finding a suitable Lyapunov 

function for a given system. However, in this work, the prudent choice of adaptive 

parameters and the adaptation laws allows the definition of a Lyapunov function, using which 

the global stability of the error dynamics is proven. 

In a previous work by the authors [11], an adaptive nonlinear observer for the planar SOFC 

was presented. This paper presents an extension of the previous work, in which an unknown 

input adaptive non-linear observer for the single cell SOFC is presented. It is assumed that 

the inputs (the cell current density, the anode and the cathode inlet flow rates and the inlet 

temperature) are not available for measurement and are to be estimated in addition to the 

system states. It is also assumed that the stack inlet mole fractions (which will be the same for 

all cells in the stack) and temperature as the measured variables used in the estimation 

scheme. Similar to the previous work, the asymptotic stability of the proposed observer is 

proven using the Lyapunov function method considering the system as a cascaded one. The 

SOFC model used for the observer design is discussed in Section 2. In Section 3, the observer 

design for the system is presented. In Section 4 the stability analysis is presented, following 

which, the simulation results are presented in Section 5. Section 6 concludes the paper. 
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2. Modelling 

The SOFC basically consists of three thin layers that constitute the PEN (Positive 

electrode/Electrolyte/Negative electrode) namely the cathode, the electrolyte and the anode. 

The PEN is sandwiched between metallic plates called interconnects having channels for gas 

flow which also serves as current collectors. Hydrogen is supplied on the anode side and 

oxygen on the cathode side and the electrochemical reaction within the cell produces water 

vapour on the anode side. The reaction is exothermic and results in the evolution of heat. 

Figure 1 shows the basic construction and operation of the SOFC. The readers may refer to 

[12, 13] for further details on the construction and functioning of the SOFC. 

A lumped parameter model is used to capture the thermal distribution in the cell. The cell 

model is constructed using 6 lumps for which the mass and the thermal balances are written. 

Increasing the number of lumps will result in more accurate prediction of the temperature 

distribution. This model for the hydrogen fed SOFC was presented and validated in [11] and 

more details can be found there. For the benefit of the reader, the model development is 

outlined in the appendix. 

An improvement in the model used in this work compared to [11] is that the heat capacities 

of the anode and cathode gases are considered as functions of species mole fractions at the 

particular lump as given in Eqs. (A17-A20). This makes the observer design more 

complicated but will improve the accuracy of the model.
 

In the next section, an unknown input adaptive observer design is proposed for this system. 

The cell current, the anode and cathode inlet flows and the temperature the inlet streams will 

be considered as the inputs that need to be estimated in addition to the states. These variables 
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will be defined as the adaptive parameters for which adaptation laws will be formulated in 

such a way so as to ensure the asymptotic stability of the error dynamics. 

3. Adaptive observer design 

In this section, an unknown input adaptive observer based on Lyapunov function approach is 

presented for estimating the states of the SOFC. It is assumed that the concentrations of the 

three species at the inlet of the cell are measured and they are same as those in the first lump. 

Similarly, it is assumed that the temperature of the first lump is measured. The proposed 

observer equations are, 
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Where, 1i   for Eq. (1) and 2, ,6i   for Eq. (2). 
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where, 1i   for Eq. (3) and 2, ,6i   for Eq. (4). 
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Where, 1i   for Eq. (5) and 2, ,6i   for Eq. (6).
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where, 1i   for Eq. (7) and 2, ,6i   for Eq. (8). The parameter adaptation laws are given 

as: 
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where 
1 2 3 4, , , 0     .The ’s in the adaptation laws are the tuning parameters introduced to 

influence the convergence time for the estimation, since only the asymptotic stability of the 

error dynamics is assured. Therefore, the tuning parameters will help to achieve faster settling 

time. This can be understood as being analogous to decreasing the capacitance of a thermal or 

electrical system, thereby achieving a decreased time constant. The adaptation laws are 

designed in such a way that the error dynamics become asymptotically stable as described in 

the next section. 

4. Stability of the error dynamics 

In this section, the stability analysis for the error dynamics is presented using the Lyapunov 

function method. For the purpose of proving the asymptotic stability of the system, the 

parameter and state estimation errors are classified into the following groups: 
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Where, 1i   for Eq. (25) and 2, ,6i   for Eq. (26). 
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Where, 1i   for Eq. (27) and 2, ,6i   for Eq. (28). 
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Where, 1i   for Eq. (29) and 2, ,6i   for Eq. (30). 
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Where, 1i   for Eq. (31) and 2, ,6i   for Eq. (32). 

