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potent inhibitor and a significant crystal growth modifier. In the case of barite, the presence of mellitic 

acid produced nanoparticles that agglomerated. The nanoparticles were found to be ~20 nm in size from 

XRD linewidth analysis and 20-50nm from TEM. Humic acid was also tested and found to form 

bundled fibres of barium sulfate. 

                                                
*AJ Parker Co-operative Research Centre for Integrated Hydrometallurgy Solutions,  
Nanochemistry Research Institute, Curtin University of Technology,  
GPO Box U1987, Perth WA 6845 Australia.   
Phone:  +618 9266 7677   Fax:  +618 9266 4699   email:  franca@power.curtin.edu.au 



 

2 

Effect of benzoic acids on barite and calcite 

precipitation 

Sandra R. Freeman, Franca Jones*, Mark I. Ogden, Allan Oliviera, William R. Richmond 

* * AJ Parker Co-operative Research Centre for Integrated Hydrometallurgy Solutions, 

Nanochemistry Research Institute, Curtin University of Technology, GPO Box U1987, Perth WA 6845 

Australia.   Phone:   +618 9266 7677      Fax:   +618 9266 4699         email:   

franca@power.curtin.edu.au 

 

RECEIVED DATE (to be automatically inserted after your manuscript is accepted if required 

according to the journal that you are submitting your paper to) 

TITLE RUNNING HEAD. Effect of benzoic acids on barite and calcite 

ABSTRACT. The effect of various benzoic acids on the precipitation of barite and calcite was 

investigated. The acids varied in the number of carboxylate groups, from di-benzoic acids (phthalic, 

isophthalic and terephthalic) through to the hexabenzoic acid (mellitic acid). It was found that the 

stereochemistry of the di-benzoic acids was important, as was the pH of the solution (trimesic acid was 

used as a test case and showed greatest inhibition was achieved with all carboxylate groups de-

protonated). Interestingly, for both the calcite and barite systems, mellitic acid was found to be both a 

potent inhibitor and a significant crystal growth modifier. In the case of barite, the presence of mellitic 

acid produced nanoparticles that agglomerated. The nanoparticles were found to be ~20 nm in size from 

XRD linewidth analysis and 20-50nm from TEM. Humic acid was also tested and found to form 

bundled fibres of barium sulfate. 



 

3 

 

KEYWORDS. Barium sulfate, calcium carbonate, benzoic acids, precipitation, nucleation, morphology. 

BRIEFS. Effect of benzoic acids on barite and calcite precipitation 

 

MANUSCRIPT TEXT. 

INTRODUCTION 

Barium sulfate is a scale compound commonly encountered during the production of oil from off-

shore rigs1-3. It is also a simple precipitation system often used as a model system4. Benzoic acids have 

also been an area of interest, generally as model compounds for understanding the behaviour of 

naturally occurring humic substances in the environment5-7. The consensus about the role of dissolved 

humic matter is that it stabilizes ions in solution. This is often assumed to be via a complexing reaction 

and so the humic matter is affecting the activity of ions in solution8,9.  

There is a vast amount of previous literature describing the effect of various organics on the 

precipitation of barium sulfate and calcium carbonate (eg 10-13), however, while carboxylates are well 

known to be crystal growth modifiers of calcite they are regarded as essentially harmless to barite 

precipitation14. The use of additives in precipitation can be desirable for two reasons. Additives can 

dramatically affect particle shape and size and therefore can be used in a particle engineering sense, i.e. 

to obtain the desired physical properties of the particles in question15. Additives can also inhibit 

nucleation and growth and be used as scale inhibitors16. However, in order to properly use additives in 

this way and to intelligently design additives for future use, a fundamental understanding of their 

behaviour is required. 

Recently, we found that an amino carboxylate and a carboxylate-functionalised calixarene molecule 

were relatively good crystal growth modifiers for both barite and calcite17, 18. Thus, it appears that the 

belief that small molecule carboxyates are weak inhibitors is not always borne out. The work with 

calixarenes lead us to think about other systems that have a rigid backbone but can still have numerous 
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functionalities. Thus, the idea of testing the effect of benzoic acids on both calcite and barite 

precipitation was developed. 

We present here, for the first time (as far as the authors are aware), results showing that benzyl 

carboxylates can be very effective inhibitors of barium sulfate. Additionally, humic acid has been shown 

to inhibit barite precipitation and its effect is not quite the same as any of the benzoic acids. 

