
Engineering Reliable
Service Oriented
Architecture:
Managing Complexity and
Service Level Agreements

Nikola Milanovic
Model Labs - Berlin, Germany

Senior Editorial Director: Kristin Klinger
Director of Book Publications: Julia Mosemann
Editorial Director: Lindsay Johnston
Acquisitions Editor: Erika Carter
Development Editor: Joel Gamon
Production Coordinator: Jamie Snavely
Typesetters: Keith Glazewski & Natalie Pronio
Cover Design: Nick Newcomer

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

Copyright © 2011 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.
Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or com-
panies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

Library of Congress Cataloging-in-Publication Data

Engineering reliable service oriented architecture : managing complexity and
service level agreements / Nikola Milanovic, editor.
 p. cm.
 Includes bibliographical references and index.
 Summary: "This book presents a guide to engineering reliable SOA systems and
enhances current understanding of service reliability"--Provided by publisher.
 ISBN 978-1-60960-493-6 (hardcover) -- ISBN 9781609604943(ebook) 1.
Service-oriented architecture (Computer science) 2. Computer networks--
Reliability. I. Milanovic, Nikola.
 TK5105.5828.E54 2011
 004.6--dc22
 2010033596

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the
authors, but not necessarily of the publisher.

292

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 14

INTRODUCTION

Service Oriented Architecture (SOA), which is
prompting a variable shift in the distributed com-
puting history, is subsisted in modern computing

environments and is at critical risks due to perma-
nent and transient faults in computing structures
(Lakhal, Kobayashi, & Yokota, 2006). Permanent
faults such as node stuck-at-1/0, transistor open,
shorted transistors, etc., arise during fabrication
or result from aging, and destroy the intended
function of the circuit (Timor, Mendelson, Birk,

Muhammad Sheikh Sadi
Curtin University of Technology, Australia

D. G. Myers
Curtin University of Technology, Australia

Cesar Ortega Sanchez
Curtin University of Technology, Australia

Complexity Analysis at
Design Stages of Service

Oriented Architectures as a
Measure of Reliability Risks

ABSTRACT

Tremendous growth in interest of Service oriented Architectures (SOA) triggers a substantial amount
of research in its reliability assurances. To minimize the risks of these types of systems’ failure, it is a
requirement to flag those components of SOA that are likely to have higher faults. Clearly, the degree
of protection or prevention of faults mechanism is not same for all components. This chapter proposes
the usage of metrics that are simply heuristics and are used to scan the system model and flag complex
components where faults are more likely to take place. Thus the metric output is some priority or it is
a measure of likelihood of faults in a component. This chapter then suggests the designers for possible
changes in the design if there remains any risk(s) of degradation of desired functionalities.

DOI: 10.4018/978-1-60960-493-6.ch014

293

Complexity Analysis at Design Stages of Service Oriented Architectures as a Measure of Reliability Risks

& Suri, 2008). Transient faults, in contrast, do not
damage the chips physically but are catastrophic
for desired functionalities of the system (Mukher-
jee, Emer, & Reinhardt, 2005), (F. Wang, 2008),
(Iyer, Nakka, Kalbarczyk, & Mitra, 2005). Both
of these faults are severe for those SOA where
reliability is a great concern(Narayanan & Xie,
2006), (Tosun, 2005). For example, online banking
transactions where a single bit change (1→0) in
the most significant bit of the data storing register,
may cause a huge difference in balance. Due to
processor scaling, reduction in operation voltages,
exponential growth of number of transistors in a
single chip, increase in clock frequencies, and/
or device shrinking, the rate of these faults are
moving upwards day by day (Saggese, Wang,
Kalbarczyk, Patel, & Iyer, 2005), (Crouzet, Col-
let, & Arlat, 2005).

Prior research to cope with transient faults
(which in turn create soft errors) mostly focuses on
post-design phases, such as circuit level solutions,
logic level solutions, spatial redundancy, tempo-
ral redundancy, and/or error correction codes.
Early detection and correction of such problems
during the design phase is much more likely to
be successful than detection once the system is
operational (Cortellessa et al., 2005). Estimating
reliability (or at least identifying failure-prone
components) early in the life-cycle of a design is
therefore preferable (Jurjens & Wagner, 2005),
(A. Bondavalli, 2001). From a pure dependabil-
ity viewpoint, complex components attract more
attention of soft errors tolerant approaches than
others do, since reliability of a system is correlated
with the complexity of the system (Khoshgoftaar,
1996), (Yacoub & Ammar, 2002). To minimize the
risks of system failure, it is a requirement to flag
those components of SOA that are likely to have
higher faults. Clearly, the degree of protection or
prevention of faults mechanism is not same for
all components. Hence, an approach is needed
at the design stage to highlight those complex
components and suggest the designers for possible

changes in the design if there remains any risk of
affecting desired functionalities.

This chapter flags complex components at early
design stage and investigates how to encourage
the designer to explore changes that could be
made in the existing model. For example, how
the complexities of the components could be
minimized, or how these components could be
replaced with alternatives and/or with less complex
components are examined. The objective is to
keep the functionality and other constraints of the
system unaffected or to make a trade-off between
them, with the goal to minimize the reliability
risks. Case studies illustrate the effectiveness of
the proposed approach in determining compo-
nents’ complexity ranking and then lowering their
complexities. The model is expressed in Unified
Modeling Language (UML) since this allows the
modeler to describe different views on a system,
including the physical layer (Wood, Akehurst,
Uzenkov, Howells, & McDonald-Maier, 2008),
(L. Wang, Wong, & Xu, 2007).

EXISTING WORK ON SOFT
ERRORS RISKS MINIMIZATION

Software based approaches to tolerate soft
errors include redundant programs to detect
(Mukherjee, Kontz, & Reinhardt, 2002), (Rein-
hardt & Mukherjee, 2000), (Rotenberg, 1999),
(Smolens et al., 2004) and/or recover from the
problem (Vijaykumar, Pomeranz, & Cheng,
2002), duplicating instructions (Oh, Shirvani, &
McCluskey, 2002), (Reis, Chang, Vachharajani,
Rangan, & August, 2005), task duplication (Xie,
Li, Kandemir, Vijaykrishnan, & Irwin, 2004),
dual use of super scalar data paths (Ray, Hoe, &
Falsafi, 2001), and Error detection and Correc-
tion Codes (ECC) (Chen & Hsiao, 1984). Chip
level Redundant Threading (CRT) (Mukherjee
et al., 2002) used a load value queue such that
redundant executions can always see an identical
view of memory. Although the load value queue

294

Complexity Analysis at Design Stages of Service Oriented Architectures as a Measure of Reliability Risks

produced an identical view of memory for both
leading and trailing threads, integrating this into
the chip multiprocessor environment requires
significant changes. In (Reinhardt & Mukherjee,
2000), the authors described the concept of sphere
of replication in aiding the design and discussion
of fault tolerant Simultaneously and Redundantly
Threaded (SRT) processors. The parts of the
computer system that fall outside the sphere are
not replicated and must be protected by other
means such as information redundancy. AR-SMT
(Active-stream/Redundant-stream Simultaneous
Multithreading) (Rotenberg, 1999) increases the
memory requirement and bandwidth pressure
two times, since both threads required accessing
the cache and individual memory. Doubling the
memory may stress the memory hierarchy and
degrade performance. Walcott et al. (Walcott,
Humphreys, & Gurumurthi, 2007) used redun-
dant multi threading to determine the architec-
tural vulnerability factor, and Shye et al. (Shye,
Blomstedt, Moseley, Janapa Reddi, & Connors,
To be Appeared) used process level redundancy
to detect soft errors. In redundant multi threading,
two identical threads are executed independently
over some period and the outputs of the threads
are compared to verify the correctness. EDDI (Oh
et al., 2002), and SWIFT (Reis et al., 2005) dupli-
cated instructions and program data to detect soft
errors. Both redundant programs and duplicating
instructions create higher memory requirements
and increase register pressure. Error detection and
Correction Codes (ECC) (Chen & Hsiao, 1984)
adds extra bits with the original bit sequence to
detect error. Using ECC to combinational logic
blocks is complicated, and requires additional logic
and calculations with already timing-critical paths.

