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Chapter  14

INTRODUCTION

Service Oriented Architecture (SOA), which is 
prompting a variable shift in the distributed com-
puting history, is subsisted in modern computing 

environments and is at critical risks due to perma-
nent and transient faults in computing structures 
(Lakhal, Kobayashi, & Yokota, 2006). Permanent 
faults such as node stuck-at-1/0, transistor open, 
shorted transistors, etc., arise during fabrication 
or result from aging, and destroy the intended 
function of the circuit (Timor, Mendelson, Birk, 
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& Suri, 2008). Transient faults, in contrast, do not 
damage the chips physically but are catastrophic 
for desired functionalities of the system (Mukher-
jee, Emer, & Reinhardt, 2005), (F. Wang, 2008), 
(Iyer, Nakka, Kalbarczyk, & Mitra, 2005). Both 
of these faults are severe for those SOA where 
reliability is a great concern(Narayanan & Xie, 
2006), (Tosun, 2005). For example, online banking 
transactions where a single bit change (1→0) in 
the most significant bit of the data storing register, 
may cause a huge difference in balance. Due to 
processor scaling, reduction in operation voltages, 
exponential growth of number of transistors in a 
single chip, increase in clock frequencies, and/
or device shrinking, the rate of these faults are 
moving upwards day by day (Saggese, Wang, 
Kalbarczyk, Patel, & Iyer, 2005), (Crouzet, Col-
let, & Arlat, 2005).

Prior research to cope with transient faults 
(which in turn create soft errors) mostly focuses on 
post-design phases, such as circuit level solutions, 
logic level solutions, spatial redundancy, tempo-
ral redundancy, and/or error correction codes. 
Early detection and correction of such problems 
during the design phase is much more likely to 
be successful than detection once the system is 
operational (Cortellessa et al., 2005). Estimating 
reliability (or at least identifying failure-prone 
components) early in the life-cycle of a design is 
therefore preferable (Jurjens & Wagner, 2005), 
(A. Bondavalli, 2001). From a pure dependabil-
ity viewpoint, complex components attract more 
attention of soft errors tolerant approaches than 
others do, since reliability of a system is correlated 
with the complexity of the system (Khoshgoftaar, 
1996), (Yacoub & Ammar, 2002). To minimize the 
risks of system failure, it is a requirement to flag 
those components of SOA that are likely to have 
higher faults. Clearly, the degree of protection or 
prevention of faults mechanism is not same for 
all components. Hence, an approach is needed 
at the design stage to highlight those complex 
components and suggest the designers for possible 

changes in the design if there remains any risk of 
affecting desired functionalities.

This chapter flags complex components at early 
design stage and investigates how to encourage 
the designer to explore changes that could be 
made in the existing model. For example, how 
the complexities of the components could be 
minimized, or how these components could be 
replaced with alternatives and/or with less complex 
components are examined. The objective is to 
keep the functionality and other constraints of the 
system unaffected or to make a trade-off between 
them, with the goal to minimize the reliability 
risks. Case studies illustrate the effectiveness of 
the proposed approach in determining compo-
nents’ complexity ranking and then lowering their 
complexities. The model is expressed in Unified 
Modeling Language (UML) since this allows the 
modeler to describe different views on a system, 
including the physical layer (Wood, Akehurst, 
Uzenkov, Howells, & McDonald-Maier, 2008), 
(L. Wang, Wong, & Xu, 2007).

EXISTING WORK ON SOFT 
ERRORS RISKS MINIMIZATION

Software based approaches to tolerate soft 
errors include redundant programs to detect 
(Mukherjee, Kontz, & Reinhardt, 2002), (Rein-
hardt & Mukherjee, 2000), (Rotenberg, 1999), 
(Smolens et al., 2004) and/or recover from the 
problem (Vijaykumar, Pomeranz, & Cheng, 
2002), duplicating instructions (Oh, Shirvani, & 
McCluskey, 2002), (Reis, Chang, Vachharajani, 
Rangan, & August, 2005), task duplication (Xie, 
Li, Kandemir, Vijaykrishnan, & Irwin, 2004), 
dual use of super scalar data paths (Ray, Hoe, & 
Falsafi, 2001), and Error detection and Correc-
tion Codes (ECC) (Chen & Hsiao, 1984). Chip 
level Redundant Threading (CRT) (Mukherjee 
et al., 2002) used a load value queue such that 
redundant executions can always see an identical 
view of memory. Although the load value queue 
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produced an identical view of memory for both 
leading and trailing threads, integrating this into 
the chip multiprocessor environment requires 
significant changes. In (Reinhardt & Mukherjee, 
2000), the authors described the concept of sphere 
of replication in aiding the design and discussion 
of fault tolerant Simultaneously and Redundantly 
Threaded (SRT) processors. The parts of the 
computer system that fall outside the sphere are 
not replicated and must be protected by other 
means such as information redundancy. AR-SMT 
(Active-stream/Redundant-stream Simultaneous 
Multithreading) (Rotenberg, 1999) increases the 
memory requirement and bandwidth pressure 
two times, since both threads required accessing 
the cache and individual memory. Doubling the 
memory may stress the memory hierarchy and 
degrade performance. Walcott et al. (Walcott, 
Humphreys, & Gurumurthi, 2007) used redun-
dant multi threading to determine the architec-
tural vulnerability factor, and Shye et al. (Shye, 
Blomstedt, Moseley, Janapa Reddi, & Connors, 
To be Appeared) used process level redundancy 
to detect soft errors. In redundant multi threading, 
two identical threads are executed independently 
over some period and the outputs of the threads 
are compared to verify the correctness. EDDI (Oh 
et al., 2002), and SWIFT (Reis et al., 2005) dupli-
cated instructions and program data to detect soft 
errors. Both redundant programs and duplicating 
instructions create higher memory requirements 
and increase register pressure. Error detection and 
Correction Codes (ECC) (Chen & Hsiao, 1984) 
adds extra bits with the original bit sequence to 
detect error. Using ECC to combinational logic 
blocks is complicated, and requires additional logic 
and calculations with already timing-critical paths.