 

EXPERIMENTAL 

The materials used in this study were AR grade, from Ajax Chemicals or BDH and were dissolved to 

the required concentrations using MilliQ water. Filtered MilliQ water (0.2 µm), having a resistivity of 

18 MΩ cm, was used throughout. Organic additives were AR grade from Aldrich. They were: benzene-

1, 2-dicarboxylic acid (phthalic acid), benzene-1, 3-dicarboxylic acid (isophthalic acid), benzene-1, 4-

dicarboxylic acid (terephthalic acid), benzene-1, 3, 5-tricarboxylic acid (trimesic acid), benzene-1, 2, 4, 

5-tetracarboxylic acid (pyromellitic acid) and benzene-1, 2, 3, 4, 5, 6-hexacarboxylic acid (mellitic 

acid). Humic acid was obtained from Aldrich and was AR grade. 

Schematic diagrams of these molecules (except the humic acid) are shown in Figure 1. The organics 

were chosen to investigate the effect of different number of functional groups as well as the 

stereochemistry of the groups. 

 



 

5 

 

Figure 1. Organic additives investigated in this work: 1. phthalic acid, 2. isophthalic acid, 3. 

terephthalic acid, 4. trimesic acid, 5. pyromellitic acid, 6. mellitic acid 

 

Conductivity 

Unseeded, de-supersaturation curves were conducted using a cell kept at 25°C by a water bath and 

monitored using conductivity (WTW LF 197 Conductivity meter). An overhead stirrer (150 rpm) was 

used to keep the solids in suspension. The method of barite precipitation consisted of equilibrating 0.249 

mM BaCl2 and adding 1 mol equivalent of Na2SO4 solution to initiate crystallization as described in a 

previous publication [19]. The total volume for all experiments was 201 mL. The graph of conductivity 

versus time was used to calculate kobs (observed de-supersaturation rate) by fitting the linear region of 

the de-supersaturation curve. The pH for all experiments was 5.6 except where specified. Organic 

additives were added to the barium chloride solution prior to the addition of sulfate. The de-

supersaturation rate was found to have an error of ~10%.  

Nephelometry  



 

6 

Turbidity experiments were undertaken using a nephelometer probe (Analite NEP 160 from McVan 

Instruments) with a 90° detector. For the barite precipitation experiments, the barium chloride 

concentration, sodium sulfate concentrations and temperature were all equivalent to those used in the 

conductivity experiments. Only the stirring rate (300 rpm) was altered to ensure sufficient particles were 

detected. Autonucleated calcium carbonate precipitation was studied under similar conditions using a 

solution composition of 15 mM NaHCO3 and 19 mM CaCl2, with the required additive concentration. 

The error in this method for the determination of induction time was found to be ~15%. 

Calcium Carbonate Crystal Growth 

Calcium carbonate crystals were grown slowly in the presence of additives, by diffusion of carbon 

dioxide and ammonia into a calcium chloride solution, as described previously17. The crystal 

morphology was examined in the scanning electron microscope.  

SEM and TEM 

For the barium sulfate runs, samples were collected by filtration onto 0.22 µm membranes. After 

washing and drying in a desiccator, a portion of the filter paper was placed onto carbon coated stubs and 

stored in a desiccator. The samples were gold sputtered prior to viewing in a Philips XL30 SEM. For 

those runs that did not precipitate in the time frame of the experiment (~3 hours), particles were 

collected after 3 days. In the case of mellitic acid, a 5 L batch was prepared in order to collect sufficient 

solids. After washing and drying the solids in an oven at 55 °C, the particles were set in resin and thin 

sections prepared by ultramicrotomy. Transmission Electron Microscopy (TEM) of ultramicrotomed 

samples was carried out in a JEOL 2011 transmission electron microscope operated at 200kV. 

XRD 

Powder XRD patterns were collected on solids obtained from 5 L batch repeat experiments scaled up 

from the conductivity runs. Patterns were recorded on a Siemens D500 Powder Diffractometer using 

Cu-Ka radiation (30 mA, 40 kV). Samples were step scanned from 5° to 90° 2q, at 0.02° increments, 

using a counting time of 6 seconds per increment. Average crystallite sizes were calculated using the 

Scherrer equation. Crystallite sizes were determined as an average of three values obtained from the 
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linewidths at half maximum measured on the 211, 112 and 020 diffraction lines in the barite XRD 

pattern. 