Hardware solutions for soft errors mitigation
mainly emphasize circuit level solutions, logic
level solutions and architectural solutions. At
the circuit level, gate sizing techniques (Park &
Kim, 2008), (Miskov-Zivanov & Marculescu,
2006), (Quming & Mohanram, 2004) increas-
ing capacitance (Oma, Martin, Rossi, & Metra,

2003), (STMicroelectronics, 2003), resistive
hardening (Rockett, 1992) are commonly used
to increase the critical charge (Qcrit) of the cir-
cuit node as high as possible. However, these
techniques tend to increase power consumption
and lower the speed of the circuit. Logic level
solutions (S. Mitra, 2006), (Ming Zhang, 2006),
(M. Zhang et al., 2006) mainly propose detection
and recovery in combinational circuits by using
redundant or self-checking circuits. Architectural
solutions mainly introduce redundant hardware
in the system to make the whole system more
robust against soft errors. They include dynamic
implementation verification architecture (DIVA)
(Austin, 1999), and block-level duplication used
in IBM Z-series machines (Meaney, Swaney,
Sanda, & Spainhower, 2005). DIVA (Austin,
1999) in its method of fault protection assumed
that the checker is always correct and it proceeds
using the checker’s result in case of a mismatch.
So, faults in the checker itself must be detected
through alternative techniques.

Hardware and software combined approaches
(Gold et al., 2005), (Krishnamohan, 2005), (Vijay-
kumar et al., 2002), (Mohamed, Chad, Vijaykumar,
& Irith, 2003), (Xie et al., 2004), (Srinivasan,
Adve, Bose, & Rivers, 2004), (Rashid, Tan, Huang,
& Albonesi, 2005) use the parallel processing
capacity of chip multiprocessors (CMPs) and
redundant multi threading to detect and recover
the problem. (Mohamed et al., 2003) shows Chip
Level Redundantly Threaded Multiprocessor with
Recovery (CRTR), where the basic idea is to run
each program twice, as two identical threads, on
a simultaneous multithreaded processor. One of
the more interesting matters in the CRTR scheme
is that there are certain faults from which it can-
not recover. If a register value is written prior to
committing an instruction, and if a fault corrupts
that register after the committing of the instruction,
then CRTR fails to recover from that problem.
In Simultaneously and Redundantly Threaded
processors with Recovery (SRTR) scheme (Vi-
jaykumar et al., 2002), there is a probability of

295

Complexity Analysis at Design Stages of Service Oriented Architectures as a Measure of Reliability Risks

fault corrupting both threads since the leading
thread and trailing thread execute on the same
processor. Others (Krishnamohan, 2005), (Xie
et al., 2004), (Srinivasan et al., 2004), (Rashid
et al., 2005) have followed similar approaches.
However, in all cases the system is vulnerable to
soft error problems in key areas. In software-based
approaches, the complex use of threads presents a
difficult programming model. In hardware-based
approaches, duplication suffers not only from
overhead due to synchronizing duplicate threads,
but also from inherent performance overhead due
to additional hardware. Moreover, these post-
functional design phase approaches can increase
time delays and power overhead without offering
any performance gain.

Few approaches (Chidamber & Kemerer,
1994), (Harrison, Counsell, & Nithi, 1998) dealt
with the static complexities of the system as a risk
assessment methodology to minimize the risks of
faults. (McCabe, 1976) introduced Cyclomatic
complexity, which is measured based on program
graphs. However, these static approaches do not
deal with the matter of how a module functions
in its executing environment. A fault may not
manifest itself into a failure if never executed.
(Cortellessa et al., 2005), and (Yacoub & Ammar,
2002) defined dynamic metrics that include dy-
namic complexity and dynamic coupling metrics
to measure the quality of software architecture.
To assess the severity of the components they
have defined only three levels of system failure.
However, in real life scenarios, only three sever-
ity levels are not sufficient to represent several
possible failure modes. Criticality analysis at the
sub-system level along with failure Mode and Ef-
fect Analysis (FMEA) is also becoming popular
in fault tolerant research. A few common methods
for assessing criticality in FMEA are Risk Priority
Number (RPN) (Bowles, 2004), the MIL_STD
1629A Criticality Number ranking (author, 1984),
and the multi-criteria Pareto ranking (Bowles,
1998). However, difficulties in calculating fail-
ure rate values or probability of failure make

Criticality Number ranking, and the multi-criteria
Pareto ranking unpopular to researchers. (Sherer,
1988) has shown a risk assessment methodology
by measuring the consequences of errors in dif-
ferent modules. However, the high complexity
of the method in real-life applications makes it
obsolete. Moreover, the method is applied at the
later stages of the system design, which can mean
a huge cost increase.

A METHODOLOGY TO
MEASURE AND REDUCE
COMPONENT’S COMPLEXITY

Complexity analysis does not measure the impact
of components in system functionality, but rather
shows the rank of likelihood of encountering errors
among the components. Some empirical studies
have found a correlation between the number of
errors in a system and the complexity of the system
(Khoshgoftaar, 1996), (Ammar, Nikzadeh, & Du-
gan, 1997). (Cortellessa et al., 2005) also pointed
out that the probability of encountering errors is
proportional to the complexity of the system. To
minimize the reliability risks, it is therefore nec-
essary at the early design phase to flag complex
components that are likely to have higher faults.
This paper highlights these components by an
assessment of execution time via simulation and
the Message-In-and-Out frequency. The details
of these metrics are given below.

Execution Time during Simulation

The Failure-In-Time (FIT) of a system due to
soft error is proportional to the fraction of time
in which the system is susceptible to soft error
if the circuit type, transistor sizes, node capaci-
tances, temperature and so forth are kept constant
(Nguyen, Yagil, Seifert, & Reitsma, 2005). Hence,
the fractional time that a component uses in the
execution of a system can flag the soft error prone-
ness of that component. Using Execution Time

296

Complexity Analysis at Design Stages of Service Oriented Architectures as a Measure of Reliability Risks

(ET) during simulation to measure a component’s
complexity is a novel approach. Components are
executed for a specific operation. Users can specify
any operation that seems to be involved with all
components. The longer duration to perform the
selected operation implies that the component
is being used more frequently and/or that it is
experiencing many state changes. A soft error oc-
curs at any access point of these components can
spread towards all communicating components
through the large number of behavioural linkages
until the soft error affected component remains
in execution. Hence, the likelihood of soft error
may be increased if the component takes a longer
ET. The method of measuring ET during simula-
tion (to perform an operation by a component)
can be shown as follows. Component state S is a
function of time: S (t) where t denotes time. An
external function F () is required to be executed
to perform the operation F (S (ti)) → S (tj)): where
S (ti) is the state of a component at ti and S (tj)
is the state of that component at tj. Hence, ET, to
execute the function F () that changes the state of
the pth component from S (ti) to S (tj), is:

ET (F (S (t)) S (t))
p i j

→ =
=
∑dpj
j

n

1

	 (1)

where n is the total number of state changes in
the pth component’s behaviour execution and dpj
is the duration in the jth slot of changing states
of pth component.

Since UML does not specify an action model,
Telelogic Rhapsody (Telelogic, 2009) is used to
gain execution data via simulation. The model is
executed in tracing mode. Several tracing com-
mands are used to execute the model. The state
transition times for the components are saved to
a log file. At the end of the simulation, that log
file is analysed to calculate the total ET of the
components to perform a selected operation.