Hardware solutions for soft errors mitigation 
mainly emphasize circuit level solutions, logic 
level solutions and architectural solutions. At 
the circuit level, gate sizing techniques (Park & 
Kim, 2008), (Miskov-Zivanov & Marculescu, 
2006), (Quming & Mohanram, 2004) increas-
ing capacitance (Oma, Martin, Rossi, & Metra, 

2003), (STMicroelectronics, 2003), resistive 
hardening (Rockett, 1992) are commonly used 
to increase the critical charge (Qcrit) of the cir-
cuit node as high as possible. However, these 
techniques tend to increase power consumption 
and lower the speed of the circuit. Logic level 
solutions (S. Mitra, 2006), (Ming Zhang, 2006), 
(M. Zhang et al., 2006) mainly propose detection 
and recovery in combinational circuits by using 
redundant or self-checking circuits. Architectural 
solutions mainly introduce redundant hardware 
in the system to make the whole system more 
robust against soft errors. They include dynamic 
implementation verification architecture (DIVA) 
(Austin, 1999), and block-level duplication used 
in IBM Z-series machines (Meaney, Swaney, 
Sanda, & Spainhower, 2005). DIVA (Austin, 
1999) in its method of fault protection assumed 
that the checker is always correct and it proceeds 
using the checker’s result in case of a mismatch. 
So, faults in the checker itself must be detected 
through alternative techniques.

Hardware and software combined approaches 
(Gold et al., 2005), (Krishnamohan, 2005), (Vijay-
kumar et al., 2002), (Mohamed, Chad, Vijaykumar, 
& Irith, 2003), (Xie et al., 2004), (Srinivasan, 
Adve, Bose, & Rivers, 2004), (Rashid, Tan, Huang, 
& Albonesi, 2005) use the parallel processing 
capacity of chip multiprocessors (CMPs) and 
redundant multi threading to detect and recover 
the problem. (Mohamed et al., 2003) shows Chip 
Level Redundantly Threaded Multiprocessor with 
Recovery (CRTR), where the basic idea is to run 
each program twice, as two identical threads, on 
a simultaneous multithreaded processor. One of 
the more interesting matters in the CRTR scheme 
is that there are certain faults from which it can-
not recover. If a register value is written prior to 
committing an instruction, and if a fault corrupts 
that register after the committing of the instruction, 
then CRTR fails to recover from that problem. 
In Simultaneously and Redundantly Threaded 
processors with Recovery (SRTR) scheme (Vi-
jaykumar et al., 2002), there is a probability of 
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fault corrupting both threads since the leading 
thread and trailing thread execute on the same 
processor. Others (Krishnamohan, 2005), (Xie 
et al., 2004), (Srinivasan et al., 2004), (Rashid 
et al., 2005) have followed similar approaches. 
However, in all cases the system is vulnerable to 
soft error problems in key areas. In software-based 
approaches, the complex use of threads presents a 
difficult programming model. In hardware-based 
approaches, duplication suffers not only from 
overhead due to synchronizing duplicate threads, 
but also from inherent performance overhead due 
to additional hardware. Moreover, these post-
functional design phase approaches can increase 
time delays and power overhead without offering 
any performance gain.

Few approaches (Chidamber & Kemerer, 
1994), (Harrison, Counsell, & Nithi, 1998) dealt 
with the static complexities of the system as a risk 
assessment methodology to minimize the risks of 
faults. (McCabe, 1976) introduced Cyclomatic 
complexity, which is measured based on program 
graphs. However, these static approaches do not 
deal with the matter of how a module functions 
in its executing environment. A fault may not 
manifest itself into a failure if never executed. 
(Cortellessa et al., 2005), and (Yacoub & Ammar, 
2002) defined dynamic metrics that include dy-
namic complexity and dynamic coupling metrics 
to measure the quality of software architecture. 
To assess the severity of the components they 
have defined only three levels of system failure. 
However, in real life scenarios, only three sever-
ity levels are not sufficient to represent several 
possible failure modes. Criticality analysis at the 
sub-system level along with failure Mode and Ef-
fect Analysis (FMEA) is also becoming popular 
in fault tolerant research. A few common methods 
for assessing criticality in FMEA are Risk Priority 
Number (RPN) (Bowles, 2004), the MIL_STD 
1629A Criticality Number ranking (author, 1984), 
and the multi-criteria Pareto ranking (Bowles, 
1998). However, difficulties in calculating fail-
ure rate values or probability of failure make 

Criticality Number ranking, and the multi-criteria 
Pareto ranking unpopular to researchers. (Sherer, 
1988) has shown a risk assessment methodology 
by measuring the consequences of errors in dif-
ferent modules. However, the high complexity 
of the method in real-life applications makes it 
obsolete. Moreover, the method is applied at the 
later stages of the system design, which can mean 
a huge cost increase.

A METHODOLOGY TO 
MEASURE AND REDUCE 
COMPONENT’S COMPLEXITY

Complexity analysis does not measure the impact 
of components in system functionality, but rather 
shows the rank of likelihood of encountering errors 
among the components. Some empirical studies 
have found a correlation between the number of 
errors in a system and the complexity of the system 
(Khoshgoftaar, 1996), (Ammar, Nikzadeh, & Du-
gan, 1997). (Cortellessa et al., 2005) also pointed 
out that the probability of encountering errors is 
proportional to the complexity of the system. To 
minimize the reliability risks, it is therefore nec-
essary at the early design phase to flag complex 
components that are likely to have higher faults. 
This paper highlights these components by an 
assessment of execution time via simulation and 
the Message-In-and-Out frequency. The details 
of these metrics are given below.