 

RESULTS 

Di-benzoic acids and the effect of stereochemistry. 

There are three different di-benzoic acids; phthalic acid (1 in Figure 1), isophthalic acid (2 in Figure 

1) and terephthalic acid (3 in Figure 1). These three substances were used to test whether it was 

important where the carboxylic acids were situated on the benzene ring for inhibition of barium sulfate 

precipitation. 

 

0

0.5

1

1.5

2

2.5

3

3.5

4

0 2 4 6 8 10 12

Concentration (ppm)

D
e-

su
p

er
sa

tu
ra

ti
o

n
 r

at
e 

(-
1

x1
0

-5
m

S
cm

-1
s-

1
)

phthalic
isophthalic
terephthalic

a   

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 2 4 6 8 10 12

Concentration (ppm)

D
e-

su
p

er
sa

tu
ra

ti
o

n
 r

at
e 

(-
1

x1
0

-5
m

S
cm

-1
s-

1
) phthalic
trimesic
pyromellitic
mellitic

b 

Figure 2. De-supersaturation curves versus organic acid concentration for the various benzoic acids 

tested. a) di-benzoic acids (open circles – phthalic acid, filled circles – isophthalic acid, 

filled squares – terepthalic acid) b) tri-, tetra- and hexa-benzoic acid (filled circles – 

phthalic acid, open circles – pyromellitic acid, filled squares – mellitic acid, open squares 

– trimesic acid). Lines drawn to aid reader only. 

 

The 1,3 position (isophthalic acid) appears to be important for the di-benzoic acids as the 1,2 (phthalic 

acid) and the 1,4 (terephthalic acid) acids appear to have little effect on the precipitation kinetics (Figure 

2A). However, the morphology shows a different correlation (Figure 3). The isophthalic acid had only a 
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mild effect on the morphology of the resultant barite particles. As can be seen in Figure 3c, the particle’s 

aspect ratio is smaller than those of the control barium sulfate particles. On the other hand, the sample 

treated with terephthalic acid contained a combination of particle morphologies (Figure 3d), some of 

which were indistinguishable from the control barite particles while others were very rounded 

agglomerates. 

 

        
a)  b) 

        
c)  d) 

Figure 3. Scanning electron micrographs of barium sulfate particles obtained during conductivity 

experiments a) control b) phthalic acid present c) isophthalic acid present d) terephthalic 

acid present (all investigated at 10ppm ≡ 0.06mM, porous background in some figures is 

due to filter paper) 

 

Comparison with the calcium carbonate system showed comparable trends. The three additives had no 

significant impact on the morphology of calcite produced in slow crystal growth experiments (Fig Supp 

1), indicating a minimal influence on the growth of calcite. The impact on nucleation was noteworthy, 
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however, with the isophthalic acid displaying the strongest inhibition (Figure 4). Terephthalic acid did 

not reduce the induction period in comparison to the blank system (less than 100 s), and the phthalic 

acid had an intermediate effect.  

 

 

Figure 4. Light scattering as a function of time for supersaturated calcium solutions in the 

presence of 10 ppm (0.06 mM) of phthalic acid (circles), isophthalic acid (squares) and 

terephthalic acid (triangles) 

 

Effect of number of acid groups 

The interesting result here was the lack of significant inhibition (Figure 2B) of barium sulfate 

precipitation found in the presence of trimesic acid despite it having a possible 1,3 adsorption motif (see 

Figure 1). Not only was inhibition poor but also very little effect on morphology is observed (Figure 5). 

This was confirmed by the similarity in line-widths from XRD for barite particles from the trimesic and 

control samples. Thus, no effect on barium sulfate by the presence of trimesic acid is observed (in either 

size, morphology or inhibition). However, both the pyromellitic and the mellitic acid showed strong 

inhibition. Overall, the series showed that as the number of carboxylate groups increases, the effect on 

precipitation inhibition also increases. However, if we include isophthalic acid in our comparison, we 

find that isophthalic acid is more potent than both the trimesic and pyromellitic acids at the highest 

concentration. What is clear is that the pyromellitic and mellitic acids inhibit to a greater degree at lower 
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concentrations while the isophthalic acid is slower to reach those levels of inhibition. The mellitic acid, 

which showed the greatest degree of barite precipitation inhibition, had a profound effect on the 

resultant particle size and morphology. XRD line widths showed a crystallite size of ~20nm while SEM 

showed a particle size of ~500nm radius. To confirm that these particles were agglomerates of 

nanoparticles, ultramicrotomed samples were prepared and viewed by TEM. 