The parameter estimation errors are as follows: 
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    in
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                          (36) 

The stability analysis for the proposed observer is based on the concept of input-to-state 

stability for cascaded systems [15]. The asymptotic stability of the system of equations 1E is 

proven first. The asymptotic stability of unforced system 2E with the system 1E  as the input 

is then proven. Then, considering systems 1E  and 2E as inputs, the asymptotic stability of the 

unforced system 3E  is proved. Lastly, the stability of 4E  is proven with 1E  2E and 3E  as 

inputs. 

The error dynamics in Eqs. (1-12) are described in terms of the sets as described in Eqs. (13-

16) in cascaded form as: 

 1 1 1fE E
                                                                                                                           (37)

 

 2 2 1 2,fE E E
                                                                                                                     (38)
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 3 2 1 2 3, ,fE E E E
                                                                                                               (39) 

 4 2 1 2 3 4, , ,fE E E E E
                                                                                                        (40)

 

The global uniform asymptotic stability of the origin of the cascaded system described in 

Eqs.(37) and (38) is assured [15] if, the origin of Eq. (37) is globally uniformly 

asymptotically stable and the origin of the Eq. (38) with E1 as input is input-to-state stable. If 

system comprising of Eq. (39) is proved to be input-to-state stable with E1 and E2 (which are 

themselves asymptotically stable) as inputs, then the system comprising of Eqs. (37), (38) and 

(39) is globally uniformly asymptotically stable. Similarly, if the asymptotically stable 

system comprising of Eqs. (37) , (38) and (39) are considered as inputs to the system in Eq. 

(40) and the origin of Eq. (40) is proved to be input-to-state stable, this means that the 

complete system of equation from Eq. (37-40) is globally uniformly asymptotically stable. 

To prove the asymptotic stability of the system comprising Eq. (37), consider the following 

Lyapunov function candidate: 

in in 1 1 1
A C H H O O2 2 2

2 2 2 2 2 2

1 2 3

1 1 1
IF F y y y

V E E E E E E
  

     
                                                                 (41)

 

It can be seen that 0V  , when the errors are zero and positive otherwise. Therefore the 

Lyapunov function is positive definite. The function is also continuously differentiable and 

radially unbounded.  

The derivative of the Lyapunov function is given as: 

in in 1 1 1
A C H H O O2 2 2

in in 1 1 1
A C H H O O2 2 2

IF F y y y
IF F y y y

V V V V V V
V E E E E E E

E E E E E E

     
     
     

                        (42)
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which after substitution becomes: 

       

 

1 1
2 2 2 2H H O2 2

1
2O2

2 in 2 in

A H H O A H H O

1 1 1 1

2 in

C O

1

2 2

      2

i i i i
j j j j

y y
j j j j

i
j

y
j

V E F r I r I E F r I r I

E F r I

   



   
         

   

 
  

 

   

                (43)

 

It can be noted that the derivative of the Lyapunov function in the form in Eq. (43) is 

obtained because the formulation of the adaptation laws for the three adapted variables (viz. 

in in

A C, ,F F I ) is such that the terms involving the corresponding error terms in V  are cancelled. 

It is apparent that the derivative of the Lyapunov function is negative definite since the terms 

inside the brackets are positive quantities. This proves the global uniform asymptotic stability 

of the origin of the set of equations in Eq. (37). 

Next, Eq. (38) is examined as an unforced system where the inputs from Eq. (37) are zero in 

order to establish its input-to-state stability. Eliminating the terms corresponding to E1 in Eqs. 

(38), a set of linear differential equations is obtained that can be written in matrix vector 

notation as follows: 
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                                                                                                                                               (44) 

Where, 

   
2 2

2 2
in

2 A H H O

1 1

j j

j j

a F r I r I
 

   
                                                                                          (45)

 

   
2 2

3 3
in

3 A H H O

1 1

j j

j j

a F r I r I
 

   
                                                                                          (46)

 

   
2 2

4 4
in

4 A H H O

1 1

j j

j j

a F r I r I
 

   
                                                                                          (47)

 

   
2 2

5 5
in

5 A H H O

1 1

j j

j j

a F r I r I
 

   
                                                                                          (48)
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2 2
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1 1

j j
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                                                                                          (49)
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                                                                                                               (50)
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                                                                                                               (51)
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                                                                                                               (52)
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5
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5 C O

1

j

j

b F r I


 
                                                                                                               (53)

 

 
2

6
in

6 C O

1

j

j

b F r I


 
                                                                                                               (54)

 

The constants 1 6, ,a b  are composed of known quantities and it can be verified that the 

matrix in Eq. (44) has real negative eigen-values. Therefore, the unforced system described in 

Eq. (38) is globally exponentially stable. This proves the input-to-state stability of the origin 

of the system in Eq. (38) and the global asymptotic stability of the system comprising of Eqs. 

