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Abstract In this contribution, we introduce a new bootstrap-
based method for Global Navigation Satellite System (GNSS)
carrier-phase ambiguity resolution. Integer bootstrapping is
known to be one of the simplest methods for integer ambi-
guity estimation with close-to-optimal performance. Its out-
come is easy to compute due to the absence of an integer
search, and its performance is close to optimal if the decor-
relating Z-transformation of the LAMBDA method is used.
Moreover, the bootstrapped estimator is presently the only
integer estimator for which an exact and easy-to-compute
expression of its fail-rate can be given. A possible disad-
vantage is, however, that the user has only a limited control
over the fail-rate. Once the underlying mathematical model
is given, the user has no freedom left in changing the value
of the fail-rate. Here, we present an ambiguity estimator for
which the user is given additional freedom. For this purpose,
use is made of the class of integer aperture estimators as
introduced in Teunissen (2003). This class is larger than the
class of integer estimators. Integer aperture estimators are
of a hybrid nature and can have integer outcomes as well
as non-integer outcomes. The new estimator is referred to as
integer aperture bootstrapping. This new estimator has all the
advantages known from integer bootstrapping with the addi-
tional advantage that its fail-rate can be controlled by the
user. This is made possible by giving the user the freedom
over the aperture of the pull-in region. We also give an exact
and easy-to-compute expression for its controllable fail-rate.
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1 Introduction

Global Navigation Satellite System (GNSS) carrier-phase
ambiguity resolution is the process of resolving the carrier-
phase ambiguities as integers. It is the key to fast and high-
precision GNSS positioning and it applies to a great variety
of GNSS models which are currently in use in navigation,
surveying, geodesy and geophysics; see e.g. Leick (1995),
Parkinson and Spilker (1996), Strang and Borre (1997),
Teunissen and Kleusberg (1998), Farrell and Barth (1999),
Misra and Enge (2001), Hofmann-Wellenhof et al. (2002),
Seeber (2003).

All the linear(ized) GNSS models can, in principle, be
cast in the following frame of observation equations:
E{y}=Aa+Bb, aecZ",beR! (1)
with E{.} the mathematical expectation operator, y the
m-vector of observables, a the n-vector of unknown inte-
ger parameters and b the g-vector of unknown real-valued
parameters. The data vector y will then usually consist of the
“observed minus computed” single-, dual- or multi-frequency
double-difference (DD) phase and/or pseudorange (code)
observations accumulated over all observation epochs. The
entries of vector a are then the DD carrier-phase ambigui-
ties, expressed in units of cycles rather than range, while the
entries of the vector b will consist of the remaining unknown
parameters, such as baseline components (coordinates) and
possibly atmospheric delay parameters (troposphere and ion-
osphere).

The procedure for solving the above GNSS model (Eq. 1)
can be divided conceptually into three steps. In the first step,
one simply discards the integer constraints a € Z" and per-
forms a standard least-squares adjustment. As a result, one
obtains the so-called float solution @ and b. This solution is
real-valued. Then in the second step, the float solution a is
further adjusted so as to take, in some pre-defined way, the
“integerness” of the ambiguities into account. This gives

as = S(a) @
in which § is an n-dimensional mapping that transforms
the float solution into a corresponding integer solution. This
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estimator is then used in the final step to adjust the float esti-

mator b. As aresult, one obtains the so-called ambiguity fixed
estimator of b as

bs =b— 0407 @~ as) 3
in which Q; denotes the variance-covariance (vc-) matrix of
a and Q;, denotes the covariance matrix of b and 4.

The above three-step procedure is still ambiguous in the
sense that it leaves room for choosing the n-dimensional map
S. Different choices for S will lead to different ambiguity
estimators and thus also to different baseline estimators l;S.
One can therefore now think of constructing family of maps
S with certain desirable properties. Three such classes of
ambiguity estimators are the class of integer estimators, the
class of integer equivariant estimators, and the class of integer
aperture estimators. These classes were introduced, respec-
tively, in Teunissen (1999, 2002, 2003). These three classes
of estimators are subsets of one another. The first class is the
most restrictive class. This is due to the fact that the outcomes
of any estimator within this class are required to be integers.
Well-known examples of estimators from this class are inte-
ger rounding, integer bootstrapping and integer least-squares.
The most relaxed class is the class of integer equivariant esti-
mators. These estimators are real-valued, and they only obey
the integer remove-restore principle. An important estimator
in this class is the best integer equivariant estimator since it
has the smallest variance, even smaller than the variance of
the float solution. The class of integer aperture estimators is
a subset of the integer equivariant estimators but it encom-
passes the class of integer estimators. The integer aperture
estimators are of a hybrid nature in the sense that their out-
comes are either integers or non-integers. In this contribution,
we use this class to introduce a new bootstrap-based method
for GNSS carrier-phase ambiguity resolution.