Message-In-And-Out Frequency

In object-oriented designs, components are often
interdependent. Hence, a failure or error can
easily propagate to other components. The mal-
functioning behaviour of a component in a high
interdependent design cannot be easily isolated.
Therefore, this dependence is considered as a
valuable measurement for both “a posteriori”
and “a priori” analysis (Hitz & Montazeri, 1995).
A posteriori analysis is conducted to trace those
design aspects that were more likely to produce
errors and hence correlate errors with design qual-
ity metrics. A priori analysis makes use of this
dependence measurement to assess the reliability
of designs in an early development phase. This
research accepts a priori analysis since it saves
both costs and time. In a system model (assumed in
UML), components communicate with each other
by message passing among them. The number
of messages from and to a component shows the
measure of dependence with other components.
Components with more dependence could easily
manifest themselves into failure of the system
because services of these components are fre-
quently accessed by other components (Yacoub
& Ammar, 2002).

To determine the error proneness, a compo-
nent’s Message-In-and-Out frequency (MIO),
which is the ratio of number of messages from
and to a component in a scenario and the total
number of messages in that scenario, is calcu-
lated. More specifically, a component with
higher Message-In-and-Out frequency (MIO) is
more likely to cause changes in the whole system
if there arise any architectural or behavioral change
in that component. Define MIO

ik
as the MIO for

ith component in kth scenario. M (i,j) is the message
between component i and component j (where
j=1,….,m, i≠j, and m is the number of messages
from ith component to other components) in kth
scenario, and nk is the total number of messages,

297

Complexity Analysis at Design Stages of Service Oriented Architectures as a Measure of Reliability Risks

communicating among all the components, in that
scenario. Then, MIOi can be derived as:

MIO

M

i

(i,j)

k
=

≠
=
∑| | |i j

n
j

m

k

1 	 (2)

For each component, Total MIO (TMIO) in
all possible different scenarios can be calculated
using (3). TMIO for ith component is:

TMIO P Sc MIO
i k i

k

n

k

=
=

′

∑ ()
1

 	 (3)

where ¢n is the total number of scenarios in Hand-
set system, P(Sck) is the probability of kth Sce-
nario in that system, and MIO

i k
is the MIO for

ith component in kth scenario.

Overall Complexity

The Overall Complexity of the ith Component
(OCCi) is the summation of different complexity
factors for that component. The equation is:

OCCi=ETi+TMIOi	 (4)

where ETi and TMIOi are Execution Time, and
Message-In-and-Out frequency for the ith com-
ponent. Since, ETi and TMIOi are independent
on each other, OCCi is calculated using the sum-
mation of these two factors. For simplicity, the
weights of ET and TMIO in measuring total value
of complexities are assumed as equal.

Lowering the Complexities
of the Components

Component complexity suggests to the designer
where in the system design, changes are neces-
sary or helpful to minimize soft errors risk. These
changes can be made by applying a suitable ap-

proach where he/she may change the architecture
or behavioural model of the component to lower
its complexity. Refactoring is a good candidate
for this type of approach. The purpose of refac-
toring is to alter the model based on the user’s
requirements by keeping the functionality and
other constraints of the system unaffected. In
software engineering, “refactoring source code”
means improving it without changing its overall
results and is sometimes informally referred to as
“cleaning it up” (Wikipedia, 2009). Refactoring
neither fixes bugs nor adds new functionality,
though it might precede either activity; rather,
it improves the understandability of the code,
changes its internal structure and design, and
removes dead code. UML model refactoring is
the equivalent of source code refactoring at the
model level with the objective of preserving the
model’s behaviour (Hosseini & Azgomi, 2008),
(Gerson, Damien, Yves Le, & Jean-Marc, 2001). It
re-structures the model to improve quality factors,
such as maintainability, efficiency, fault tolerance,
etc., without introducing any new behaviour at the
conceptual level. As the software and hardware
system evolves, almost each change of require-
ments imposed on a system requires the intro-
duction of small adaptations to its design model
(Dobrzanski & Kuzniarz, 2006), (Boger, Sturm, &
Fragemann, 2003, Revised Papers (Lecture Notes
in Computer Science Vol.2591)). However, the
designers face challenges to this adaptation by a
single modification in the model. A possible solu-
tion to this problem can be to provide designers
with a set of basic transformations so maintaining
model functionality. This set of transformations is
known as refactoring, which can be used gradually
to improve the design (Dobrzanski & Kuzniarz,
2006). A detailed taxonomy of model transforma-
tions has been presented by (Mens & Van Gorp,
2006), (Mens, 2006). Model refactoring can be
made by replacing components with ones that are
more elegant, merging/splitting the states keeping
the behaviour unchanged, altering code readabil-
ity or understandability, formal concept analysis,

298

Complexity Analysis at Design Stages of Service Oriented Architectures as a Measure of Reliability Risks

graph transformation, etc. Model refactoring can
be detailed by using an example, which consists of
Figure1 and Figure2. Figure1 shows an example
statechart of a user’s access to the server, and Fig-
ure2 shows this statechart after refactoring. Two
states in Figure1, named as “Pass to Server”, and
“Retrieved”, are merged into one state, “Verify-
ing”, in the refactored statechart (Figure 2). The
actions used in “Pass to Sever” are copied into the
“Verifying” state. Once the complexity ranking is
returned, a model can be refactored with the goal
of reducing the complexities of the components.
Refactoring can be applied on the architecture or
behavioural model of the component to lower the
complexity, and/or severity, and/or propagation
of failure of the components. The methodology
of lowering the complexities of components by
refactoring is shown in Figure3. As shown in
Figure3, initially, the abstract model (in UML) is
created from the given specifications. The model
is then analysed to measure the complexities of
its components. Component complexities need
to be compared with a threshold value that users

need to determine (for simplicity, the threshold
value is ignored in this example).

The large variations among components’
complexities are taken as the guideline for flag-
ging the components as complex. If complex

Figure 1. An example Statechart of ‘user’s access
to server’ before refactoring

Figure 2. An example Statechart of ‘user’s access
to server’ after refactoring

Figure 3. Methodology to lower the complexities
of the components by refactoring

299

Complexity Analysis at Design Stages of Service Oriented Architectures as a Measure of Reliability Risks

components exist in the model, then the model is
analysed to be refactored to lower the components’
complexities. Special attention needs to be given
to the top-ranked components to lower their
complexities. Other components can be examined
in turn later according to their complexity ranking.
Several trial and error iterations are needed to
achieve the goal of lowering a component’s com-
plexity. In each trial, checks must be made to
ensure the refactoring does not interfere with the
functionality of the system; otherwise, the model
will have to go through another refactoring
method. If these constraints are maintained, then
the lowering process will check whether compo-
nents’ complexities are sufficiently reduced or
not. If the check is successful, then the process
will terminate. If not, another iteration of the
above steps will occur.

CASE STUDY

Two applications illustrate how the metrics can
be applied to measure the complexity of the
components. These are an Automated Rail Car
system (ARCS), and a wireless telephony Handset
System. The first is a safety critical application

and the latter is not. Both must meet real-time
criteria and they were chosen as they are illustra-
tive of a broad class of systems that must have
high reliability.

ARCS Model

A high-level object-model diagram for ARCS
and a more detailed diagram of the composites
— Terminal and Car — are shown in Figure4.
ARCS assumes each pair of adjacent stations is
connected by two rail tracks, one for clockwise
and one for counter-clockwise travel. Several rail-
cars are available to transport passengers between
terminals. A control centre receives, processes,
and sends system data to various components. In
the proposed ARCS, there are four terminals and
eight cars. Passengers can be in any number. A
Car has four main parts: ProximitySensor, Cruiser,
DestPanel, and OccupancySensor; and a terminal
has six main parts: CarHandler, PlatformManager,
CallCarButton, Entrance, Exit, and ExitManager.
The car is to maintain maximum speed as long as
it never comes within 80 meters of any other car.
A stopped car will continue its travel only if the
smallest distance to any other car is at least 100
meters. A car has its own destination panel. The

Figure 4. (a) High level object-model diagram for ARCS, and (b) More detailed diagrams of the com-
ponents: terminal and car

300

Complexity Analysis at Design Stages of Service Oriented Architectures as a Measure of Reliability Risks

control centre communicates with various system
components—receiving, processing, and provid-
ing system data. The ARCS model was created
based on the analysis in (Harel & Gery, 1997).