Execution Time during Simulation

The Failure-In-Time (FIT) of a system due to 
soft error is proportional to the fraction of time 
in which the system is susceptible to soft error 
if the circuit type, transistor sizes, node capaci-
tances, temperature and so forth are kept constant 
(Nguyen, Yagil, Seifert, & Reitsma, 2005). Hence, 
the fractional time that a component uses in the 
execution of a system can flag the soft error prone-
ness of that component. Using Execution Time 
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(ET) during simulation to measure a component’s 
complexity is a novel approach. Components are 
executed for a specific operation. Users can specify 
any operation that seems to be involved with all 
components. The longer duration to perform the 
selected operation implies that the component 
is being used more frequently and/or that it is 
experiencing many state changes. A soft error oc-
curs at any access point of these components can 
spread towards all communicating components 
through the large number of behavioural linkages 
until the soft error affected component remains 
in execution. Hence, the likelihood of soft error 
may be increased if the component takes a longer 
ET. The method of measuring ET during simula-
tion (to perform an operation by a component) 
can be shown as follows. Component state S is a 
function of time: S (t) where t denotes time. An 
external function F () is required to be executed 
to perform the operation F (S (ti)) → S (tj)): where 
S (ti) is the state of a component at ti and S (tj) 
is the state of that component at tj. Hence, ET, to 
execute the function F () that changes the state of 
the pth component from S (ti) to S (tj), is:

ET  (F (S (t ))  S (t ))
p i j

→ =
=
∑dpj
j

n

1

	 (1)

where n is the total number of state changes in 
the pth component’s behaviour execution and dpj 
is the duration in the jth slot of changing states 
of pth component.

Since UML does not specify an action model, 
Telelogic Rhapsody (Telelogic, 2009) is used to 
gain execution data via simulation. The model is 
executed in tracing mode. Several tracing com-
mands are used to execute the model. The state 
transition times for the components are saved to 
a log file. At the end of the simulation, that log 
file is analysed to calculate the total ET of the 
components to perform a selected operation.

Message-In-And-Out Frequency

In object-oriented designs, components are often 
interdependent. Hence, a failure or error can 
easily propagate to other components. The mal-
functioning behaviour of a component in a high 
interdependent design cannot be easily isolated. 
Therefore, this dependence is considered as a 
valuable measurement for both “a posteriori” 
and “a priori” analysis (Hitz & Montazeri, 1995). 
A posteriori analysis is conducted to trace those 
design aspects that were more likely to produce 
errors and hence correlate errors with design qual-
ity metrics. A priori analysis makes use of this 
dependence measurement to assess the reliability 
of designs in an early development phase. This 
research accepts a priori analysis since it saves 
both costs and time. In a system model (assumed in 
UML), components communicate with each other 
by message passing among them. The number 
of messages from and to a component shows the 
measure of dependence with other components. 
Components with more dependence could easily 
manifest themselves into failure of the system 
because services of these components are fre-
quently accessed by other components (Yacoub 
& Ammar, 2002).

To determine the error proneness, a compo-
nent’s Message-In-and-Out frequency (MIO), 
which is the ratio of number of messages from 
and to a component in a scenario and the total 
number of messages in that scenario, is calcu-
lated. More specifically, a component with 
higher Message-In-and-Out frequency (MIO) is 
more likely to cause changes in the whole system 
if there arise any architectural or behavioral change 
in that component. Define MIO

ik
as the MIO for 

ith component in kth scenario. M (i,j) is the message 
between component i and component j (where 
j=1,….,m, i≠j, and m is the number of messages 
from ith component to other components) in kth 
scenario, and nk is the total number of messages, 
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communicating among all the components, in that 
scenario. Then, MIOi can be derived as:

MIO

M

  
i

(i,j)

k
=

≠
=
∑| | |i j

n
j

m

k

1 	 (2)

For each component, Total MIO (TMIO) in 
all possible different scenarios can be calculated 
using (3). TMIO for ith component is:

TMIO P Sc MIO
i k i

k

n

k

=
=

′

∑ ( )
1

 	 (3)

where ¢n is the total number of scenarios in Hand-
set system, P(Sck) is the probability of kth Sce-
nario in that system, and MIO

i k
is the MIO for 

ith component in kth scenario.

Overall Complexity

The Overall Complexity of the ith Component 
(OCCi) is the summation of different complexity 
factors for that component. The equation is:

OCCi=ETi+TMIOi	 (4)

where ETi and TMIOi are Execution Time, and 
Message-In-and-Out frequency for the ith com-
ponent. Since, ETi and TMIOi are independent 
on each other, OCCi is calculated using the sum-
mation of these two factors. For simplicity, the 
weights of ET and TMIO in measuring total value 
of complexities are assumed as equal.

Lowering the Complexities 
of the Components

Component complexity suggests to the designer 
where in the system design, changes are neces-
sary or helpful to minimize soft errors risk. These 
changes can be made by applying a suitable ap-