Integer bootstrapping is known to be one of the sim-
plest methods for integer ambiguity estimation with close
to optimal performance. Its outcome is easy to compute due
to the absence of an integer search, and its performance is
close to optimal if the decorrelating Z-transformation of the
LAMBDA method (Teunissen 1993) is used. Moreover, the
bootstrapped estimator is the only integer estimator for which
an exact and easy-to-compute expression of its fail-rate can
be given. A possible disadvantage is that the user has only a
limited control over the fail-rate. Once the underlying math-
ematical model is given, the user has no freedom left in
changing the value of the fail-rate. Instead, we will present an
ambiguity estimator for which the user is given this additional
freedom. The new estimator is referred to as integer aperture
bootstrapping. This new estimator has all the advantages of
integer bootstrapping, but with the additional advantage that
its fail-rate can be controlled by the user. This is made pos-
sible by giving the user the freedom over the aperture of the
pull-in region. We also give an exact and easy-to-compute
expression for its controllable fail-rate.

The contribution is organized as follows: Since the new
estimator is bootstrap-based, we first give a brief review of
the principle of integer bootstrapping in Sect. 2. This includes

the conditions for integer estimation, the triangular-factor-
ization-based computation of the bootstrapped solution, the
bootstrapped pull-in regions, and the easy-to-compute boot-
strapped fail-rate. In Sect. 3 we describe the class of integer
aperture estimators and show how their probabilistic perfor-
mance can be measured. Based on the results of Sects. 2 and
3, we introduce the principle of integer aperture bootstrap-
ping in Sect. 4. It includes a definition of the aperture pull-in
region of the new estimator, a description of how its output
needs to be computed, and exact expressions for evaluating
its probabilistic performance as function of a user-defined
aperture parameter.

2 Integer bootstrapping
2.1 Integer estimation

The mapping S will have to be a mapping from the
n-dimensional space of real numbers to the n-dimensional
space of integers if we want to estimate the unknown ambigu-
ity vectora € Z" as an integer vector. But since the mapping
S : R" — Z" will then not be one-to-one, different real-val-
ued vectors will be mapped by S to one and the same integer
vector. One can therefore assign a subset S; C R” to each
integer vector z € Z" such that it contains all real-valued
vectors that will be mapped by S to z:

S,={xeR'|z=85x)}, ze€Z" “)

This subset is referred to as the pull-in region of z. It is the
region in which all float solutions are pulled to the same inte-
ger vector z. By using the concept of pull-in regions, one can
now define classes of estimators by imposing various condi-
tions on the pull-in regions. In Teunissen (1999) the following
three conditions were imposed:

1) U,ezn S: =R"
(2) Int(S;,) N Int(S;,) =0, Vzi,20€ Z", 21 # 22
(3)S, =z+ Sy, Vze 2z

&)

Each one of these three conditions describes a property of
which it seems reasonable that it is possessed by a sensible
integer estimator. The first condition states that the pull-in
regions should not leave any gaps and the second that they
should not overlap. The absence of gaps is needed in order
to be able to map any float solution a € R" to Z", while
the absence of overlaps is needed to guarantee that the float
solution is mapped to just one integer vector. Note that we
allow the pull-in regions to have common boundaries. This
is permitted if we assume to have zero probability that a lies
on one of the boundaries. This will be the case when the
probability density function (pdf) of g is continuous.

The third and last condition of the definition follows from
the requirement that S(x +z) = S(x) +z, Vx e R",z €
Z". Also, this condition is a reasonable one to ask for. It
states that when the float solution a is perturbed by an arbi-
trary integer vector, say z € Z", then the corresponding inte-
ger solution is perturbed by the same amount. This property
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allows one to apply the integer remove-restore technique:
S(a —z)+z = S(a). It therefore allows one to work with the
fractional parts of the entries of a, instead of with its complete
entries. With the above conditions one is now in a position to
give a definition of the class of integer estimators.

Definition 1 (Integer estimators) Let a € R" be the float
solution and let the subsets S, C R", z € Z", satisfy all three
conditions of (5). Then

a= Z zs8.(a), with s.(a) =

zezZ"

1 ifaes,
{0 ifads. ©)

is said to be an integer estimator.

Note, since D ,. s:(x) = 1 forall x € R", the s.(a) can
be interpreted as weights. The integer estimator ¢ is there-
fore equal to a weighted sum of integer vectors with binary
weights. With the above definition one can now design one’s
own integer ambiguity estimator by a suitable choice of the
pull-in regions in accordance with (5). Once one has come
up with a division of the ambiguity space R" into transla-
tional-invariant subsets, which fill the space without gaps
and overlaps, one has defined one’s own integer estimator.
The three best-known integer estimators are integer round-
ing, integer bootstrapping and integer least-squares. For the
present contribution it is the bootstrapped estimator which is
of particular interest.