(37) and (38). 

In the following, the input-to-state stability of the system in Eq. (39) is proven considering E1 

and E2 as inputs to it.  Eliminating the terms corresponding to E1 and E2 in Eqs. (39), the 

following differential equation is obtained for E3. 
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           (55) 

The following Lyapunov function is considered for the stability analysis. 

in 1
S

2 2

4

1
T T

V E E


 
                                                                                                                    (56)

 

It can be seen that 0V  , when the errors are zero and positive otherwise. Therefore the 

Lyapunov function is positive definite. The function is also continuously differentiable and 

radially unbounded. 

The derivative of the Lyapunov function is given as: 
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                       (57)

 

It can be noted that the derivative of the Lyapunov function in the form in Eq. (57) is 

obtained because the formulation of the adaptation laws for the adapted variables 
inT  is such 

that the terms involving the corresponding error terms in V  are cancelled. It is apparent that 

the derivative of the Lyapunov function is negative definite since the term inside the bracket 

is clearly a positive quantity. This proves the input-to-state stability of the origin of the 

system in Eq. (37) and the global asymptotic stability of the system comprising of Eqs. (37-

39). 
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Finally, in the following, it is proven that the system E4 is input-to-state stable with systems 

E1, E2 and E3 considered as inputs to it. Imposing this condition, the following linear 

differential equations are obtained. 

2
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                                             (58)

 

where, 
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                          (68)

 

All the diagonal terms in the matrix are negative and other terms are positive. It can be 

verified that the matrix in Eq. (58) has real negative eigen-values, making the unforced 

system described in Eq. (40) is globally exponentially stable. This proves the input-to-state 

stability of the origin of the system in Eq. (40) and the global asymptotic stability of the 

system comprising of Eqs. (37-40). Note that the observer design elaborated in this work is 

applicable for models with any number of lumps.  
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5. Simulation results and discussion 

In this section, the simulated responses for the model and the observer states subjected to step 

changes in the inputs, viz., the current density, the inlet temperature and the two inlet flow 

rates, are presented. In addition, the response of the observer inputs that are considered as the 

adaptation variables, are also presented. These responses correspond to the step change in the 

input variables at 500 s as follows: step change in inlet temperature from 1000 K to 1100 K; 

step change in the current density from 600 A m
-2

 to 550 A m
-2

; step change in anode inlet 

flow from 0.0001 mol s
-1

 to 0.0002 to mol s
-1

; step change in cathode inlet flow from 2.742e-

3mol s
-1

 to 3e-3 mol s
-1

.  The fuel flow rate of 0.0001 mol s
-1

 corresponds to a value of 400 

ml min
-1

 and is adopted from [16]. A high step increase in the fuel flow rate is considered so 

as to demonstrate the relevance of the observer over a wide operating range and at low fuel 

utilisations.  The fuel flow rate is especially susceptible to much fluctuation if a reformer is 

involved in the upstream. The operating conditions and geometrical parameters are taken 

from [16]. Some of the important parameters used in the simulations are given in Table 1. 

The responses of the model states are represented in Figs. 2-5 in full lines and the responses 

of the observer states are represented in dashed lines. Only the results from nodes 2, 4 and 6 

are presented for clarity. It can be seen that the observer is able to track the state variables 

across all the six nodes. In Fig. 3, the species mole fractions are not changing after the step 

change because the change in inlet temperature has no effect on the species mole fractions. 

Similarly, as seen in Fig. 4, the change in anode inlet flow has no effect on the oxygen mole 

fraction. From Fig. 5, it is also evident that the change in cathode inlet flow has no effect on 

the species mole fractions on the anode side. 

As discussed earlier, some tuning variables ( ’s) were introduced so as to achieve faster 

settling of the error variables. In general, the higher the value of the tuning variable, the faster 
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is the convergence of the adaptation variables. The simulations revealed that any one the 

tuning parameter also had an influence on the convergence of other variables in the system. 

In order to understand this let us consider the following error dynamics equation: 
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1 in
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                       (69)

 

Following the method in [17], Eq. (69) can be represented as follows. 
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            (70)

 

where P is the Laplace operator. Let us assume that 1
H2

y
E and 

IE  are inputs to Eq. (70). 