proach where he/she may change the architecture 
or behavioural model of the component to lower 
its complexity. Refactoring is a good candidate 
for this type of approach. The purpose of refac-
toring is to alter the model based on the user’s 
requirements by keeping the functionality and 
other constraints of the system unaffected. In 
software engineering, “refactoring source code” 
means improving it without changing its overall 
results and is sometimes informally referred to as 
“cleaning it up” (Wikipedia, 2009). Refactoring 
neither fixes bugs nor adds new functionality, 
though it might precede either activity; rather, 
it improves the understandability of the code, 
changes its internal structure and design, and 
removes dead code. UML model refactoring is 
the equivalent of source code refactoring at the 
model level with the objective of preserving the 
model’s behaviour (Hosseini & Azgomi, 2008), 
(Gerson, Damien, Yves Le, & Jean-Marc, 2001). It 
re-structures the model to improve quality factors, 
such as maintainability, efficiency, fault tolerance, 
etc., without introducing any new behaviour at the 
conceptual level. As the software and hardware 
system evolves, almost each change of require-
ments imposed on a system requires the intro-
duction of small adaptations to its design model 
(Dobrzanski & Kuzniarz, 2006), (Boger, Sturm, & 
Fragemann, 2003, Revised Papers (Lecture Notes 
in Computer Science Vol.2591)). However, the 
designers face challenges to this adaptation by a 
single modification in the model. A possible solu-
tion to this problem can be to provide designers 
with a set of basic transformations so maintaining 
model functionality. This set of transformations is 
known as refactoring, which can be used gradually 
to improve the design (Dobrzanski & Kuzniarz, 
2006). A detailed taxonomy of model transforma-
tions has been presented by (Mens & Van Gorp, 
2006), (Mens, 2006). Model refactoring can be 
made by replacing components with ones that are 
more elegant, merging/splitting the states keeping 
the behaviour unchanged, altering code readabil-
ity or understandability, formal concept analysis, 
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graph transformation, etc. Model refactoring can 
be detailed by using an example, which consists of 
Figure1 and Figure2. Figure1 shows an example 
statechart of a user’s access to the server, and Fig-
ure2 shows this statechart after refactoring. Two 
states in Figure1, named as “Pass to Server”, and 
“Retrieved”, are merged into one state, “Verify-
ing”, in the refactored statechart (Figure 2). The 
actions used in “Pass to Sever” are copied into the 
“Verifying” state. Once the complexity ranking is 
returned, a model can be refactored with the goal 
of reducing the complexities of the components. 
Refactoring can be applied on the architecture or 
behavioural model of the component to lower the 
complexity, and/or severity, and/or propagation 
of failure of the components. The methodology 
of lowering the complexities of components by 
refactoring is shown in Figure3. As shown in 
Figure3, initially, the abstract model (in UML) is 
created from the given specifications. The model 
is then analysed to measure the complexities of 
its components. Component complexities need 
to be compared with a threshold value that users 

need to determine (for simplicity, the threshold 
value is ignored in this example).

The large variations among components’ 
complexities are taken as the guideline for flag-
ging the components as complex. If complex 

Figure 1. An example Statechart of ‘user’s access 
to server’ before refactoring

Figure 2. An example Statechart of ‘user’s access 
to server’ after refactoring

Figure 3. Methodology to lower the complexities 
of the components by refactoring
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components exist in the model, then the model is 
analysed to be refactored to lower the components’ 
complexities. Special attention needs to be given 
to the top-ranked components to lower their 
complexities. Other components can be examined 
in turn later according to their complexity ranking. 
Several trial and error iterations are needed to 
achieve the goal of lowering a component’s com-
plexity. In each trial, checks must be made to 
ensure the refactoring does not interfere with the 
functionality of the system; otherwise, the model 
will have to go through another refactoring 
method. If these constraints are maintained, then 
the lowering process will check whether compo-
nents’ complexities are sufficiently reduced or 
not. If the check is successful, then the process 
will terminate. If not, another iteration of the 
above steps will occur.

CASE STUDY

Two applications illustrate how the metrics can 
be applied to measure the complexity of the 
components. These are an Automated Rail Car 
system (ARCS), and a wireless telephony Handset 
System. The first is a safety critical application 

and the latter is not. Both must meet real-time 
criteria and they were chosen as they are illustra-
tive of a broad class of systems that must have 
high reliability.

ARCS Model

A high-level object-model diagram for ARCS 
and a more detailed diagram of the composites 
— Terminal and Car — are shown in Figure4. 
ARCS assumes each pair of adjacent stations is 
connected by two rail tracks, one for clockwise 
and one for counter-clockwise travel. Several rail-
cars are available to transport passengers between 
terminals. A control centre receives, processes, 
and sends system data to various components. In 
the proposed ARCS, there are four terminals and 
eight cars. Passengers can be in any number. A 
Car has four main parts: ProximitySensor, Cruiser, 
DestPanel, and OccupancySensor; and a terminal 
has six main parts: CarHandler, PlatformManager, 
CallCarButton, Entrance, Exit, and ExitManager. 
The car is to maintain maximum speed as long as 
it never comes within 80 meters of any other car. 
A stopped car will continue its travel only if the 
smallest distance to any other car is at least 100 
meters. A car has its own destination panel. The 

Figure 4. (a) High level object-model diagram for ARCS, and (b) More detailed diagrams of the com-
ponents: terminal and car
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control centre communicates with various system 
components—receiving, processing, and provid-
ing system data. The ARCS model was created 
based on the analysis in (Harel & Gery, 1997).

ET Analysis of the Components in 
ARCS

The state changes of the Car used to measure the 
ET of the components in the ARCS, are shown 
in Figure5.

The Car stays at ‘Idle’ state at any terminal. If 
the event is generated to move the car from its 
source to destination then it reaches to its ‘De-
parture’ state where it continues its travel only if 
the smallest distance to any other car (in front) is 
at least 100 meters. When the car departs from its 
source, instantly it moves to ‘Cruising’ state where 
it continuously uses cruise-controller for maintain-
ing speed. The cruiser can be off, engaged, or 
disengaged, and the car is to maintain maximum 
speed as long as it never comes within 80 meters 
of any other car. It leaves the Cruising state when 
it receives an event from ProximitySensor alerting 
the Car that it is within 100 meters from any 
Terminal. Reaching the Terminal is represented 
by its ‘Arrival’ state where it checks whether the 

current Terminal is in the set of terminals, and if 
it stops at or not. The Car also provides its own 
identity and the direction it is traveling to the 
system. If the Car reaches its destination, it then 
becomes ‘Idle’ again. Otherwise, it goes back to 
‘Cruising’ state. Calculated ET for the different 
components to take a car from Terminal [0] to 
Terminal [3] is shown in Table 1. Car [0] was 
assumed (initially) at Terminal [0]. It was se-

Figure 5. Statechart diagram of car

Table 1. ET of the Components to Move a Car 
from Terminal [0] to Terminal [3] 