2.2 Bootstrapping

The bootstrapped estimator can be seen as a generalization
of the process of integer rounding. It makes use of round-
ing, but it also takes some of the correlation between the
ambiguities into account. The bootstrapped estimator follows
from a sequential conditional least-squares adjustment, and
it is computed as follows: if n ambiguities are available, one
starts with the first ambiguity a;, and rounds its value to the
nearest integer. Having obtained the integer value of this first
ambiguity, the real-valued estimates of all remaining ambi-
guities are then corrected by virtue of their correlation with
the first ambiguity. Then the second, but now corrected, real-
valued ambiguity estimate is rounded to its nearest integer.
Having obtained the integer value of the second ambiguity,
the real-valued estimates of all remaining n — 2 ambiguities
are then again corrected, but now by virtue of their correlation
with the second ambiguity. This process is continued until all
ambiguities are considered. The entries of the bootstrapped
estimator dg = (dp.1,... ,dp,)" € Z" are thus given as

ag, = lail
v ~ ~ N v
apy = [ao] = a2 — o210] “(a1 — ag,1)]

(N

n—1
v ~ ~ 0 IN v
agpn = [aun] = [an — Y 0n,jis0; @)1y — dg,j)]
j=1

where '[.]" denotes rounding to the nearest integer, o; j,
denotes the covariance between ¢; and a,|;, and ajzl ; is the

variance of ;. The shorthand notation g;; stands for the
ith least-squares ambiguity obtained through a conditioning
on the previous I = {1,..., (i — 1)} sequentially rounded
ambiguities.

When computing the bootstrapped solution it is very use-
ful to make use of the triangular factorization of the ambiguity
ve-matrix. Due to the close relationship that exists between
sequential conditional least-squares estimation and the unique
lower triangular factorization of the ambiguity vc-matrix,
Qs = LDLT, we have the following statistical interpreta-
tion of the entries of L and D (Teunissen 2001):

0 ifl<i<j<n
(L)ij= 1 ifi=j and D =diag(. .. ,a/-zu,...)
Ui1j|jO'j7|3 1f1§]<l§l’l ’

®)

This shows that the coefficients needed in (7) are given by
the lower triangular entries of L. The unit lower triangular
matrix L can also be used to describe the bootstrapped pull-in
regions. They are given as

Sp.={xeR"||c;]L'(x—2)| <

| =

Yz e Z" )

in which ¢; denotes the canonical unit vector having a 1 as its
ith entry and zeros otherwise. The pull-in regions of integer
bootstrapping are multivariate versions of parallellograms.
To see this, consider the two-dimensional case first. Let the
lower triangular matrix L be given as

1]

Then

SB,O = {.x S R2 | | C;I‘Lil.x |§ %,l = 1’2}

) 1
={xeR||x =5, lx2—1Ix |< 3}

which shows that the two-dimensional pull-in region equals
a parallellogram. Its region is bounded by the two vertical
lines x; = % and x; = —%, and the two parallel slopes
Xy =1Ix; + % and x; = Ix| — % The direction of the slope is
governed byl = oy 01_2. Hence, in the absence of correlation
between the two ambiguities, the parallellogram reduces to
the unit-square. In higher dimensions, the above construction
of the pull-in region can be continued. In three dimensions for
instance, the intersection of the pull-in region with the xx;-
plane remains a parallellogram, while along the third axis
the pull-in region becomes bounded by two parallel planes.
The bootstrapped pull-in regions reduce to the multivariate
versions of the unit-square in case the ambiguity vc-matrix
happens to be diagonal, L = I,,. This corresponds with the
fact that bootstrapping reduces to rounding in the absence of
any correlation between the ambiguities. Figure 1 shows an
example of two sets of two-dimensional bootstrapped pull-in
regions. Their difference in shape is due to the difference in
ambiguity correlation between the two cases.
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Fig. 1 Two sets of two-dimensional bootstrapped pull-in regions. Left high correlation, right low correlation

2.3 The bootstrap success-rate

For the evaluation of the integer estimator we need the dis-
tribution of ¢. This distribution is of the discrete type and it
will be denoted as P(a = z). It is a probability mass func-
tion (pmf) having zero masses at nongrid points and non-
zero masses at some or all grid points. In order to obtain
this pmf we need the probability density function (pdf) of
the float solution a. This pdf will be denoted as f;(x). The
pmf P(a = z) follows then from integrating f;(x) over the
pull-in regions S.:

Pla=27 = /fgl(x)dx ,z€eZ" (10)
S;

This distribution depends on the pull-in regions S, and thus
on the chosen integer estimator. Having the problem of GNSS
ambiguity resolution in mind, one is particularly interested in
the probability of correct integer estimation, also referred to
as the ambiguity success-rate. Also, this probability, P(a =
a), depends on the chosen integer estimator. In general, how-
ever, it is rather difficult to obtain an exact and easy-to-com-
pute expression for the success-rate. There is one
exception, namely the success-rate of the bootstrapped
estimator. As the following theorem shows, the bootstrapped
success-rate can be computed relatively straightforward in an
exact manner.