ET Analysis of the Components in
ARCS

The state changes of the Car used to measure the
ET of the components in the ARCS, are shown
in Figure5.

The Car stays at ‘Idle’ state at any terminal. If
the event is generated to move the car from its
source to destination then it reaches to its ‘De-
parture’ state where it continues its travel only if
the smallest distance to any other car (in front) is
at least 100 meters. When the car departs from its
source, instantly it moves to ‘Cruising’ state where
it continuously uses cruise-controller for maintain-
ing speed. The cruiser can be off, engaged, or
disengaged, and the car is to maintain maximum
speed as long as it never comes within 80 meters
of any other car. It leaves the Cruising state when
it receives an event from ProximitySensor alerting
the Car that it is within 100 meters from any
Terminal. Reaching the Terminal is represented
by its ‘Arrival’ state where it checks whether the

current Terminal is in the set of terminals, and if
it stops at or not. The Car also provides its own
identity and the direction it is traveling to the
system. If the Car reaches its destination, it then
becomes ‘Idle’ again. Otherwise, it goes back to
‘Cruising’ state. Calculated ET for the different
components to take a car from Terminal [0] to
Terminal [3] is shown in Table 1. Car [0] was
assumed (initially) at Terminal [0]. It was se-

Figure 5. Statechart diagram of car

Table 1. ET of the Components to Move a Car
from Terminal [0] to Terminal [3]

Components ET Normalized Values

Car 31s 45 ms .933

ProximitySensor 47 ms .023

Cruiser 15 ms .0074

DestPanel 10 ms .005

OccupancySensor 8 ms .004

Terminal 3 ms .0015

CarHandler 28 ms .014

CallCarButton 4 ms .002

Entrance 8 ms .004

Exit 5 ms .0025

ExitManager 6 ms .003

Platform Manager 15 ms .0074

ControlCenter 1 ms .0005

301

Complexity Analysis at Design Stages of Service Oriented Architectures as a Measure of Reliability Risks

lected to move from its source (assumed as Ter-
minal [0]) to its destination (assumed as Terminal
[3]). Here, this test case was chosen randomly.
The user can choose any possible test case. The
system was executed to move it to ‘Idle’ state.
Then the event to move the car to Terminal [3]
(from Terminal [0]) was triggered. Since, before
moving to ‘Idle’ state, some components change
their behaviour, to calculate the ET, the time for
moving to ‘Idle’ state was also considered with
the time to move to destination from ‘Idle’ state.
ET for each component was calculated by:

TR ({Automated Rail Car System} ({ Car [0] is at Rest at
p

TTerminal [0]}

{Car [0] is at Terminal [3]})→ =
=
∑dpj
j

n

1

	

(5)

where, the symbols are defined in (1).

MIO and TMIO Analysis in ARCS

There are two scenarios in ARCS. These are: i) Car-
ApproachesATerminal, and ii) CarDepartsATermi-
nal. MIO in each scenario and Total MIO (TMIO)
in two scenarios for all components are calculated

using Equation (2) and Equation (3). The values of
MIO and TMIO for all components are shown in
Table 2. In Table 2, to simplify the representation
of column headings, CarApproachesATerminal
Scenario, CarDepartsATerminal Scenario, and
Overall Complexities of the Components are ab-
breviated as CAATS, CDATS, and OCC respec-
tively. The probabilities of the two scenarios are
assumed as equal since, if a car departs, there is
an equal probability that it will arrive at another
Terminal. The blank cells in Table 2 indicate no
message from the corresponding component in
the corresponding scenario. Car has the highest
value of TMIO as it communicates mostly with
other components. TMIO for other components
are also shown in Table 2.

Overall Complexities of the
Components in ARCS

The total complexities of all components are
calculated using Equation (4). The last column in
Table 2 shows the measured values of each compo-
nent’s complexity. Their values are normalized by
taking the ratio between them and the total value.
As shown in Table 2, Car is the most complex

Table 2. MIO, TMIO and overall complexities of all components in ARCS

Components MIO in CAATS MIO in CDATS TMIO OCC

Car 0.64 0.5 1.14 2.073

ProximitySensor 0.21 - 0.21 0.233

Cruiser 0.29 0.21 0.5 0.5074

DestPanel - - - 0.005

OccupancySensor - - - 0.004

Terminal 0.14 0.07 0.21 0.2115

CarHandler 0.43 0.64 1.07 1.084

CallCarButton - - - 0.002

Entrance 0.14 - 0.14 0.144

Exit - 0.14 0.14 0.1425

ExitManager - 0.21 0.21 0.213

PlatformManager 0.14 0.07 0.21 0.2174

ControlCenter - - - 0.0005

302

Complexity Analysis at Design Stages of Service Oriented Architectures as a Measure of Reliability Risks

component and is followed by CarHandler, and
Cruiser. The highest value of ET and largest com-
munication dependencies (with other components)
took the complexity value of Car to the highest
value. In the two scenarios, not all components
participated. Hence, MIO and TMIO for some
components are not measured in this example. ET
alone is used to measure the overall complexities
of those components.

Validating the Complexities of
the Components in ARCS

To validate the component’s complexity mea-
surement, trials are conducted whereby transient
faults are injected into the components of the
selected system. Transient faults are injected at
each component, into one bit at a time. The reason
is that transient faults change the value of one bit
at a time and the probability of changing two bits
and/or two transient faults are almost zero. The
fault injection is made by changing one bit of the
parameter value, or anywhere in code or in the
parameter name. The probabilities of occurrences
of soft errors in the components are calculated
by taking the ratios between total number of soft
error occurrences and total number of fault injec-

tions. This ratio can be defined as the Error/Fault
injections (E/F) Ratio. In this paper, only those
soft errors are counted that cause any degradation
or failure in system functionality. If the soft error
does not create any degradation in the system then
it is not taken as a matter of concern here. Ten
trials are made for transient fault injection into
every component. The more trials are performed,
the better the expected result. However, for this
large example model, it is expected that ten trials
in each component would be able to give a good
idea about their probabilities of soft error prone-
ness. Table 3 shows the E/F ratio for this example.

If these ratios are ranked in an ascending order
then it is observed that Table 2 has a similar rank-
ing to Table 3 until the Cruiser component. The
next ratio is equal for ProximtySensor, Platform-
Manager, and ExitManager where, in Table 2,
their complexity values differ a little. If that slight
difference is neglected, then the complexity rank-
ing for these components shows similar results
in these tables. Other results also show a very
similar complexity order as in Table 2. Hence, it
can be concluded that complexity analysis is able
to measure the likelihood of soft error proneness
among the components of ARCS.

Table 3. E/F Ratios of the components in ARCS

Components Number of Transient Faults Injections Number of Soft Errors E/F Ratio

Car

10

8 0.8

ProximitySensor 4 0.4

Cruiser 5 0.5

DestPanel 1 0.1

OccupancySensor 1 0.1

Terminal 3 0.3

CarHandler 7 0.7

CallCarButton 1 0.1

Entrance 3 0.3

Exit 3 0.3

ExitManager 4 0.4

PlatformManager 4 0.4

ControlCenter 1 0.1

303

Complexity Analysis at Design Stages of Service Oriented Architectures as a Measure of Reliability Risks

Comparison with Static
Complexity Analysis

This comparison shows the contribution of dy-
namic metrics to measure the complexities of
the components over static metrics. The dynamic
complexities of the components for ARCS are
obtained as outlined in the section of the Methodol-
ogy of Complexity Analysis. Static complexities
are calculated by using McCabe’s Cyclomatic
complexity theorem (McCabe, 1976). The last
Column in Table 4 shows the Cyclomatic Com-
plexities of the components in ARCS.