Components ET Normalized Values

Car 31s 45 ms .933

ProximitySensor 47 ms .023

Cruiser 15 ms .0074

DestPanel 10 ms .005

OccupancySensor 8 ms .004

Terminal 3 ms .0015

CarHandler 28 ms .014

CallCarButton 4 ms .002

Entrance 8 ms .004

Exit 5 ms .0025

ExitManager 6 ms .003

Platform Manager 15 ms .0074

ControlCenter 1 ms .0005
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lected to move from its source (assumed as Ter-
minal [0]) to its destination (assumed as Terminal 
[3]). Here, this test case was chosen randomly. 
The user can choose any possible test case. The 
system was executed to move it to ‘Idle’ state. 
Then the event to move the car to Terminal [3] 
(from Terminal [0]) was triggered. Since, before 
moving to ‘Idle’ state, some components change 
their behaviour, to calculate the ET, the time for 
moving to ‘Idle’ state was also considered with 
the time to move to destination from ‘Idle’ state. 
ET for each component was calculated by:

TR  ({Automated Rail Car System} ({ Car [0] is at Rest at 
p

TTerminal [0]}  

{Car [0] is at Terminal [3]})→ =
=
∑dpj
j

n

1

	

(5)

where, the symbols are defined in (1).

MIO and TMIO Analysis in ARCS

There are two scenarios in ARCS. These are: i) Car-
ApproachesATerminal, and ii) CarDepartsATermi-
nal. MIO in each scenario and Total MIO (TMIO) 
in two scenarios for all components are calculated 

using Equation (2) and Equation (3). The values of 
MIO and TMIO for all components are shown in 
Table 2. In Table 2, to simplify the representation 
of column headings, CarApproachesATerminal 
Scenario, CarDepartsATerminal Scenario, and 
Overall Complexities of the Components are ab-
breviated as CAATS, CDATS, and OCC respec-
tively. The probabilities of the two scenarios are 
assumed as equal since, if a car departs, there is 
an equal probability that it will arrive at another 
Terminal. The blank cells in Table 2 indicate no 
message from the corresponding component in 
the corresponding scenario. Car has the highest 
value of TMIO as it communicates mostly with 
other components. TMIO for other components 
are also shown in Table 2.

Overall Complexities of the 
Components in ARCS

The total complexities of all components are 
calculated using Equation (4). The last column in 
Table 2 shows the measured values of each compo-
nent’s complexity. Their values are normalized by 
taking the ratio between them and the total value. 
As shown in Table 2, Car is the most complex 

Table 2. MIO, TMIO and overall complexities of all components in ARCS 

Components MIO in CAATS MIO in CDATS TMIO OCC

Car 0.64 0.5 1.14 2.073

ProximitySensor 0.21 - 0.21 0.233

Cruiser 0.29 0.21 0.5 0.5074

DestPanel - - - 0.005

OccupancySensor - - - 0.004

Terminal 0.14 0.07 0.21 0.2115

CarHandler 0.43 0.64 1.07 1.084

CallCarButton - - - 0.002

Entrance 0.14 - 0.14 0.144

Exit - 0.14 0.14 0.1425

ExitManager - 0.21 0.21 0.213

PlatformManager 0.14 0.07 0.21 0.2174

ControlCenter - - - 0.0005
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component and is followed by CarHandler, and 
Cruiser. The highest value of ET and largest com-
munication dependencies (with other components) 
took the complexity value of Car to the highest 
value. In the two scenarios, not all components 
participated. Hence, MIO and TMIO for some 
components are not measured in this example. ET 
alone is used to measure the overall complexities 
of those components.

Validating the Complexities of 
the Components in ARCS

To validate the component’s complexity mea-
surement, trials are conducted whereby transient 
faults are injected into the components of the 
selected system. Transient faults are injected at 
each component, into one bit at a time. The reason 
is that transient faults change the value of one bit 
at a time and the probability of changing two bits 
and/or two transient faults are almost zero. The 
fault injection is made by changing one bit of the 
parameter value, or anywhere in code or in the 
parameter name. The probabilities of occurrences 
of soft errors in the components are calculated 
by taking the ratios between total number of soft 
error occurrences and total number of fault injec-

tions. This ratio can be defined as the Error/Fault 
injections (E/F) Ratio. In this paper, only those 
soft errors are counted that cause any degradation 
or failure in system functionality. If the soft error 
does not create any degradation in the system then 
it is not taken as a matter of concern here. Ten 
trials are made for transient fault injection into 
every component. The more trials are performed, 
the better the expected result. However, for this 
large example model, it is expected that ten trials 
in each component would be able to give a good 
idea about their probabilities of soft error prone-
ness. Table 3 shows the E/F ratio for this example.

If these ratios are ranked in an ascending order 
then it is observed that Table 2 has a similar rank-
ing to Table 3 until the Cruiser component. The 
next ratio is equal for ProximtySensor, Platform-
Manager, and ExitManager where, in Table 2, 
their complexity values differ a little. If that slight 
difference is neglected, then the complexity rank-
ing for these components shows similar results 
in these tables. Other results also show a very 
similar complexity order as in Table 2. Hence, it 
can be concluded that complexity analysis is able 
to measure the likelihood of soft error proneness 
among the components of ARCS.

Table 3. E/F Ratios of the components in ARCS 

Components Number of Transient Faults Injections Number of Soft Errors E/F Ratio

Car

10

8 0.8

ProximitySensor 4 0.4

Cruiser 5 0.5

DestPanel 1 0.1

OccupancySensor 1 0.1

Terminal 3 0.3

CarHandler 7 0.7

CallCarButton 1 0.1

Entrance 3 0.3

Exit 3 0.3

ExitManager 4 0.4

PlatformManager 4 0.4

ControlCenter 1 0.1
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Comparison with Static 
Complexity Analysis

This comparison shows the contribution of dy-
namic metrics to measure the complexities of 
the components over static metrics. The dynamic 
complexities of the components for ARCS are 
obtained as outlined in the section of the Methodol-
ogy of Complexity Analysis. Static complexities 
are calculated by using McCabe’s Cyclomatic 
complexity theorem (McCabe, 1976). The last 
Column in Table 4 shows the Cyclomatic Com-
plexities of the components in ARCS.