 

    
a b  c 

Figure 5. Scanning electron micrographs of barite particles formed in the presence of a) 0.05mM 

trimesic acid, b) 0.04mM pyromellitc acid and c) 0.03mM mellitic acid (all 10ppm 

equivalent, porous background is due to filter paper) 

 

When prepared as ultra-thin sections for TEM analysis, particles were found to be rather fragile and 

appeared to be broken up by the ultramicrotomy process (see Figure 6a). What is clear is that these 

particles are definitely aggregates of nanoparticles. A high magnification image of an intact aggregate 

shows the primary particles to be of the order of 20 – 50 nm in diameter; consistent with the XRD 

results. Also consistent with this conclusion was the appearance of rings of spots for the Selected Area 

Electron Diffraction (SAED) pattern from the intact aggregate. 
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a b c 

Figure 6. Barium sulfate particles viewed after ultramicrotomy by TEM a) low magnification 

image showing fragile nature of the aggregates formed in the presence of mellitic acid, b) 

intact aggregate and c) SAED of intact aggregate shown in b) 

 

Again, comparable behaviour was found in the calcium carbonate system, with mellitic acid being the 

most potent inhibitor, inducing a significant change in morphology (Figure 7), and a dramatically 

extended induction period in nucleation experiments (from 100 s in the blank to 2400 s in the presence 

of 0.03mM mellitic acid). Neither trimesic acid, nor pyromellitic acid induced notable changes in crystal 

morphology or induction period.  

 

 

 

 

 

 

    
a b 



 

12 

    
c d 

Figure 7. Scanning electron micrographs of calcium carbonate crystals grown in the presence of 10 

ppm (0.03mM) mellitic acid (a) blank (b) low magnification showing clusters of calcite 

and spherical vaterite (c) calcite cluster (d) spherical vaterite 

 

Effect of pH 

The effect of pH was investigated on the trimesic acid molecule, since previous work suggested that 

inhibition of barite precipitation improved with the functional groups becoming more negative. The de-

supersaturation rate at each pH level for barium sulfate was obtained and the ratio taken of the de-

supersaturation rate with trimesic acid present. Thus, a value of 1 represents no inhibition while a value 

of 0 represents complete inhibition. It found that, generally, inhibition was improved as pH increased, 

although at the highest pH (pH 11) it was less effective (Figure 8a). This trend has also been noted for 

phosphonates20 and is in part due to charge screening. It was noted that, at pH 11, the conductivity value 

was lower in the presence of trimesic acid than the control (unlike all the previous experiments where 

the reverse was found). Because conductivity measures the mobility of ions in solution, complexation 

reactions can be sometimes observed by a decrease in conductivity (since the complex has a lower ionic 

charge normally and therefore a lower mobility). This suggests that at the highest pH investigated, 

complexation of the trimesic acid molecule with barium ions might be occurring. This is possible 

because complexation is preferred at higher pH due to the higher concentration of fully deprotonated 

acid.  

The nephelometry results show that at pH 5 (Figure 8b), the trimesic acid has very little effect on 

nucleation rate, thus, its main impact should be on growth. This correlates well with the conductivity 
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data and the lack of impact on morphology, though the impact on growth in terms of particle size is not 

discernable in the SEM pictures. 
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Figure 8. a) De-supersaturation rate of barite precipitation in the presence of 10ppm (0.05mM) 

trimesic acid ratio-ed to the control run at that pH versus pH and the ratio of the 

conductivity value in the presence of trimesic acid to the control value versus pH b) 

Turbidity of precipitating barite solution in the presence of variable concentrations of 

trimesic acid at pH 5 (filled squares – no trimesic acid present, filled circles – 0.025 mM 

trimesic acid present, open circles – 0.05 mM trimesic acid present) 

 