Table 4 also allows comparison among the
dynamic complexity, static complexity, and E/F
ratios of the components. The values shown in
Table 4 are all normalized to make the comparison
possible. The normalization is done by dividing
each element in each column with the highest
value in the corresponding column. Since in all
three columns Car has the maximum value, the
normalized value for Car is obtained as ‘1’. The
results show that both dynamic complexity and
E/F ratio return a similar ranking. Static complex-

ity, on the other hand, returned a completely
different ranking and, in most cases, it failed to
distinguish among the complexities of the com-
ponents. Static complexity analysis, for instance,
returned the same complexity value for Dest-
Panel, OccupancySensor, Terminal, CallCarBut-
ton, Entrance, Exit, ExitManager, PlatformMan-
ager, ControlCenter. Hence, dynamic complexity
is more significant than static complexity in
component complexity analysis.

Lowering the Complexities of
the Components in ARCS

That part of the model dealing with Car behaviour
is carefully examined to determine refactoring
possibilities to lower its complexity. All the states
and their internal and/or external codes used in
triggers, as well as actions, are checked. These
areas are where refactoring could achieve the
goal of reducing Car’s time complexity while
keeping its functionality unaffected. Two states
and their internal codes of Car are merged to
reduce the time complexity. Comparison among

Table 4. Comparison among dynamic complexity, static complexity, and E/F Ratios of the components
of ARCS

Components E/F Ratio
(Normalized)

Dynamic Complexities of the Components
(Normalized)

Static Complexities
(Normalized)

Car 1 1 1

ProximitySensor 0.5 0.112 0.625

Cruiser 0.625 0.245 0.75

DestPanel 0.125 0.002 0.25

OccupancySensor 0.125 0.0019 0.25

Terminal 0.375 0.102 0.25

CarHandler 0.875 0.523 0.375

CallCarButton 0.125 0.001 0.25

Entrance 0.375 0.069 0.25

Exit 0.375 0.069 0.25

ExitManager 0.5 0.103 0.25

PlatformManager 0.5 0.105 0.25

ControlCenter 0.125 0.0002 0.25

304

Complexity Analysis at Design Stages of Service Oriented Architectures as a Measure of Reliability Risks

the calculated normalized ET of the components
of the refactored model and existing model (to
take a car from Terminal [0] to Terminal [3]) is
shown in Table 5. A lower ET will result in lower
complexity as well as lower complexity of the
components. Table 5 shows that refactoring the
model lowered the ET of Car and ProximitySen-
sor to a measurable extent. Others, except for
OccupancySensor and PlatformManager, are also
lowered. The increase in complexity value of Oc-
cupancySensor and PlatformManager are not so
large. For this reason, the increases in these two
components can be viewed as negligible. In sum-
mary, applying refactoring is effective in lowering
the complexities of the components.

A Wireless Telephony Handset
System

The Handset system provides voice and data
services to users by placing and receiving calls.

To deliver services, the wireless network must
receive, set up, and direct incoming and outgoing
call requests, track and maintain the location of
users, and facilitate uninterrupted service when
users move within and outside the network. When
the wireless user initiates a call, the network
receives the request, and validates and registers
the user; once registered, the network monitors
the user’s location. The wireless telephone must
send acceptable signal strength to the network
to receive the call. When the network receives
a call, it directs it to the appropriate registered
user. The high-level architectural diagram (black
box approach) of the Handset System is shown
in Figure6.

ET Analysis of the Sub-Systems in the
Handset System

The ‘Call Control’ Statechart diagram of CM in
the Handset system was used for ET analysis and
is shown in Figure7.

The statechart identifies the state-based be-
haviour of instances of ‘Call Control’ when the
system receives call requests from users and con-
nects calls. It has two main states: ‘Idle’ and
‘Active’. Two other states: ‘ConnectConfirm’ and
‘Connected’ are nested in ‘Active’ state. ‘Call
Control’ waits for an incoming call in the ‘Idle’
state. When an incoming call is received, it for-
wards the message through its ‘cc_mm’ port to
the MM by sending a ‘PlaceCallReq’ event. MM,
in co-operation with the DL, processes this signal
and sends a call confirmation to CM. If CM does
not receive a confirmation within thirty seconds
then it returns to the ‘Idle’ state by sending a
‘Disconnect’ event to MM. If it receives a con-
firmation, the call connects, and remains con-
nected until it receives a message to disconnect
MM. DL also undergo behavioural changes dur-
ing these operations. When the operation succeeds,
the time of executing the ‘Place Call’ event at
‘Idle’ state, and the time when the system reached
at ‘Connected’ state of ‘Call Control’ statechart

Table 5. Comparison among the calculated nor-
malized ET of the components of refactored model
and existing model

Components Normalized ET of
Refactored Model

Normalized ET of
Existing Model

Car 0.899 .995

Proximity-
Sensor

0.00051 .0015

Cruiser .00048 .00048

DestPanel .00016 .00032

Occupancy-
Sensor

0.00035 .00026

Terminal .00013 .000096

CarHandler .00089 .00089

CallCarBut-
ton

.000032 .00013

Entrance 0.00022 .00026

Exit .00016 .00016

ExitManager .000096 .000192

Platform
Manager

0.00064 .00048

ControlCen-
ter

.000032 .000032

305

Complexity Analysis at Design Stages of Service Oriented Architectures as a Measure of Reliability Risks

were recorded to calculate the ET of these sub-
systems. ET for each sub-system was calculated
by Equation (6) and this equation is derived from
equation (1).

TR ({ConnectionManagement- CallControl- GEN[PlaceCallReq]
p

〉 〉 }}

{Idle} {Connected})→ =
=
∑dpj
j

n

1

	
(6)

Figure 6. High level architecture of the handset system

Figure 7. Call control Statechart diagram at the beginning of execution

306

Complexity Analysis at Design Stages of Service Oriented Architectures as a Measure of Reliability Risks

where the symbols are defined in equation (1).
The pseudo code to activate the connection in the
Handset system is shown in Box 1. PlaceCallReq
event’s triggering status (from UI) was taken as
input, and tCM (Total), tMM (Total), tDL (Total)

were returned as output where they represented the
total time taken by CM, MM, and DL respectively
in connecting the call.

Table 6 shows ET of the sub-systems and their
normalized values. As shown in the table, MM

Box 1. Pseudo code to activate the connection in the handset system

Input: PlaceCallReq event’s triggering status
Output: tCM (Total), tMM (Total), tDL (Total)
Detail:

Start: The system is at Idle state
Step 1. Initialize tCM (Total), tMM (Total), tDL (Total)
Step 2. Input: PlaceCallReq event’s triggering status
Step 3. If UI generates PlaceCallReq event in CM then
Step 4. CM sends PlaceCallReq to MM
Step 5. Update tCM (Total): tCM (Total) +=tCM (Step 3)
Step 6. CM entered at ConnetionConfirm state
Step 7. Update tCM (Total): tCM (Total) +=tCM (Step 5)
Step 8. CM sets tm (3000) at ConnetionConfirm state
Step 9. Update tCM (Total): tCM (Total) +=tCM (Step 7)
Step 10. If not MM returns Take Event PlaceCallReq to CM then CM goes to Idle
state

Exit Sub

Else

Update tMM (Total): tMM (Total) +=tMM (Step 9)

CM remains in ConnetionConfirm state

Step 11. MM checks signal strength
Step 12. Update tMM (Total): tMM (Total) +=tMM (Step 10)
Step 13. MM sends Registration Request to DL
Step 14. Update tMM (Total): tMM (Total) +=tMM (Step 12)
Step 15. DL sends Channel open confirmation to MM
Step 16. Update tDL (Total): tDL (Total) +=tDL (Step 14)
Step 17. MM updates location
Step 18. Update tMM (Total): tMM (Total) +=tMM (Step 16)
Step 19. MM sends ConnectConfirm event to CM
Step 20. Update tMM (Total): tMM (Total) +=tMM (Step 18)
Step 21. CM goes to Connected state
Step 22. Update tCM (Total): tCM (Total) +=tCM (Step 20)
End if

End if

Step 23. Output: tCM (Total), tMM (Total), tDL (Total)
End The system is at Connected state

307

Complexity Analysis at Design Stages of Service Oriented Architectures as a Measure of Reliability Risks

took the longest time in the selected operation.
DL, comparatively, took negligible time, since in
the selected operation; DL’s interference was much
lower than MM, and CM.