Table 4 also allows comparison among the 
dynamic complexity, static complexity, and E/F 
ratios of the components. The values shown in 
Table 4 are all normalized to make the comparison 
possible. The normalization is done by dividing 
each element in each column with the highest 
value in the corresponding column. Since in all 
three columns Car has the maximum value, the 
normalized value for Car is obtained as ‘1’. The 
results show that both dynamic complexity and 
E/F ratio return a similar ranking. Static complex-

ity, on the other hand, returned a completely 
different ranking and, in most cases, it failed to 
distinguish among the complexities of the com-
ponents. Static complexity analysis, for instance, 
returned the same complexity value for Dest-
Panel, OccupancySensor, Terminal, CallCarBut-
ton, Entrance, Exit, ExitManager, PlatformMan-
ager, ControlCenter. Hence, dynamic complexity 
is more significant than static complexity in 
component complexity analysis.

Lowering the Complexities of 
the Components in ARCS

That part of the model dealing with Car behaviour 
is carefully examined to determine refactoring 
possibilities to lower its complexity. All the states 
and their internal and/or external codes used in 
triggers, as well as actions, are checked. These 
areas are where refactoring could achieve the 
goal of reducing Car’s time complexity while 
keeping its functionality unaffected. Two states 
and their internal codes of Car are merged to 
reduce the time complexity. Comparison among 

Table 4. Comparison among dynamic complexity, static complexity, and E/F Ratios of the components 
of ARCS 

Components E/F Ratio
(Normalized)

Dynamic Complexities of the Components 
(Normalized)

Static Complexities 
(Normalized)

Car 1 1 1

ProximitySensor 0.5 0.112 0.625

Cruiser 0.625 0.245 0.75

DestPanel 0.125 0.002 0.25

OccupancySensor 0.125 0.0019 0.25

Terminal 0.375 0.102 0.25

CarHandler 0.875 0.523 0.375

CallCarButton 0.125 0.001 0.25

Entrance 0.375 0.069 0.25

Exit 0.375 0.069 0.25

ExitManager 0.5 0.103 0.25

PlatformManager 0.5 0.105 0.25

ControlCenter 0.125 0.0002 0.25
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the calculated normalized ET of the components 
of the refactored model and existing model (to 
take a car from Terminal [0] to Terminal [3]) is 
shown in Table 5. A lower ET will result in lower 
complexity as well as lower complexity of the 
components. Table 5 shows that refactoring the 
model lowered the ET of Car and ProximitySen-
sor to a measurable extent. Others, except for 
OccupancySensor and PlatformManager, are also 
lowered. The increase in complexity value of Oc-
cupancySensor and PlatformManager are not so 
large. For this reason, the increases in these two 
components can be viewed as negligible. In sum-
mary, applying refactoring is effective in lowering 
the complexities of the components.

A Wireless Telephony Handset 
System

The Handset system provides voice and data 
services to users by placing and receiving calls. 

To deliver services, the wireless network must 
receive, set up, and direct incoming and outgoing 
call requests, track and maintain the location of 
users, and facilitate uninterrupted service when 
users move within and outside the network. When 
the wireless user initiates a call, the network 
receives the request, and validates and registers 
the user; once registered, the network monitors 
the user’s location. The wireless telephone must 
send acceptable signal strength to the network 
to receive the call. When the network receives 
a call, it directs it to the appropriate registered 
user. The high-level architectural diagram (black 
box approach) of the Handset System is shown 
in Figure6.

ET Analysis of the Sub-Systems in the 
Handset System

The ‘Call Control’ Statechart diagram of CM in 
the Handset system was used for ET analysis and 
is shown in Figure7.

The statechart identifies the state-based be-
haviour of instances of ‘Call Control’ when the 
system receives call requests from users and con-
nects calls. It has two main states: ‘Idle’ and 
‘Active’. Two other states: ‘ConnectConfirm’ and 
‘Connected’ are nested in ‘Active’ state. ‘Call 
Control’ waits for an incoming call in the ‘Idle’ 
state. When an incoming call is received, it for-
wards the message through its ‘cc_mm’ port to 
the MM by sending a ‘PlaceCallReq’ event. MM, 
in co-operation with the DL, processes this signal 
and sends a call confirmation to CM. If CM does 
not receive a confirmation within thirty seconds 
then it returns to the ‘Idle’ state by sending a 
‘Disconnect’ event to MM. If it receives a con-
firmation, the call connects, and remains con-
nected until it receives a message to disconnect 
MM. DL also undergo behavioural changes dur-
ing these operations. When the operation succeeds, 
the time of executing the ‘Place Call’ event at 
‘Idle’ state, and the time when the system reached 
at ‘Connected’ state of ‘Call Control’ statechart 

Table 5. Comparison among the calculated nor-
malized ET of the components of refactored model 
and existing model 

Components Normalized ET of 
Refactored Model

Normalized ET of 
Existing Model

Car 0.899 .995

Proximity-
Sensor

0.00051 .0015

Cruiser .00048 .00048

DestPanel .00016 .00032

Occupancy-
Sensor

0.00035 .00026

Terminal .00013 .000096

CarHandler .00089 .00089

CallCarBut-
ton

.000032 .00013

Entrance 0.00022 .00026

Exit .00016 .00016

ExitManager .000096 .000192

Platform 
Manager

0.00064 .00048

ControlCen-
ter

.000032 .000032
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were recorded to calculate the ET of these sub-
systems. ET for each sub-system was calculated 
by Equation (6) and this equation is derived from 
equation (1).

TR  ({ConnectionManagement- CallControl- GEN[PlaceCallReq]
p

〉 〉 }} 

{Idle}  {Connected})→ =
=
∑dpj
j

n

1

	
(6)

Figure 6. High level architecture of the handset system

Figure 7. Call control Statechart diagram at the beginning of execution
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where the symbols are defined in equation (1). 
The pseudo code to activate the connection in the 
Handset system is shown in Box 1. PlaceCallReq 
event’s triggering status (from UI) was taken as 
input, and tCM (Total), tMM (Total), tDL (Total) 

were returned as output where they represented the 
total time taken by CM, MM, and DL respectively 
in connecting the call.