The particles obtained in the presence of trimesic acid at pH 5 and 11 are shown in Figure 9. At all 

pHs investigated we see very little change between the control (at a given pH) and those obtained with 

trimesic acid present. Only at pH 11 was a combination of particle morphologies observed. In Figure 9d, 

rectangular particles similar to the control are found, however, the arrow indicates a more rhombohedral 

particle is also present. Viewing of larger sections showed that indeed the sample consisted of two types 

of particles: particles with the control morphology and particles with the rhombohedral morphology 

normally associated with lower supersaturation ratios21. This also supports the notion that complexation 

is occurring, leading to a lower supersaturation (and therefore, rhombohedral particles). 
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a 

 
b 

 
c 

 
d 

Figure 9. Scanning electron micrographs of barium sulfate showing the effect of pH on barite 

particle morphology (porous background is due to filter paper) a) pH 5 control b) pH 5 

with 10ppm trimesic acid present c) pH 11 control d) pH 11 with 10ppm trimesic acid 

present showing rectangular particles, the arrow points to a rhombohedral particle lying 

underneath the other particles, the inset shows a rhombohedral particle from another 

section of the sample (10ppm is equivalent to 0.05mM) 

 

 

Effect of humic acid 

Humic acid was investigated since it is known to contain many acidic functionalities as well as 

containing aromatic rings. In fact, the various benzoic acids have been used as model systems for humic 

acids in the past5-7. It was interesting then to find that humic acid had inhibitory powers in-between the 

mellitic and pyromellitic acids (Figure 10). Even more interesting was the presence of fibre-like barite 

particles often found with phosphonate polymers22 or small phosphonate molecules23 like EDTP (EDTP 
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= ethylenediaminetetramethylenephosphonic acid). The morphology change observed is not one that 

can be reproduced by simply altering supersaturation. The inhibitory power of humic acid was not the 

same as any of the benzoic acids and the morphology change in the presence of humic acid was not 

reproduced by any of the other benzoic acids. In this respect then, it is perhaps unwise to use benzoic 

acids as models for humic matter. Recent molecular modelling24 on EDTP found a strong interaction 

with the (100), (210) and (001) faces and previous TEM studies22 have shown the fibres to be self-

assembled aggregates of nanoparticles elongated in the (001) zone. This suggests that humic acids too 

have the same strong interaction with these faces (in particular, the (001) and (210) faces). XRD 

confirmed that the crystallite size was in the nanometer range (20-30 nm). These results thus suggest 

that humic acids may not always affect the solution speciation via complexation of ions in solution but 

can adsorb onto and directly interact with surfaces. However, it does confirm the current wisdom that 

dissolved humic matter inhibits precipitation. 
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Figure 10. a) Comparison of de-supersaturation rate of barite with varying humic acid concentration 

with barite precipitation in the presence of pyromellitic and mellitic acids (filled squares 

– pyromellitic acid, open circles – humic acid, open squares – mellitic acid). Lines drawn 

to aid reader only. b) Scanning electron micrographs of fibre-like particles of barite 

formed in the presence of humic acid at 10ppm 
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DISCUSSION 

In order to properly assess the impact of the various acids on the precipitation of calcite and barite the 

pKa values of the acids25 were obtained to see whether there was any correlation with the ionisation 

state and the degree of inhibition observed. 

 

 

 

 

 

 

 

 

Table 1. pKa values25 for the organic acids investigated 

Additive pKa1 pKa2 pKa3 pKa4 pKa5 pKa6 

phthalic 2.9 5.5     

isopthalic 3.5 4.6     

terephthalic 3.5 4.8     

trimesic 3.2 3.9 4.9    

pyromellitic 2.4 3.1 4.4 5.6   

mellitic 2.1 2.5 3.2 4.4 5.5 6.6 

 

Let us concentrate on the di-carboxylates first. From the values shown in Table 1 it becomes clear that 

the second proton on phthalic acid will not be completely removed at ~pH 5. So its protonation state 

may provide a possible reason for its poor performance as an inhibitor. With only one carboxylate group 

de-protonated, a direct comparison of phthalic acid with the other di-carboxylates is flawed, since one 
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molecule contains only one effective carboxylate group while the others have two; both tera- and iso-

phthalic acids would be doubly de-protonated at pH 5.  

In the case of trimesic acid, it appears that this molecule should be completely de-protonated by pH 5, 

but only just. Thus, increases in the pH will cause an increase in the number of fully de-protonated 

trimesic acid molecules, which in turn leads to greater efficacy of inhibition. Thus, the observed 

behaviour of trimesic acid with changes in pH is as would be expected based on the ionisation state of 

the molecule. Both the pyromellitic and the mellitic acids are not fully de-protonated at pH 5 but have at 

least 3 carboxylate groups de-protonated. Thus, we can conclude that inhibition of precipitation is not 

related to the inhibitor’s protonation state alone. 