MIO and TMIO of the Sub-Systems in
the Handset System

The probabilities of the occurrences of three
scenarios in the Handset system — i) Place Call
Request Successful, ii) Network Connect, and
iii) Connection Management Place Call Request
Success — were assumed as 0.45, 0.30, and 0.25
respectively. The assumptions were made with
respect to their usage in real life scenarios.

MIO and TMIO for three different sub-systems
were calculated for three different sequence dia-
grams using Equation (2) and Equation (3). All
values of MIO and TMIO for the three sub-systems
are shown in Table 7. To simplify the representation
of column headings in Table 7, Place Call Request
Successful Scenario, Network Connect Scenario,
and Connection Management Place Call Request
Success Scenario are abbreviated as PCRSS, NCS,
and CMPCRSS respectively. The results shown
refer to the level of communication dependency
of each sub-system with other sub-systems in the
Handset system. DL has the largest communica-

tion dependency among all three sub-systems
followed by CM, and MM, as shown in Table 7.

Overall Complexities of the Sub-
Systems in the Handset System

Overall complexities of three sub-systems were
calculated using Equation (4), and the last column
in Table 7 shows their overall complexities. Overall
complexity is the summation of ET (during simula-
tion), and Message-in-and-out-frequencies of the
sub-systems. Though MM has the highest value of
ET, and DL has the same for TMIO, considering
both of the complexities, CM is the most com-
plex sub-system in the Handset system. Overall
complexities of DL and MM are almost equal.

Validating Complexities of the Sub-
Systems in Handset System

To validate the component’s complexity measure-
ment, trials were conducted whereby transient
faults were injected into each sub-system of the
Handset system. Error/Fault injections (E/F)
ratios were calculated for each sub-system. As
mentioned earlier, in this paper, only those soft
errors were counted that cause any degradation
or failure in system functionality, and if the soft
error did not create any degradation in the system
then it was not taken as a matter of concern. Ten
trials were made for transient fault injection into
each sub-system. The more trials performed, the
better the expected result. However, for this large
example model, it was expected that ten trials in
each sub-system would provide a good idea about

Table 6. ET of the sub-systems to activate the
connection

Sub-Systems ET Normalized Values

CM 6 0.29

DL 1 0.05

MM 14 0.67

Table 7. MIO and TMIO of the sub-systems in the handset system

Sub-System Packages MIO in PCRSS MIO in NCS MIO in CMPCRSS TMIO Overall Complexities

CM 0.7 0.33 0.83 0.62 0.91

DL 0.6 1 0.67 0.74 0.79

MM 0.2 - 0.17 0.13 0.80

308

Complexity Analysis at Design Stages of Service Oriented Architectures as a Measure of Reliability Risks

the likelihood of soft errors. Table 8 shows the
E/F ratios for this example.

If these ratios are ordered in ascending then it
is observed that the order of E/F ratios shown in
Table 8 is similar to the complexity order shown
in Table 7. Hence, it can be concluded that com-
plexity analysis is able to measure the likelihood
of soft errors occurrences among the sub-systems
of the Handset system.

Comparison with Static Complexity

This comparison shows the contribution of dy-
namic metrics to measuring the complexities of the
components over static metrics. Static complexi-
ties were calculated using McCabe’s Cyclomatic
complexity theorems (McCabe, 1976). The 4th
column of Table 9 shows the measured static
complexities of the sub-systems in the Handset
system.

Table 9 also allows comparison between the
dynamic complexity, static complexity, and E/F
ratios of the components. The values, shown in
Table 9, were all normalized to make comparison
easier. The normalization was done by dividing
each element in each column with the highest

value in the corresponding column. Since in all
three columns CM had the maximum value, the
normalized value for CM was obtained as ‘1’.
The results show that both dynamic complexity
and E/F ratios returned CM as the top ranked
complex component followed by MM and DL.
Static complexity on the other hand returned MM
as the most complex component followed by CM
and DL. Hence, dynamic complexity shows more
significance than static complexity in component
complexity analysis.

Lowering Complexities of the Sub-
Systems in Handset System

The behaviour models of all three sub-systems
were carefully examined to be refactored. All the
states and their internal and/or external codes used
in triggers, actions and so forth were checked to
ensure refactoring could achieve the goal of reduc-
ing complexity of the sub-systems while keeping
its functionality unaffected. The functionality
was affected by any change made in the behav-
ioural diagrams of CM, and DL sub-systems. The
MMCallControl activity diagram and the InCall
sub-activity diagram of MM sub-system could be
refactored by maintaining the constraints. Two
states, their internal codes, and all the forks of
MMCallControl activity diagram were merged, the
CheckSignal state of InCall sub-activity diagram
in MM sub-system was removed, and the internal
codes in CheckSignal state were merged with the
VoiceData state to lower its time complexity. The
calculated normalized ET of the sub-systems of

Table 8. E/F ratios of the sub-systems in the
handset system

Components Number of Fault
Injections

Number
of Faults

Ratio

CM

10

6 0.6

MM 5 0.5

DL 3 0.3

Table 9. Comparison among dynamic complexity, static complexity, and E/F ratios of the sub-systems
in the handset system

Components E/F Ratios Dynamic Complexities of the Components Static Complexities

CM 1 1 0.71

DL 0.5 0.87 0.57

MM 0.83 0.88 1

309

Complexity Analysis at Design Stages of Service Oriented Architectures as a Measure of Reliability Risks

refactored model and existing model (to establish
a handset connection) is shown in Table 10.

Lower ET will result in lower complexity of
the sub-systems. Table 10 shows that refactoring
the model is able to lower the ET of the CM, and
MM sub-systems significantly. The ET for DL is
constant. DL is the least complex sub-system in
the Handset system and its complexity is so low
that it does not attract any attention by designers.
Hence, applied refactoring is acceptable in lower-
ing the complexities of the sub-systems.

DISCUSSION

The case study results show the effectiveness of the
proposed method in measuring the complexities of
the components in two chosen examples — ARCS
and the Handset system. The comparisons drawn
between dynamic complexity (the approach of
this research) and static complexity (McCabe’s
Cyclomatic complexity) indicate that, for a number
of components, static complexity failed to return
variations among their complexity, whereas, this
chapter was able to show the variations. E/F ratios
showed similar results with obtained complexity
results that validate the proposed method. Static
complexity, on the other hand, returned a com-
pletely different ranking to E/F ratios. Study results
also showed how the application of refactoring
made changes in the existing design to lower the
complexities of the components to minimize the
risks of soft errors. It investigated how to encour-
age designers to explore changes that could be

made in the existing models of embedded systems
to lower the dependability risks.

CONCLUSION

This chapter flags those components of a system
model which are complex in architecture and in
behaviour and where there is high probability of
fault occurrences. Amendment in the early stages
of design saves both cost and time, and it is easier
for the designers to flag and defend the risk issue
at the modelling level than the system is already
implemented or at the later stages of design. The
investigation began with the measurement of like-
lihood of faults in the system. These metrics are: (1)
assessment of execution time during simulation,
and (2) Message-In-and-Out frequency. Both of
the metrics are obtained from the UML specifica-
tions that can be used in the early design phase
of a system. These are dynamic metrics; that is,
they work on the execution phase of the model.
Developed metrics are validated by calculating
the E/F ratios for the components. This chapter
then developed the ways to encourage designers
to explore changes that could be made in the
existing model to lower the complexities of the
components. Later on, the designer should take
some corrective actions in those portions of the
model or take some special measures like error
correction code and/or duplication of hardware or
software at only those portions during post design
phases to reduce the risks of desired functionality
degradation of SOA.