Taking into consideration that Eq. (70) should be equal to zero at steady state and assuming 

that only IE  has not settled to zero, the equation reduces to the following. 

     
2 2 2 2 2

in in
2 2 2 2A A

H O H H H O H1 1 2 2

H H H H
ˆ ˆ ˆ ˆ 0

2
I I IF F

S S S
y E y E E y E y E

F F F

     
    

                  (71)

 

It is evident from Eq. (71), that under the given circumstances, it is possible that in
AF

E has a 

non-zero solution and it can settle into this solution at steady state instead of the origin. 
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Similar sort of arguments can be developed for other variables. However, if the inputs are in 

the form of a persistent excitation, parameter convergence can be guaranteed [17]. But in the 

fuel cell, the inputs are usually constant with possible step or ramp changes. Therefore, it can 

be understood that the coupled nature of the error dynamics makes it sensitive to the tuning 

parameters. In view of this, the tuning parameters were chosen as large as possible. 

Satisfactory convergence was obtained using the values for the tuning variables as:

3 1 2 41 25;  1 4e e       . Any larger values resulted in problems in the numerical 

simulations. These large values for the tuning variables increased the simulation time. The 

simulation of the model and the observer for 1000 seconds using Matlab Simulink (Version 

7.8.0 R2009a) in a personal computer with Intel Core 2 Duo processor with a speed of 3 GHz 

and 1.93 GB of RAM took about 836 seconds in real time. Therefore, the proposed observer 

can be implemented in real time. 

The quantities plotted in Figs. 6-9 are the estimated values of the input variables and are not 

the actual physical values of these variables. As can be seen form Figs. 6-9, some adapted 

input variables have a small deviation when step change is effected to other input. For 

example, in Fig. 6, the step change in current density causes a small deviation in the 

estimated value of cathode inlet flow (the error is in the order of 2e-9). Similarly there is an 

error in the anode inlet flow of the order of 9e-4. Again in Fig. 7, there are small errors in the 

anode and cathode inlet flows of the orders of 1e-13 and 1e-14, respectively. Also note that 

the errors in estimated inputs could be either positive or negative (for example, in Fig.6, the 

error in the anode and cathode inlet flows is positive, while they are negative in Fig. 7). 

However, these deviations are too small to have any considerable effect on the state variable 

estimation as seen in the simulations. 
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As the tuning parameters influence the convergence of these estimated variables, large values 

for these parameters reduce the error in the input variables. However, this can also cause 

spikes in the estimated response as seen in Fig. 8. This seems to be a disadvantage of 

considering more adopted variables because less number of these variables did not result in 

any error [11]. Smaller values for the tuning parameters reduce the overshoot, but increase 

the error in the input estimation. 

6. Conclusions 

In this paper, an adaptive nonlinear estimation scheme for the simultaneous estimation of 

states and inputs in a planar SOFC is presented. The observer design is based on an improved 

lumped parameter model of the SOFC that is capable of providing the spatial profiles of 

temperatures and species concentrations. In this design, the inputs such as the anode and 

cathode flow rates, the inlet stream temperature and the cell current are considered to be 

unknown. These inputs variables are estimated in addition to the state variables. The stability 

of the proposed observer is proven using the Lyapunov function method and is based on the 

concept of input-to-state stability for cascaded systems. The simulations show that the 

developed observer can track the temperature and species concentration profiles in the planar 

SOFC during step changes in the input variables and can simultaneously estimate the inputs. 

The observer design methodology presented in this paper is applicable for models with any 

number of lumps.  

The unknown input non-linear adaptive observer developed in this work requires fewer 

variables to be measured, is valid for a wide range of operating conditions and is robust to 

variation in the input variables because these have been considered as adaptive parameters in 

the observer design. This method also offers scope for extending the observer for the 

estimation of distributions in the entire stack. The non-linear model based observer presented 
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in this work is also robust to the disturbances in inputs and measurement noises. These input 

disturbances can occur in the system because of the performance issues with the balance of 

plant components (like compressors, power electronics and heat exchangers) in the circuit. 