Theorem 1 (bootstrapped success-rate and upperbound) Let
the float solution be distributed as a ~ N(a, Q3) and let ag
be the integer bootstrapped estimator of a € Z", in accor-
dance with (7). Then

P(ip =a) = ilill (2q’ (ﬁ) - 1)

1D

= (2 (zz008) — 1)"

1
with®(x)= [ ﬁ exp{—1v*}dvand ADOP = \/detQ;"
(cycle).

Proof The equality was first given in Teunissen (1998a) and
the inequality in Teunissen (2000).

This result shows that the bootstrapped success-rate is

determined by the conditional variances Ui2|1’ i=1,...,n.
They are the entries of the diagonal matrix D in the factor-
ization of Q; = LDLT. o

The outcome of integer bootstrapping and its success-rate
both depend on the chosen ambiguity parametrization. For
instance, a simple reordering of the ambiguities will already
affect the success-rate. The fact that the bootstrapped success-
rate will not remain invariant when an arbitrary ambiguity
transformation is applied is a consequence of the unique-
ness of the triangular decomposition of Q. The bootstrapped
success-rate will change since the diagonal matrix D of the
triangular decomposition changes when an arbitrary ambigu-
ity transformation is applied. This lack of invariance of the
bootstrapped success-rate implies that one can try to improve
the performance of bootstrapping by choosing an appropriate
ambiguity parametrization.

In Teunissen (1999) the integer least-squares estimator
was shown to be the optimal estimator. Since bootstrapping
becomes identical to integer least-squares when the ve-matrix
is diagonal, one should aim at reducing the correlations
between the ambiguities in order to improve the performance
of the bootstrapped estimator. This is possible by applying
the decorrelating Z-transformation of the LAMBDA method
(Teunissen 1993). When this transformation is applied, one
works with the more precise and decorrelated ambiguity vec-
tor Z = Za, instead of with the original ambiguity vector a.
Since the conditional variances of Z are usually orders of
magnitude smaller than the large conditional variances of a,
the bootstrapped success-rate of the transformed ambigui-
ties will generally be much larger than that of the original
ambiguities. In fact, practical experiments have shown that
the bootstrapped success-rate of the Z-transformed ambigu-
ities comes very close to the optimal success-rate of integer
least-squares; see e.g. Thomsen (2000). For more informa-
tion on the LAMBDA method, we refer to Teunissen (1995)
and de Jonge and Tiberius (1996a,b), or to the textbooks by
Hofmann-Wellenhof et al. (2002), Strang and Borre (1997),
Teunissen and Kleusberg (1998), Misra and Enge (2001),
Seeber (2003). Examples of its applications can be found
in, e.g., Han and Rizos (1996), de Jonge et al. (1996), Boon
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and Ambrosius (1997), Boon et al. (1997), Cox and Brading
(1999), Peng et al. (1999), Verhagen (2001), Lee et al. (2003)
and Wu et al. (2003).

Theorem 1 also gives an upper bound on the bootstrapped
success-rate. One may question its usefulness since, after all,
we already have an easy way to compute the success-rate
exactly. The advantage of the upper bound is, however, that
it is invariant for the class of admissible ambiguity transfor-
mations. An ambiguity transformation Z = Za is said to be
admissible if and only if all the entries of the matrix Z and its
inverse are integer. These two conditions are needed to retain
the integer nature of the ambiguities. It can be shown that the
determinant of admissible ambiguity transformations always
equal £1. We therefore have det(Q:) = det(Z Q4 ZT), which
shows the invariance of the ambiguity dilution of precision
(ADOP). Thus, the same ADOP-value is obtained whatever
admissible choice is made for the ambiguity parametrization.
The decorrelating transformation of the LAMBDA method is
an example of such an admissible ambiguity transformation.

Also the ADOP is easily computed from the triangular
factorization of the ambiguity vc-matrix. Since the determi-
nant of the lower triangular factor L equals one, we have
det Q; = det D and thus

1

ADOP = (ﬁ O’,'|1) ”

i=1

(12)

This shows that the ADOP equals the geometric mean of the
ambiguity standard deviations.