Table 10. Comparison among ET of the components of refactored model and those of existing handset
model

 Components Normalized ET of Refactored Model Normalized ET of Existing Model

 CM 0.29 0.228

 MM 0.05 0.0393

 DL 0.67 0.67

310

Complexity Analysis at Design Stages of Service Oriented Architectures as a Measure of Reliability Risks

There are open scopes to extend this paper.
Some possible future directions are outlined
shortly as follows.

In the current approach (for simplicity) the
weights of ET and TMIO in measuring total value
of complexity by Equation (4) are assumed as
equal. The relative weight of different factors in
measuring the complexity could be different for
different application. For a specific application,
depending on individual factor’s influence on
the whole functionality, its appropriate weight
can be generated. Alternatively, weight vectors
could be introduced to capture user preferences
automatically based on users’ selection patterns.
Further extension to this paper can be made by
finding the appropriate weights of ET and TMIO
in measuring the complexity of each component.

Like the weight vectors, complexity threshold
is a relative measure. Depending on the type of
system and the type of application, the complex-
ity of a component may vary. Every complexity
pass threshold is a matter of concern for the de-
signer. Complexity threshold should be derived
or defined by the user. This paper considers that
the top-ranked complex components have high
probability of faults. However, there should be
a threshold value of a component’s complexity,
which could flag whether the component is cross-
ing the complexity boundary or not. The scope
is there to measure the complexity threshold,
specific to an application, to better categorize the
complex components.

To lower the complexity, the current paper
applies refactoring, which re-structures the model
to improve fault tolerance. Alternative solutions
(rather than refactoring) could be examined to
achieve the best solution to lowering the com-
plexity of the components, and that of the whole
system as well.

REFERENCES

Ammar, H. H., Nikzadeh, T., & Dugan, J. B.
(1997). A methodology for risk assessment of
functional specification of software systems using
colored Petri nets. Paper presented at the Fourth
International Software Metrics Symposium, Los
Alamitos, CA, USA.

Austin, T. M. (1999). DIVA: A reliable substrate
for deep submicron microarchitecture design.
Paper presented at the 32nd Annual International
Symposium on Microarchitecture.

Boger, M., Sturm, T., & Fragemann, P. (2003).
Refactoring browser for UML. Paper presented at
the International Conference on Objects, Compo-
nents, Architectures, Services, and Applications
for a Networked World, Berlin, Germany. (LNCS
2591).

Bondavalli, A., Latella, D., Majzik, I., Pataricza,
A., & Savoia, G. (2001). Dependability analysis
in the early phases of UML based system design.
Journal of Computer Systems Science and Engi-
neering, 16(5), 265–275.

Bowles, J. B. (1998). The new SAE FMECA
standard. Paper presented at the International
Symposium on Product Quality and Integrity.

Bowles, J. B. (2004). An assessment of RPN pri-
oritization in a failure modes effects and criticality
analysis. Journal of the IEST, 47, 51–56.

Chen, C. L., & Hsiao, M. Y. (1984). Error-
correcting codes for semiconductor memory ap-
plications: A state-of-the-art review. IBM Journal
of Research and Development, 28(2), 124–134.
doi:10.1147/rd.282.0124

Chidamber, S. R., & Kemerer, C. F. (1994). A
metrics suite for object oriented design. IEEE
Transactions on Software Engineering, 20(6),
476–493. doi:10.1109/32.295895

311

Complexity Analysis at Design Stages of Service Oriented Architectures as a Measure of Reliability Risks

Cortellessa, V., Goseva-Popstojanova, K., Appuk-
kutty, K., Guedem, A. R., Hassan, A., & Elnaggar,
R. (2005). Model-based performance risk analysis.
IEEE Transactions on Software Engineering,
31(1), 3–20. doi:10.1109/TSE.2005.12

Crouzet, Y., Collet, J., & Arlat, J. (2005). Miti-
gating soft errors to prevent a hard threat to
dependable computing. Paper presented at the
11th IEEE International On-Line Testing Sym-
posium, IOLTS.

Dobrzanski, L., & Kuzniarz, L. (2006). An ap-
proach to refactoring of executable UML models.
Paper presented at the ACM Symposium on Ap-
plied Computing, New York.

Gerson, S., Damien, P., Yves Le, T., & Jean-Marc,
J. (2001). Refactoring UML Models. Proceedings
of the 4th International Conference on the Unified
Modeling Language: Modeling Languages, Con-
cepts, and Tools (pp. 134-148). Springer-Verlag.

Gold, B. T., Kim, J., Smolens, J. C., Chung, E. S.,
Liaskovitis, V., & Nurvitadhi, E. (2005). TRUSS:
A reliable, scalable server architecture. IEEE
Micro, 25(6), 51–59. doi:10.1109/MM.2005.122

Harel, D., & Gery, E. (1997). Executable object
modeling with statecharts. Computer, 30(7),
31–42. doi:10.1109/2.596624

Harrison, R., Counsell, S. J., & Nithi, R. V.
(1998). An evaluation of the MOOD set of
object-oriented software metrics. IEEE Transac-
tions on Software Engineering, 24(6), 491–496.
doi:10.1109/32.689404

Hitz, M., & Montazeri, B. (1995). Measuring
product attributes of object-oriented systems.
Paper presented at the 5th European Software
Engineering Conference.

Hosseini, S., & Azgomi, M. A. (2008). UML
model refactoring with emphasis on behavior
preservation. Paper presented at the 2nd IFIP/
IEEE International Symposium on Theoretical
Aspects of Software Engineering, Piscataway,
NJ, United States.

Iyer, R. K., Nakka, N. M., Kalbarczyk, Z. T., &
Mitra, S. (2005). Recent advances and new av-
enues in hardware-level reliability support. IEEE
Micro, 25(6), 18–29. doi:10.1109/MM.2005.119

Jurjens, J., & Wagner, S. (2005). Component-based
development of dependable systems with UML.
(LNCS 3778), (pp. 320-344).

Khoshgoftaar, J. M. T. (1996). Software metrics for
reliability assessment. In Lyu, M. (Ed.), Handbook
of software reliability engineering (pp. 493–529).

Krishnamohan, S. (2005). Efficient techniques
for modeling and mitigation of soft errors in
nanometer-scale static CMOS logic circuits.
Unpublished doctoral thesis, Michigan State
University, United States-Michigan.

Lakhal, N. B., Kobayashi, T., & Yokota, H. (2006).
Dependability and flexibility centered approach
for composite Web Services modeling. Berlin,
Germany.

McCabe, T. J. (1976). A complexity measure. IEEE
Transactions on Software Engineering, SE-2(4),
308–320. doi:10.1109/TSE.1976.233837

Meaney, P. J., Swaney, S. B., Sanda, P. N., &
Spainhower, L. (2005). IBM z990 soft error
detection and recovery. IEEE Transactions on
Device and Materials Reliability, 5(3), 419–427.
doi:10.1109/TDMR.2005.859577

Mens, T. (2006). On the use of graph transforma-
tions for model refactoring. (LNCS 4143), (pp.
219-257).

Mens, T., & Van Gorp, P. (2006). A taxonomy of
model transformation. Electronic Notes in Theo-
retical Computer Science, 152(1-2), 125–142.
doi:10.1016/j.entcs.2005.10.021

Miskov-Zivanov, N., & Marculescu, D. (2006).
MARS-C: Modeling And Reduction of Soft errors
in Combinational circuits. Paper presented at the
Proceedings of the Design Automation Confer-
ence, Piscataway, NJ, USA.

312

Complexity Analysis at Design Stages of Service Oriented Architectures as a Measure of Reliability Risks

Mitra, S. M.Z., Seifert, N., Mak, T.M. & Kim, K.
(2006). Soft error resilient system design through
error correction. Paper presented at the Interna-
tional Conference on Very Large Scale Integration
and System-on-Chip.