The most intriguing result from this work is the strong inhibition seen in the presence of isophthalic 

and mellitic acids. Clearly, the number of ionised carboxylic acid functional groups is a significant 

parameter affecting the degree of barite inhibition. However, the isophthalic acid is more potent as an 

inhibitor than the trimesic and pyromellitic acid molecules, both of which have equal or greater number 

of carboxylate groups present, even when ionisation is taken into consideration. In this case, some sort 

of stereochemical constraint must be altering the adsorption geometry such that precipitation inhibition 

is weakened for the pyromellitic and trimesic acids.  

While the planar nature of both the benzene ring and the carboxylic acid functional group make these 

molecules good candidates for molecular modelling studies, detailed studies were beyond the scope of 

this work. The possibility of lattice matching however, was assessed by measuring the oxygen-to-

oxygen and carbon-to-carbon atom distances for the organic acids from known calcium crystal 

structures26 and comparing these to the barite and calcite anion distances. It must be noted that, due to 

there being at least four oxygen atoms present, there is a minimum and a maximum O-O distance and 

intermediate distances are possible even for the di-carboxylic acids. This is shown diagrammatically in 

Schematic 1.  
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Schematic 1. Schematic showing isophthalic acid. The solid double-headed arrow represents the 

shortest O-O distance while the dashed double-headed arrow represents the longest O-O 

distance. Intermediate distances also exist. 

 

Literature suggests that while conformational changes of the organic can be significant24, 27, if lattice 

matching does occur, these distance relationships are important.  

 

Table 2. Atomic distances(Å) in the various organic acids as determined from known crystal 

structures 

 Minimum 

O-O distance 

Maximum 

O-O distance 

Minimum 

C-C distance 

Maximum 

C-C distance 

Phthalic 3.004 4.807 2.910 NA 

Isophthalic 4.921 7.203 5.020 NA 

Terephthalic 7.007 7.355 5.800 NA 

Trimesic 5.048 7.087 5.020 NA 

Pyromellitic 2.997 7.374 2.998 5.816 

Mellitic 3.029 7.387 2.900 5.850 

 

Assuming that the acid groups that adsorb are de-protonated, for lattice matching to occur they must 

correspond to sulfate/carbonate positions on the barite/calcite faces. The sulfate distances in barite are: 

5.77 Å on the (011) face, 5.47 Å (on the (100), (001) and (101) faces), 5.09 Å on the (211) face, 4.63 Å 

on the (010) face and 4.32-4.39 Å on the (210) and second cut of the (100) face26. For calcite, the 
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carbonate distances are equivalent on the exposed faces (as the faces are all (1�140)) and are those 

found on the cleavage plane27; namely the carbonate distances are 4.06, 4.80 and 6.27 Å. 

Given that the distances between surface carbonate and sulfate sites are given as C-C or S-S 

distances, it is important to check the C-C distance in the benzoic acid to see if there is any match. The 

phthalic acid is not at all equivalent to any sulfate or carbonate distances. Thus, the lack of effect for 

phthalic acid can be explained by the lack of lattice matching. This is further supported when it is noted 

that the calcite experiments were run at a pH where the phthalic acid should have been fully de-

protonated (>pH 8). The isophthalic acid can probably adsorb into both 5.09 Å spaces of sulfate on 

barite and the 4.8 Å carbonate distance of calcite (~4% mismatch) and this could explain its potency. 

The terephthalic acid only matches one of the barite sulfate distances (that for the (011) face) and this 

could be the reason why we see a morphology effect in the presence of terephthalic acid. It does not 

explain however, why we do not see an inhibiting effect for barium sulfate precipitation in the presence 

of terephthalic acid.  

As the number of carboxylate groups increases the number of sulfate distances that can be matched 

increases too. However, an explanation as to why the isophthalic acid is a more potent inhibitor than 

trimesic acid or pyromellitic acid requires us to consider to the following two possibilities.  

i) It is clear that there are two modes in which the organic acids might adsorb: either with the 

benzene ring co-planar to the surface or at some angle more ‘orthogonal’ to it (see Schematic 2 

below).  
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Schematic 2. The benzene ring in the benzoic acids may adsorb either in a planar orientation to the 

surface or a more upright/orthogonal one 

 