The advantage of the upper bound being invariant is that
it only needs to be computed once to cover all possible ambi-
guity parametrizations. It can, therefore, be used to quickly
decide on the potential usefulness of bootstrapping for ambi-
guity resolution. If in any application the upper bound turns
out to be too small the conclusion must be that one cannot
expect carrier-phase ambiguity resolution to be successful
when it is based on the principle of bootstrapping, whatever
ambiguity parametrization is chosen.

3 Integer aperture (IA) estimation
3.1 TA-estimators

So far we considered the principle of integer estimation with
bootstrapping as an easy-to-compute and important example
of integer estimation. The outcome of an integer estimator
is, however, always an integer. This implies that a user has
limited control over the fail-rate of an integer estimator. The
fail-rate equals the probability of incorrect integer estima-
tion. In the case of integer estimation, the fail-rate equals
one minus the success-rate. The fail-rate depends, therefore,
through the type of pull-in region on the choice of integer
estimator and through the pdf of the float solution on the
strength of the underlying mathematical model. Thus, once
the choice of an integer estimator has been made, the fail-
rate can only be improved by strengthening the mathematical

model, for instance by using more data or more precise data.
For a given mathematical model, however, the user has no
means of changing the intrinsic fail-rate of the chosen inte-
ger estimator. Now, in order to accommodate this limitation,
the class of integer aperture (IA)-estimators was introduced
in Teunissen (2003). The class of IA-estimators is larger than
the class of integer estimators. That is, all integer estima-
tors are IA-estimators, but not all IA-estimators are integer
estimators. The class of TA-estimators is defined by drop-
ping one of the three conditions of (5), namely the condition
that the pull-in regions should cover the ambiguity space R"
completely. We will therefore allow the pull-in regions of the
[A-estimators to have gaps.

In order to introduce the new class of ambiguity estima-
tors from first principles, let 2 C R" be the region of R”"
for which a is mapped to an integer if @ € Q. It seems rea-
sonable to ask of the region €2 that it has the property that
ifa € Qthenalsoa + z € , for all z € Z". If this prop-
erty would not hold, then float solutions could be mapped
to integers whereas their fractional parts would not. We thus
require €2 to be translational-invariant with respect to an arbi-
trary integer vector: Q2 4 z = 2, for all z € Z". However, Q2
is not sufficient for defining our estimator. €2 only determines
whether or not the float solution is mapped to an integer, but
it does not tell us yet to which integer the float solution is
mapped. We therefore define

Q. =QNS, VzeZz" (13)

where S; is a pull-in region satisfying the conditions of (5).
Then
(D Uz Qz = U;(Q m Sz) =Q m(Uz Sz)
=QMNR"'=Q
(2) Q; N2, = Q) S) Q) S2,)
=Q m(Sm ﬂ SZz) = @v VZI’ 22 € Zn7 <1 ?é 22
(3) Q+z=(QNS) +z=(2+2) (S +2)
=QNS,=Q;, Vze zZ"

(14)

This shows that the subsets 2, C . satisfy the same condi-
tions as those of (5), be it that R" has now been replaced by
Q C R".Hence, the mapping of the IA-estimator can now be
defined as follows: the IA-estimator maps the float solution
a to the integer vector z when a € 2., and it maps the float
solution to itself when a ¢ 2. The class of IA-estimators can
therefore be defined as follows.

Definition 2 (IA-estimators) Letd € R" be the float solution
and let the subsets 2, C R", z € Z", satisfy the conditions
of (14). Then

aja=a+ § (z — d)w.(a),
zeZm
1 ifaeq

0 ifadq. 5

mm%@p%

is said to be an IA-estimator.

Note that every integer estimator is indeed an [A-estimator.
Since the indicator functions s,(x) of the pull-in regions S,
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sum up to unity, Y __,. s.(x) = 1, the integer estimator (6)

may also be written as

i=a+y (z—a)s(a)

zeZ"

(16)

Comparing this expression with that of (15) shows that the
difference between the two estimators lies in their binary
weights, s, (x) versus w,(x). Since the s,(x) sum up to unity
for all x € R", the outcome of an integer estimator will
always be an integer. This is not true for an [A-estimator,
since the binary weights w,(x) do not sum up to unity for
all x € R", but only for x € Q. The IA-estimator is, there-
fore, a hybrid estimator having as outcome either the real-
valued float solution @ or an integer solution. The IA-estima-
tor returns the float solution if a ¢ 2, and it will be equal
to z when a € .. Note, since € is the collection of all
Q, = Qo + z, the TA-estimator is completely determined
once €2 is known. Thus Qy C Sy plays the same role for
the IA-estimators as Sy does for the integer estimators. By
changing the size and shape of €2 one changes the outcome
of the IA-estimator. The subset 2 can, therefore, be seen as
an adjustable pull-in region with two limiting cases: the lim-
iting case in which €2 is empty, and the limiting case when
Qo equals Sy. In the first case, the [A-estimator becomes
identical to the float solution a4, and in the second case, the
IA-estimator becomes identical to an integer estimator. The
subset €2y, therefore, determines the aperture of the pull-in
region.