Mohamed, A. G., Chad, S., Vijaykumar, T. N.,
& Irith, P. (2003). Transient-fault recovery for
chip multiprocessors. IEEE Micro, 23(6), 76–83.
doi:10.1109/MM.2003.1261390

Mukherjee, S. S., Emer, J., & Reinhardt, S. K.
(2005). The soft error problem: An architec-
tural perspective. Paper presented at the 11th
International Symposium on High-Performance
Computer Architecture, San Francisco, CA, USA.

Mukherjee, S. S., Kontz, M., & Reinhardt, S. K.
(2002). Detailed design and evaluation of redun-
dant multi-threading alternatives. Paper presented
at the 29th Annual International Symposium on
Computer Architecture.

Narayanan, V., & Xie, Y. (2006). Reliability con-
cerns in embedded system designs. Computer,
39(1), 118–120. doi:10.1109/MC.2006.31

Nguyen, H. T., Yagil, Y., Seifert, N., & Reitsma,
M. (2005). Chip-level soft error estimation
method. IEEE Transactions on Device and Ma-
terials Reliability, 5(3), 365–381. doi:10.1109/
TDMR.2005.858334

Oh, N., Shirvani, P. P., & McCluskey, E. J. (2002).
Error detection by duplicated instructions in
super-scalar processors. IEEE Transactions on
Reliability, 51(1), 63–75. doi:10.1109/24.994913

Oma, M., Rossi, D., & Metra, C. (2003). Novel
transient fault hardened static latch. Paper pre-
sented at the IEEE International Test Conference
(TC), Charlotte, NC, United States.

Park, J. K., & Kim, J. T. (2008). A soft error mitiga-
tion technique for constrained gate-level designs.
IEICE Electronics Express, 5(18), 698–704.
doi:10.1587/elex.5.698

Quming, Z., & Mohanram, K. (2004). Cost-effec-
tive radiation hardening technique for combina-
tional logic. Paper presented at the Proceedings of
the International Conference on Computer Aided
Design, Piscataway, NJ, USA.

Rashid, M. W., Tan, E. J., Huang, M. C., & Albo-
nesi, D. H. (2005). Power-efficient error tolerance
in chip multiprocessors. IEEE Micro, 25(6), 60–70.
doi:10.1109/MM.2005.118

Ray, J., Hoe, J. C., & Falsafi, B. (2001). Dual
use of superscalar datapath for transient-fault
detection and recovery. Paper presented at the
34th ACM/IEEE International Symposium on
Microarchitecture.

Reinhardt, S. K., & Mukherjee, S. S. (2000).
Transient fault detection via simultaneous multi-
threading. Paper presented at the 27th International
Symposium on Computer Architecture.

Reis, G. A., Chang, J., Vachharajani, N., Rangan,
R., & August, D. I. (2005). SWIFT: SoftWare
Implemented Fault Tolerance. Paper presented at
the International Symposium on Code Generation
and Optimization, Los Alamitos, CA, USA.

Rockett, L. R. Jr. (1992). Simulated SEU hardened
scaled CMOS SRAM cell design using gated
resistors. IEEE Transactions on Nuclear Science,
39(5), 1532–1541. doi:10.1109/23.173239

Rotenberg, E. (1999). AR-SMT: A microarchitec-
tural approach to fault tolerance in microproces-
sors. Paper presented at the 29th Annual Interna-
tional Symposium on Fault-Tolerant Computing.

Saggese, G. P., Wang, N. J., Kalbarczyk, Z. T.,
Patel, S. J., & Iyer, R. K. (2005). An experimen-
tal study of soft errors in microprocessors. IEEE
Micro, 25(6), 30–39. doi:10.1109/MM.2005.104

Sherer. (1988). Methodology for the assessment
of software risk. PhD Thesis, Wharton School,
University of Pennsylvania.

313

Complexity Analysis at Design Stages of Service Oriented Architectures as a Measure of Reliability Risks

Shye, A., Blomstedt, J., Moseley, T., Janapa Reddi,
V., & Connors, D. (in press). PLR: A software ap-
proach to transient fault tolerance for multi-core
architectures. IEEE Transactions on Dependable
and Secure Computing.

Smolens, J. C., Gold, B. T., Kim, J., Falsafi, B.,
Hoe, J. C., & Nowatzyk, A. G. (2004). Fingerprint-
ing: Bounding soft-error detection latency and
bandwidth. Paper presented at the Proceedings
of the 11th International Conference on Archi-
tectural Support for Programming Languages
and Operating Systems, ASPLOS XI, New York,
United States.

Srinivasan, J., Adve, S. V., Bose, P., & Rivers, J.
A. (2004). The case for lifetime reliability-aware
microprocessors. Paper presented at the 31st
Annual International Symposium on Computer
Architecture.

STMicroelectronics. (2003). New chip technol-
ogy from STmicroelectronics eliminates soft er-
ror threat to electronic systems. Retrieved from
http://www.st.com/stonline/press/news/year2003/
t1394h.htm

Telelogic. (2009). Homepage information. Re-
trieved on January 30, 2009, from http://www.
telelogic.com/

Timor, A., Mendelson, A., Birk, Y. & Suri, N.
(2008). Using underutilized CPU resources to
enhance its reliability. IEEE Transactions on
Dependable and Secure Computing.

Tosun, S. (2005). Reliability-centric system design
for embedded systems. Unpublished doctoral the-
sis, Syracuse University, United States-New York.

Vijaykumar, T. N., Pomeranz, I., & Cheng, K.
(2002). Transient-fault recovery using simultane-
ous multithreading. Paper presented at the 29th
Annual International Symposium on Computer
Architecture.

Walcott, K. R., Humphreys, G., & Gurumurthi,
S. (2007). Dynamic prediction of architectural
vulnerability from microarchitectural state. Paper
presented at the Proceedings of the International
Symposium on Computer Architecture, New York,
United States.

Wang, F. (2008). Soft error rate determination for
nanometer CMOS VLSI logic. Paper presented
at the Proceedings of the Annual Southeastern
Symposium on System Theory.

Wang, L., Wong, E., & Xu, D. (2007). A threat
model driven approach for security testing.
Paper presented at the Proceedings of the Third
International Workshop on Software Engineering
for Secure Systems, SESS’ 07, Piscataway, NJ,
United States.

Wikipedia. (2009). Home page. Retrieved on Janu-
ary 30, 2009, from http://en.wikipedia.org/wiki

Wood, S. K., Akehurst, D. H., Uzenkov, O., How-
ells, W. G. J., & McDonald-Maier, K. D. (2008). A
model-driven development approach to mapping
UML state diagrams to synthesizable VHDL. IEEE
Transactions on Computers, 57(10), 1357–1371.
doi:10.1109/TC.2008.123

Xie, Y., Li, L., Kandemir, M., Vijaykrishnan, N., &
Irwin, M. J. (2004). Reliability-aware co-synthesis
for embedded systems. Paper presented at the 15th
IEEE International Conference on Application-
Specific Systems, Architectures and Processors.

Yacoub, S. M., & Ammar, H. H. (2002). A method-
ology for architecture-level reliability risk analy-
sis. IEEE Transactions on Software Engineering,
28(6), 529–547. doi:10.1109/TSE.2002.1010058

Zhang, M. (2006). Analysis and design of soft-
error tolerant circuits. Unpublished doctoral the-
sis, University of Illinois at Urbana-Champaign,
United States.

314

Complexity Analysis at Design Stages of Service Oriented Architectures as a Measure of Reliability Risks

Zhang, M., Mitra, S., Mak, T. M., Seifert, N.,
Wang, N. J., & Shi, Q. (2006). Sequential element
design with built-in soft error resilience. IEEE
Transactions on Very Large Scale Integration
(VLSI). Systems, 14(12), 1368–1378.