Table 6 shows ET of the sub-systems and their 
normalized values. As shown in the table, MM 

Box 1. Pseudo code to activate the connection in the handset system

Input: PlaceCallReq event’s triggering status
Output: tCM (Total), tMM (Total), tDL (Total)
Detail: 

Start: The system is at Idle state
Step 1. Initialize tCM (Total), tMM (Total), tDL (Total)
Step 2. Input: PlaceCallReq event’s triggering status
Step 3. If UI generates PlaceCallReq event in CM then
Step 4. CM sends PlaceCallReq to MM
Step 5. Update tCM (Total): tCM (Total) +=tCM (Step 3)
Step 6. CM entered at ConnetionConfirm state
Step 7. Update tCM (Total): tCM (Total) +=tCM (Step 5)
Step 8. CM sets tm (3000) at ConnetionConfirm state
Step 9. Update tCM (Total): tCM (Total) +=tCM (Step 7)
Step 10. If not MM returns Take Event PlaceCallReq to CM then CM goes to Idle 
state  

Exit Sub 

Else 

Update tMM (Total): tMM (Total) +=tMM (Step 9) 

CM remains in ConnetionConfirm state 

Step 11. MM checks signal strength
Step 12. Update tMM (Total): tMM (Total) +=tMM (Step 10)
Step 13. MM sends Registration Request to DL
Step 14. Update tMM (Total): tMM (Total) +=tMM (Step 12)
Step 15. DL sends Channel open confirmation to MM
Step 16. Update tDL (Total): tDL (Total) +=tDL (Step 14)
Step 17. MM updates location
Step 18. Update tMM (Total): tMM (Total) +=tMM (Step 16)
Step 19. MM sends ConnectConfirm event to CM
Step 20. Update tMM (Total): tMM (Total) +=tMM (Step 18)
Step 21. CM goes to Connected state
Step 22. Update tCM (Total): tCM (Total) +=tCM (Step 20)
End if 

End if 

Step 23. Output: tCM (Total), tMM (Total), tDL (Total)
End       The system is at Connected state
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took the longest time in the selected operation. 
DL, comparatively, took negligible time, since in 
the selected operation; DL’s interference was much 
lower than MM, and CM.

MIO and TMIO of the Sub-Systems in 
the Handset System

The probabilities of the occurrences of three 
scenarios in the Handset system — i) Place Call 
Request Successful, ii) Network Connect, and 
iii) Connection Management Place Call Request 
Success — were assumed as 0.45, 0.30, and 0.25 
respectively. The assumptions were made with 
respect to their usage in real life scenarios.

MIO and TMIO for three different sub-systems 
were calculated for three different sequence dia-
grams using Equation (2) and Equation (3). All 
values of MIO and TMIO for the three sub-systems 
are shown in Table 7. To simplify the representation 
of column headings in Table 7, Place Call Request 
Successful Scenario, Network Connect Scenario, 
and Connection Management Place Call Request 
Success Scenario are abbreviated as PCRSS, NCS, 
and CMPCRSS respectively. The results shown 
refer to the level of communication dependency 
of each sub-system with other sub-systems in the 
Handset system. DL has the largest communica-

tion dependency among all three sub-systems 
followed by CM, and MM, as shown in Table 7.

Overall Complexities of the Sub-
Systems in the Handset System

Overall complexities of three sub-systems were 
calculated using Equation (4), and the last column 
in Table 7 shows their overall complexities. Overall 
complexity is the summation of ET (during simula-
tion), and Message-in-and-out-frequencies of the 
sub-systems. Though MM has the highest value of 
ET, and DL has the same for TMIO, considering 
both of the complexities, CM is the most com-
plex sub-system in the Handset system. Overall 
complexities of DL and MM are almost equal.

Validating Complexities of the Sub-
Systems in Handset System

To validate the component’s complexity measure-
ment, trials were conducted whereby transient 
faults were injected into each sub-system of the 
Handset system. Error/Fault injections (E/F) 
ratios were calculated for each sub-system. As 
mentioned earlier, in this paper, only those soft 
errors were counted that cause any degradation 
or failure in system functionality, and if the soft 
error did not create any degradation in the system 
then it was not taken as a matter of concern. Ten 
trials were made for transient fault injection into 
each sub-system. The more trials performed, the 
better the expected result. However, for this large 
example model, it was expected that ten trials in 
each sub-system would provide a good idea about 

Table 6. ET of the sub-systems to activate the 
connection 

Sub-Systems ET Normalized Values

CM 6 0.29

DL 1 0.05

MM 14 0.67

Table 7. MIO and TMIO of the sub-systems in the handset system 

Sub-System Packages MIO in PCRSS MIO in NCS MIO in CMPCRSS TMIO Overall Complexities

CM 0.7 0.33 0.83 0.62 0.91

DL 0.6 1 0.67 0.74 0.79

MM 0.2 - 0.17 0.13 0.80
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the likelihood of soft errors. Table 8 shows the 
E/F ratios for this example.

If these ratios are ordered in ascending then it 
is observed that the order of E/F ratios shown in 
Table 8 is similar to the complexity order shown 
in Table 7. Hence, it can be concluded that com-
plexity analysis is able to measure the likelihood 
of soft errors occurrences among the sub-systems 
of the Handset system.

Comparison with Static Complexity

This comparison shows the contribution of dy-
namic metrics to measuring the complexities of the 
components over static metrics. Static complexi-
ties were calculated using McCabe’s Cyclomatic 
complexity theorems (McCabe, 1976). The 4th 
column of Table 9 shows the measured static 
complexities of the sub-systems in the Handset 
system.