3.2 Performance of IA-estimators

In order to evaluate the performance of an IA-estimator as to
whether it produces the correct integer outcome a € Z", it is
helpful to first classify its possible outcomes. An [A-estima-
tor can produce one of the following three outcomes

aeZ" (correct integer)
ajp =4 z€Z"\{a} (incorrect integer) a7
aeR"\Z" (no integer)

A correct integer outcome may be considered a success, an
incorrect integer outcome a failure, and an outcome where no
correction at all is given to the float solution as indeterminate
or undecided. The probability of success, the success-rate Py,
equals the integral of the pdf of the float solution, f;(x), over
2,, whereas the probability of failure, the fail-rate Py, equals
the integral of f;(x) over Q \ €2,. The probability that the
IA-estimator reproduces the float solution equals one minus
the sum of the success-rate and the fail-rate. The respective
probabilities are therefore given as

Ps = Plaja=a) = jQ fa(x)dx (success)
Pr=3 ., Plaa=2=73_,Jq fax)dx (failure) (18)
Py = P(@a=4d) =1-Ps— Pr (undecided)

Note that these three probabilities are completely governed
by f;(x), the pdf of the float solution, and by €2, the aper-
ture pull-in region which uniquely defines the [A-estimator.

By setting the size and shape of the aperture pull-in region
Qo C Sy for a given pdf f;(x), the user has now gained some
control on the level of the fail-rate which he or she is will-
ing to accept. The result will be that of an integer estimator
if Qo is set equal to Syp. Then & = R" and thus Py = 0,
from which it follows that P = 1 — Pg. In this case, the
fail-rate is dictated by the choice of integer estimator and the
strength of the underlying mathematical model. However, if
€29 is chosen as a true subset of Sy, then the user could set its
size such that the fail-rate would still be acceptable even if
he or she is confronted with a mathematical model that lacks
enough strength.

Depending on the type of [A-estimator one is consid-
ering, the above integrals (Eq. 18) for computing the suc-
cess-rate and the fail-rate may be difficult to evaluate exactly.
Whether or not an exact evaluation is possible depends to a
large extent on the complexity of the geometry of the aper-
ture pull-in region €2y. If the geometry is too complex, one
is usually forced to make use of the method of simulation. If
one may assume that the float solution is Gaussian-distrib-
uted as a ~ N(a, Q;), the simulation of the fail-rate and the
success-rate goes as follows: Since the shape of the Gauss-
ian distribution is independent of the mean «a, also Py and
Pr are independent of a. Hence, one may restrict attention
to N(0, Q;), draw samples from it and use these samples to
obtain good approximations to both Pg and Pr.

As a first step one generates, using arandom-number gen-
erator, n independent samples from the univariate standard
normal distribution N(O, 1), say sy, ..., s,. These samples
are then collected in the vector s = (sq, ..., s,)T and trans-
formed by means of @ = G, where the matrix G equals the
Cholesky factor of Q;, i.e. Q; = GGT. Hence, a is now a
sample from N (0, Q;). This sample is then used as input for
the IA-estimator. The outcome of the IA-estimator is then
correct if the output equals the zero vector; it is incorrect if
the output equals a nonzero integer vector and the outcome
is undecided if the output equals the input. The first case cor-
responds with a € Q, the second case with a € 2, for some
z € Z" \ {0}, and the third case witha ¢ Q,,Vz € Z".

By repeating this process N times, one can count how
often the zero vector is given as solution, say Ny-times, and
how often a particular nonzero integer vector is given as solu-
tion, say N,-times. An approximation to the required success-
rate and the required fail-rate follows then from the relative
frequencies as
No Zz;eo N,
—, PF AT —
N N
Note that this procedure requires the evaluation whether or
not the generated sample a resides in one of the aperture pull-
in regions. Since 2, = Q2 N S,, with S, the pull-in region of
the chosen integer estimator, this evaluation is done in two
steps. First the integer vector corresponding to a is computed,
say a. Depending on the choice of S, this could be based on
integer rounding, integer bootstrapping, integer least-squares
or any other admissible integer estimator. Then in the second
step, the residual € = a — a is used to verify whether or not
€ € Q. Since this procedure has to be repeated N-times, it is

Py~ 19)
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of importance that the integer solution ¢ can be computed as
efficiently as possible. For the case of GNSS this implies that
one should not use the original ambiguities, but instead the
transformed and decorrelated ambiguities as obtained with
the LAMBDA method. As to the choice of N, we refer to
Teunissen (1998b). For more advanced methods of approxi-
mating the integrals of Ps and Pr using Monte-Carlo or other
methods, we refer to Evans and Schwartz (2000).