This approach will be extended in a future work for estimation of temperatures in a multi cell 

planar SOFC stack. 
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Notations 

 

E   Error  

F   Mole flow rate (mol s
-1

)  

pc   Specific heat capacity (J mol
-1 

K
-1

) 

0

1

EC   Empirical constant involved in open circuit voltage calculation (1.2586 V) 

http://www.scopus.com/authid/detail.url?authorId=16231540400&amp;eid=2-s2.0-84874650612
http://www.scopus.com/authid/detail.url?authorId=7006873594&amp;eid=2-s2.0-84874650612
http://www.scopus.com/source/sourceInfo.url?sourceId=14414&amp;origin=recordpage
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0

2

EC   Empirical constant involved in open circuit voltage calculation (0.000252 V 

K
-1

) 

F   Faraday’s constant (96485 C mol
-1

) 

h   Enthalpy (J mol
-1

) 

RH   Reaction enthalpy (241830 J mol
-1

) 

I   Current density (A m
-2

) 

0I   Exchange current density (A m
-2

) 

LI   Limiting current density (A m
-2

) 

R   Ideal gas constant (J mol
-1

 K
-1

) 

ohmR   Ohmic resistance (Ω m
2
) 

S   Electrode area of lump (m
2
) 

r  reaction rate term 

T   Temperature (K) 

V   Volume (m
3
) 

cellV   Cell Voltage (V) 

y
  Species mole fraction 
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Greek letters 

mol   Molar Density (mol m
-3

) 

S

S pc   106 (Jm
-3

 K
-1

) 

   Stoichiometric coefficient 

   Tuning parameter 

Sub/superscripts 

in  inlet 

i  i
th
 lump  

A  Anode 

C Cathode 

f  Fuel 

a  Air 

S  Solid 

out Outlet 

Figure captions 

Fig. 1. Schematic showing the construction and operation of the SOFC (adopted from [14]). 
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Fig. 2. Observer tracking during step change in current density. 

Fig. 3. Observer tracking during step change in inlet temperature. 

Fig. 4. Observer tracking during step change in anode inlet flow. 

Fig. 5. Observer tracking during step change in cathode inlet flow. 

Fig. 6. The reaction of the adapted parameters to the step changes in inlet current density. 

Fig. 7. The reaction of the adapted parameters to the step changes in inlet temperature. 

Fig. 8. The reaction of the adapted parameters to the step changes in anode inlet flow. 

Fig. 9. The reaction of the adapted parameters to the step changes in cathode inlet flow. 

 

 

Appendix 

The model development for the purpose of observer design is outlined in this appendix. The 

hydrogen balance for the anode channel of the SOFC results in the following set of equations.  

 2

2 2 2

Hf f in in

mol gas H A H A H

i

i i i
dy

V y F y F r I
dt

   
                                                    (A1)

 

 2

2 2 2

Hf f 1 1

mol gas H A H A H

i

i i i i i
dy

V y F y F r I
dt

    
                                                                               (A2)

 

Where, 1i   for Eq. (A1) and 2, ,6i   for Eq. (A2). 
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Similarly, the water vapour balance for the anode gas channel is given by the following set of 

equations. 

 2

2 2 2

H Of f in in

mol gas H O A H O A H O

i

i i i
dy

V y F y F r I
dt

   
                                                                          (A3)

 

 2

2 2 2

H Of f 1 1

mol gas H O A H O A H O

i

i i i i i
dy

V y F y F r I
dt

    
                                                                        (A4)

 

Where, 1i   for Eq. (A3) and 2, ,6i   for Eq. (A4). 

The oxygen balance in the cathode channels of the SOFC are written as follows: 

 2

2 2 2

Oa a in in

mol gas O C O C O

i

i i i
dy

V y F y F r I
dt

   
                                                                                (A5)

 

 2

2 2 2

Oa a 1 1

mol gas O C O C O

i

i i i i i
dy

V y F y F r I
dt

    
                                                                               (A6)

 

Where, 1i   for Eq. (A5) and 2, ,6i   for Eq. (A6).  

The thermal balances for the solid volume of the SOFC are given in the following equations: 

 
2

S in in in inS
S S p A A C C A A C C R H cell

i
i i i i i idT

V c h F h F h F h F H r I V I
dt

      
                                          (A7)

 

 
2

S -1 -1 -1 -1S
S S p A A C C A A C C R H cell

i
i i i i i i i i i idT

V c h F h F h F h F H r I V I
dt

      
                                        (A8)

 

Where, 1i   for Eq. (A7) and 2, ,6i   for Eq. (A8).  
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The reaction rates in the preceding equations are given as: 

  2

2

H

H
2

i
I

r I
F




                                                                                                                        (A9)
 

  2

2

O

O
2

i
I

r I
F




                                                                                                                      (A10)
 