It is possible that one of these positions (co-planar or ‘orthogonal’) may be more potent than 

the other with respect to inhibiting crystallization. Infrared results from Nagayasu et al.28 

suggest that phthalic acid adsorbs onto stainless steel almost perpendicularly but that the 

trimesic and mellitic acids adsorb at a more inclined angle — closer to the co-planar 

arrangement. The terephthalic acid would either have to adsorb in a co-planar arrangement or, 

if in an orthogonal arrangement, adsorb through only one carboxylic acid moiety, and this 

may explain why it is not a good inhibitor. In any event we plan to undertake molecular 

modelling studies of these compounds in an effort to elucidate their mode of interaction. 

ii) If the molecule is adsorbed in a perpendicular fashion with one or more carboxylate groups 

‘tethered’ to the surface and one or more carboxylate groups directed out towards the solution, 

the carboxylate group directed towards the solution may be able to attract barium ions towards 

it, which might lead to less disruption of the crystal growth process than having a non-polar, 

non-ionic benzene ring directed toward the solution as in the case of isophthalic acid present. 

 

SUMMARY 

It has been shown that the different benzoic acids have variable impacts on the de-supersaturation rate 

or eventual morphology of particles obtained after precipitation of barite and calcite in their presence. 

The unusually high impact of isophthalic acid appears to be due to the spacing of the 1,3- motif (~5.3 

Å), which coincides with the sulfate spacing on barite and the carbonate spacing on calcite. The same 

1,3- motif in trimesic acid does not result in a similarly large impact on precipitation however. This 

seems to be due to the trimesic acid interacting with the crystal surface through a different mode of 

adsorption (ie orthogonal versus planar or hydrophilic versus hydrophobic residue in solution). 

Generally, the more carboxylic acid groups on the inhibitor molecule, and the greater the extent of 

deprotonation, the greater the inhibitory effect of the benzoic acid. Mellitic acid, the most potent 
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inhibitor of barite precipitation, was also found to have the most dramatic impact on the morphology of 

barite and calcite particles. For calcite, the presence of mellitic acid caused almost spherical aggregates 

of calcite rhombs to form while for barite, nanoparticles of barium sulfate formed spherical aggregates. 

The primary nanoparticle size in this case was found to be ~20-50 nm in diameter. 

Additionally, humic acid has been shown at ambient pH conditions to be a reasonably good barite 

inhibitor. The observed morphology changes suggest that this inhibition is not due to any complexation 

reaction but is the result of direct interaction with the surface (the (001) and (210) surfaces in 

particular). Also, the different behaviour of humic acid on both the precipitation kinetics and the 

morphology of the resulting barite casts some doubt on the validity of using benzoic acids as models for 

dissolved humic matter. On a more positive note, as environmental factors become ever more important, 

and the phase-out of phosphonate inhibitors appears inevitable, natural humic acid derivatives could be 

considered as alternatives.  
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SYNOPSIS TOC.  

Benzoic acids with varying number of 

carboxylate groups were found to affect barite 

and calcite precipitation, mellitic acid was found 

to be a particularly potent inhibitor. 
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SUPPORTING INFORMATION.  

Figure Supp 1 Scanning electron micrographs of calcite crystallised in the presence of 10 ppm of (a) 
phthalic acid, (b) isophthalic acid and (c) terephthalic acid. 

 

(a) 

 

 

(b) 
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 (c) 
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Figure Supp2. XRD patterns 

A. For barium sulfate (control) 

 

B. XRD pattern for barium sulfate in the presence of trimesic acid (10ppm) 
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C. XRD pattern of barium sulfate in the presence of mellitic acid (10ppm) 

 

D. XRD pattern of barium sulfate in the presence of humic acid (10ppm) 
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Table A1: Crystallite sizes calculated from linewidths of 211, 112 and 020 reflections using the Scherrer 
equation. 

 

Sample Reflection Angle 2q FWHM 
crystallite 
size (Å) 

     

Mellitic 211 28.92 0.642 192.98 

 112 31.68 0.564 237.98 

 020 32.96 0.573 235.95 

     

Humic 211 28.72 0.534 250.06 

 112 31.52 0.424 369.50 

 020 34.84 0.514 282.81 

     

Trimesic 211 28.6 0.188 5613.4 
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 112 31.4 0.181 10209.6 

 020 32.66 0.281 864.4 

     

Control 211 28.58 0.184 7465.8 

 112 31.38 0.191 4866.7 

 020 32.64 0.23 1622.7 
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