Table 9 also allows comparison between the 
dynamic complexity, static complexity, and E/F 
ratios of the components. The values, shown in 
Table 9, were all normalized to make comparison 
easier. The normalization was done by dividing 
each element in each column with the highest 

value in the corresponding column. Since in all 
three columns CM had the maximum value, the 
normalized value for CM was obtained as ‘1’. 
The results show that both dynamic complexity 
and E/F ratios returned CM as the top ranked 
complex component followed by MM and DL. 
Static complexity on the other hand returned MM 
as the most complex component followed by CM 
and DL. Hence, dynamic complexity shows more 
significance than static complexity in component 
complexity analysis.

Lowering Complexities of the Sub-
Systems in Handset System

The behaviour models of all three sub-systems 
were carefully examined to be refactored. All the 
states and their internal and/or external codes used 
in triggers, actions and so forth were checked to 
ensure refactoring could achieve the goal of reduc-
ing complexity of the sub-systems while keeping 
its functionality unaffected. The functionality 
was affected by any change made in the behav-
ioural diagrams of CM, and DL sub-systems. The 
MMCallControl activity diagram and the InCall 
sub-activity diagram of MM sub-system could be 
refactored by maintaining the constraints. Two 
states, their internal codes, and all the forks of 
MMCallControl activity diagram were merged, the 
CheckSignal state of InCall sub-activity diagram 
in MM sub-system was removed, and the internal 
codes in CheckSignal state were merged with the 
VoiceData state to lower its time complexity. The 
calculated normalized ET of the sub-systems of 

Table 8. E/F ratios of the sub-systems in the 
handset system 

Components Number of Fault 
Injections

Number 
of Faults

Ratio

CM

10

6 0.6

MM 5 0.5

DL 3 0.3

Table 9. Comparison among dynamic complexity, static complexity, and E/F ratios of the sub-systems 
in the handset system 

Components E/F Ratios Dynamic Complexities of the Components Static Complexities

CM 1 1 0.71

DL 0.5 0.87 0.57

MM 0.83 0.88 1
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refactored model and existing model (to establish 
a handset connection) is shown in Table 10.

Lower ET will result in lower complexity of 
the sub-systems. Table 10 shows that refactoring 
the model is able to lower the ET of the CM, and 
MM sub-systems significantly. The ET for DL is 
constant. DL is the least complex sub-system in 
the Handset system and its complexity is so low 
that it does not attract any attention by designers. 
Hence, applied refactoring is acceptable in lower-
ing the complexities of the sub-systems.

DISCUSSION

The case study results show the effectiveness of the 
proposed method in measuring the complexities of 
the components in two chosen examples — ARCS 
and the Handset system. The comparisons drawn 
between dynamic complexity (the approach of 
this research) and static complexity (McCabe’s 
Cyclomatic complexity) indicate that, for a number 
of components, static complexity failed to return 
variations among their complexity, whereas, this 
chapter was able to show the variations. E/F ratios 
showed similar results with obtained complexity 
results that validate the proposed method. Static 
complexity, on the other hand, returned a com-
pletely different ranking to E/F ratios. Study results 
also showed how the application of refactoring 
made changes in the existing design to lower the 
complexities of the components to minimize the 
risks of soft errors. It investigated how to encour-
age designers to explore changes that could be 

made in the existing models of embedded systems 
to lower the dependability risks.

CONCLUSION

This chapter flags those components of a system 
model which are complex in architecture and in 
behaviour and where there is high probability of 
fault occurrences. Amendment in the early stages 
of design saves both cost and time, and it is easier 
for the designers to flag and defend the risk issue 
at the modelling level than the system is already 
implemented or at the later stages of design. The 
investigation began with the measurement of like-
lihood of faults in the system. These metrics are: (1) 
assessment of execution time during simulation, 
and (2) Message-In-and-Out frequency. Both of 
the metrics are obtained from the UML specifica-
tions that can be used in the early design phase 
of a system. These are dynamic metrics; that is, 
they work on the execution phase of the model. 
Developed metrics are validated by calculating 
the E/F ratios for the components. This chapter 
then developed the ways to encourage designers 
to explore changes that could be made in the 
existing model to lower the complexities of the 
components. Later on, the designer should take 
some corrective actions in those portions of the 
model or take some special measures like error 
correction code and/or duplication of hardware or 
software at only those portions during post design 
phases to reduce the risks of desired functionality 
degradation of SOA.

Table 10. Comparison among ET of the components of refactored model and those of existing handset 
model 

   Components    Normalized ET of Refactored Model    Normalized ET of Existing Model

   CM    0.29    0.228

   MM    0.05    0.0393

   DL    0.67    0.67
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There are open scopes to extend this paper. 
Some possible future directions are outlined 
shortly as follows.

In the current approach (for simplicity) the 
weights of ET and TMIO in measuring total value 
of complexity by Equation (4) are assumed as 
equal. The relative weight of different factors in 
measuring the complexity could be different for 
different application. For a specific application, 
depending on individual factor’s influence on 
the whole functionality, its appropriate weight 
can be generated. Alternatively, weight vectors 
could be introduced to capture user preferences 
automatically based on users’ selection patterns. 
Further extension to this paper can be made by 
finding the appropriate weights of ET and TMIO 
in measuring the complexity of each component.

Like the weight vectors, complexity threshold 
is a relative measure. Depending on the type of 
system and the type of application, the complex-
ity of a component may vary. Every complexity 
pass threshold is a matter of concern for the de-
signer. Complexity threshold should be derived 
or defined by the user. This paper considers that 
the top-ranked complex components have high 
probability of faults. However, there should be 
a threshold value of a component’s complexity, 
which could flag whether the component is cross-
ing the complexity boundary or not. The scope 
is there to measure the complexity threshold, 
specific to an application, to better categorize the 
complex components.

To lower the complexity, the current paper 
applies refactoring, which re-structures the model 
to improve fault tolerance. Alternative solutions 
(rather than refactoring) could be examined to 
achieve the best solution to lowering the com-
plexity of the components, and that of the whole 
system as well.
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