  2

2

H O

H O
2

i
I

r I
F




                                                                                                                   (A11)
 

The flows in the anode and cathode channels are given as follows: 

   
2 2

in

A A H H O

1 1

i i
i j j

j j

F F r I r I
 

   
                                                                                      (A12)

 

 
2

in

C C O

1

i
i j

j

F F r I


 
                                                                                                           (A13)

 

The cell voltages in each of the lumps are given by, 

cell OCV

1S SL
ohm

L 0

2 0.5
ln sinh

2

i i
i i RT RTI I

V V IR
F I I F I

   
      

                                                    (A14)
 

where the open circuit voltage is given by the Nernst equation as: 

 

 
2 2

OCV

2

0.5

H OS
0

H O

ln
2

i ii
i i

i

y yRT
V E

F y

 
  
 
                                                                                        (A15) 

In Eq. (A15), E0 is the standard cell potential given as [19]: 
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0 0

1 2

0 S

i i

E EE C C T                                                                                                                   (A16) 

The second, third and the fourth terms on the right hand side of Eq. (A14) represent the 

ohmic, concentration and the activation over-potentials [19] that are the sources of potential 

losses in the fuel cell. The simplified expression for the concentration over-potential involves 

a limiting current and is taken from [19, 20]. The expression for the activation over-potential 

is obtained from the Butler-Volmer equation if the transfer co-efficients ( ) are 0.5, which is 

usually the case [20, 21]. The ohmic resistance ( ohmR ) and the exchange current ( 0I ) are 

considered constants in this work. 

The specific enthalpies in Eqs. (A7) and (A8) are given by, 

 2 2

2 2

H H Oin A in in in in

A p H p H O ph c T y c y c T  
                                                                                  (A17)

 

 2 2

2 2

H H OA

A p S H p H O p S

i i i i ih c T y c y c T  
                                                                                      (A18)

 

 2 2

2 2

O Nin C in in in in

C p O p N ph c T y c y c T  
                                                                                      (A19)

 

 2 2

2 2

O NC in

C p S O p N p S

i i i ih c T y c y c T  
                                                                                        (A20)

 

Substitution of the Eqs. (A9-A20) in Eqs. (A1-A8) results in the following set of equations 

for the SOFC. 

     2

2 2 2 2 2 2

Hf f in in in

mol gas H A H A H H H O H

1 1

i i i
i i j j i

j j

dy
V y F y F y r I r I r I

dt


 

 
      

 
 

                          (A21)

 



36 
 

   

     

2

2 2 2 2 2

2 2 2 2

1 1
Hf f 1 in 1 in

mol gas H A H H H O H A

1 1

H H H O H

1 1

                        

i i i
i i j j i

j j

i i
i j j i

j j

dy
V y F y r I r I y F

dt

y r I r I r I


 

 

 

 

 
     

 

 
    

 

 

 
                                       (A22)

 

Where, 1i   for Eq. (A21) and 2, ,6i   for Eq. (A22). 

Similarly, the water vapour balance for the anode gas channel is given by the following set of 

equations. 

     2

2 2 2 2 2 2

H Of f in in in

mol gas H O A H O A H O H H O H O

1 1

i i i
i i j j i

j j

dy
V y F y F y r I r I r I

dt
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2 2 2 2

1 1
H Of f 1 in 1 in

mol gas H O A H O H H O H O A

1 1

H O H H O H O

1 1
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i i j j i

j j
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i j j i

j j

dy
V y F y r I r I y F
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                                 (A24)

 

Where, 1i   for Eq. (A23) and 2, ,6i   for Eq. (A24). 

The oxygen balance in the cathode channels of the SOFC is given as: 

   2

2 2 2 2 2

Oa a in in in

mol gas O C O C O O O

1

i i
i i j i

j

dy
V y F y F y r I r I

dt




 
     

 


                                              (A25)

 

     2

2 2 2 2 2 2 2

1
Oa a 1 in 1 in

mol gas O C O O O C O O O

1 1

i i i
i i j i i j i

j j

dy
V y F y r I y F y r I r I

dt



 

 

   
         

   
 

               (A26) 

Where, 1i   for Eq. (A25) and 2, ,6i   for Eq. (A26). 

The thermal balances for the solid volume of the SOFC are: 
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(A28)

 

Where, 1i   for Eq. (A27) and 2, ,6i   for Eq. (A28). The Eqs. (A21-A28) represent the 

SOFC lumped parameter model used for adaptive observer design. 