4 Integer aperture bootstrapping
4.1 The TA-bootstrapped estimator

In the previous section, we introduced the concept of IA-
estimation. As we have seen, the prime difference between
integer estimators and IA-estimators is that the latter have
pull-in regions which are subsets of the space-filling pull-in
regions of the integer estimators. Hence, one can design one’s
own [A-estimator by simply defining the size and shape of
these aperture pull-in regions. Therefore, this also gives one
the possibility to choose the integer aperture pull-in region
Qo such that the probabilistic evaluation is made easier. Since
an exact probabilistic evaluation is possible for integer boot-
strapping, one may wonder whether or not it is possible to
generalize the principle of bootstrapping to the case of IA-
estimation such that an exact evaluation of its probabilistic
properties can still be given. This turns out to be the case
if one defines the aperture pull-in region as a down-scaled
version of the bootstrapped pull-in region.

Definition 3 (Bootstrapped aperture pull-in region) The pull-
in region of the IA-bootstrapped (IAB) estimator is defined
as

z = ﬁSB,z
with

BSp.={x € R" | l()C—Z)ESBO}
{xeR"||ch xl<i.,i=1,...

(20)

SB.() ,n}

where B (0 < B < 1) is the aperture parameter, and L
is the unique unit lower triangular matrix of the triangular
decomposition Q; = LDLT.

The shape of the pull-in region Q2 ; is thus identical to that
of the bootstrapped pull-in region Sp .; only their sizes may
differ. By varying the aperture parameter 8, one varies the
sizeof Qp , C Sp,; (seeFig.2).Sinceboth Q25 , and Sp . have
the same shape, the computation of the [A-bootstrapped esti-
mator is almost as simple as that of the original bootstrapped
estimator. The computational steps are as follows: As before,
one starts with the float solution @ and computes the boot-
strapped solution ¢ g. This result identifies the aperture pull-in
region Q25 5, for which it needs to be verified whether or not
the float solution resides in it. Note that this verification is
equivalent to the verification whether or not é (a—ap) € Spo-

Thus, from a and dg, one forms the bootstrapped ambigu-
ity residual €3 = a — dag, up-scales it to /%ég, and verifies
whether this up-scaled version still resides in Sp . This is
done by using the same bootstrapping procedure as before,
but now applied to the input éé - If the outcome is the zero

vector, then a; 45 = ap, otherwise d;45 = a.

The conclusion therefore is that the computation of the
IAB-estimator is thus very simple indeed. It essentially con-
sists of applying the bootstrapped procedure twice, once to
the float solution a and once to the upscaled residual %é B

4.2 Fail-rate and success-rate of IA-bootstrapping

Apart from the ease with which the IAB-estimator can be
computed, it also has the advantage that analytical closed
form expressions can be given for its fail-rate Py and its
success-rate Pg. They are given in the following theorem.

Theorem 2 (IAB-probabilities of success, failure and unde-

cided) Let the float solution be distributed as a ~ N(a, Q3)
and let its ve-matrix have the unique triangular factorization

Q; = = LDLT, with L a unit lower triangular matrix. The
IAB probabllltles of failure, Pg, success, Ps, and undecided,
Py, are then given as

)-1)

ﬂ—ZL‘,TL"
Prp = Z&ez\ I—[:l 1 (@( 2071

=TT (0 () 1)

PU=1—PF—P

z) + @ (ﬂ+2£,TL"z

2041

2D

2041

with ﬁ being the aperture parameter (0 < 8 < 1), d(x) =
f xoo Wors exp{——v }dv, and where c; denotes the canonical

unit vector having as its ith entry a 1 and zeros otherwise.

Proof We will only prove Pr as the proof of Ps goes along
similar lines. The fail-rate Pr equals the integral of the pdf of
the float solution over all aperture pull-in regions 2, = 8Sp ;
except the one for which z = a. We therefore have

Yo | faodx

zeZ"\{a}ﬂs&Z

> [
ceznioyg), (2m)2" [det(r Qa)

1 1
xexp{—z ||x+EZ IIZQ&}dx

Pr =

We will now transform the integral into a simpler form. As
the transformation we choose F' : x = Ly, with L as the unit
lower triangular matrix of Q; = LDLT. Then

1
Pr = Z / » -
€2\ Ohpois, (27T)2 det(z D)

1
eXP{—— ly+ L™ Z”L }dy
:3 2

with the transformed pull-in region

1
F*l(ss,o>={yeR”||c?y|s§,z=1,...,n}
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Fig. 2 Two sets of two-dimensional IA-bootstrapped pull-in regions. left high correlation, small B; right low correlation, large

Recognizing that %D is a diagonal matrix having the scaled

conditional variances éaﬁ ; as its entries, and that the trans-

formed pull-in region has become an origin-centred
n-dimensional hyper-cube with all sides equal to 1, we may
write the multivariate integral as a product of one-dimen-
sional integrals. This gives

zn/

zeZ"\{ i<
L[y +LTL 12\
X exp —5 dy
/301\1
ﬁ+2LTL 1,
2(71‘]
= / / — exp{——v }dv

VEZ" B 2l -1z

20,“

from which, when using the definition of ®(x), the result
follows. O

We recall that the performance of integer bootstrapping is
dependent on the chosen ambiguity parametrization. The same
holds true for IA-bootstrapping. Also this estimator should
therefore only be applied in combination with the decorre-
lating Z-transformation of the LAMBDA method.

Note that the above result reduces to that of the boot-
strapped estimator when the aperture parameter is set equal
to 1. In that case, Ps becomes identical to the success-rate of
bootstrapping and Pr = 1 — Pg, since Py = 0. This max-
imum value of 8 is acceptable if the corresponding fail-rate
Py is at an acceptably low level. This will be the case when
the underlying mathematical model has enough strength, and
when the proper ambiguity parametrization has been chosen.
In this case, one will accept dp as the integer outcome to
work with. However, in case that the fail-rate turns out to be
too large when 8 = 1 is chosen, one will not automatically
accept ap as the integer outcome. In this case, one has now
two ways to proceed: either one ignores the ambiguity res-
olution process altogether and simply uses the real-valued

float solution to work with, or one uses the principle of TA
estimation and sets the value of the aperture parameter at an
acceptably smaller value. With the first approach, one will
always be working with the real-valued float solution, even
though it is known that the parameters to be estimated are
integers, while with the second approach one uses the actual
data themselves to decide whether to use a or ag. The first
approach is model-driven and somewhat conservative, while
the second IA approach is data-driven. With the IA approach
one can still have an integer outcome with a fail-rate con-
trolled by the user.

5 Conclusions

In this contribution we introduced a new GNSS ambiguity
estimator with controllable fail-rate. This new estimator, re-
ferred to as the integer aperture bootstrap (IAB) estimator,
combines the advantages of integer bootstrapping and IA
estimation. Integer bootstrapping is known to be one of the
simplest methods for integer ambiguity estimation with close
to optimal performance. Its outcome is easy to compute due
to the absence of an integer search, and its performance is
close to optimal if the decorrelating Z-transformation of the
LAMBDA method is used. Moreover, the bootstrapped esti-
mator is the only integer estimator for which an exact and
easy-to-compute expression of its fail-rate can be given. A
disadvantage of the method is, however, that the user has
only a limited control over its fail-rate. Once the underlying
mathematical model is given, the user has no freedom left
in changing the value of the fail-rate. This disadvantage is
eliminated, however, with integer aperture estimation, where
the user is given the freedom to set the aperture of the pull-in
region so as to achieve a pre-specified failure-rate.

The [AB-estimator of the unknown integer ambiguity
vector a is defined as

drap=a+ Y (z—d)w,(a) , with . (a)

zezZn
1 ifaepSs.
— 10

it a¢pSs.
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where Sp . is the bootstrap pull-in regionand § (0 < g < 1)
is the aperture parameter. The IAB-estimator returns the float
solution a, if a # BSp, for all z € Z"; otherwise it returns
the integer bootstrapped solution ¢ . By setting the size of 8,
the user can control the fail-rate, i.e. the probability that dg
fails to be equal to the correct, but unknown integer ambiguity
vector a. Exact and analytical closed form expressions of the
fail-rate and the success-rate have been given for evaluating
these probabilities.

As with integer bootstrapping, the computation of the
IAB-estimator is straightforward, and one starts with the float
solution a and then computes the bootstrapped solution dp.
This result identifies the aperture pull-in region 855 4, for
which it needs to be verified whether or not the float solution
resides in it. This verification is equivalent to the verification
whether or not %(& —ag) € Spo. Thus from a and dg, one
forms the bootstrapped ambiguity residual €z = a — dg, up-
scales it to %E p and verifies whether this up-scaled version
still resides in Sp . This is done by using the same bootstrap-
ping procedure as before, but now applied to the input llgé B-
If the outcome is the zero vector, then a; 45 = dp, otherwise
ajap = a. The computation of the IAB-estimator thus essen-
tially consists of applying the bootstrapping procedure twice,
once to the float solution a and once to the upscaled residual

1v
Z€B.
B B
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