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Abstract

Real rectangular tensors arise from the strong ellipticity condition problem in
solid mechanics and the entanglement problem in quantum physics. In this paper,
we systematically study properties of singular values of a real rectangular tensor,
and give an algorithm to find the largest singular value of a nonnegative rectangular
tensor. Numerical results show that the algorithm is efficient.
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1. Introduction

Assume that M and N are two positive integers, and M, N ≥ 2. We call
B = (bi1···iM ), where bi1···iM ∈ <, for ik = 1, · · · , N , k = 1, · · · ,M , a real
Mth order N dimensional square tensor, or simply a real square tensor.
When M = 2, B is simply a real N ×N square matrix. This justifies the
word “square”. We say that B is symmetric if Bi1···iM is invariant under
any permutation of indices i1, · · · , iM . In the recent few years, eigenvalues
of such square tensors have been introduced [14, 10]. Nice properties such
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as the Perron-Frobenius theorem for eigenvalues of nonnegative square
tensors [2] have been established. Applications of eigenvalues of square
tensors include medical resonance imaging [1, 19], higher-order Markov
chains [12], positive definiteness of even-order multivariate forms in au-
tomatical control [13], and best-rank one approximation in data analysis
[18], etc.

Very recently, a certain class of “rectangular” tensors attracted atten-
tion of the researchers. They arise from the strong ellipticity condition
problem in solid mechanics [8, 9, 20, 23] and the entanglement problem
in quantum physics [5, 6, 21]. In [17], M-eigenvalues of such tensors are
introduced. Algorithms for finding the largest M-eigenvalues are discussed
in [11, 24].

M-eigenvalues are parallel to Z-eigenvalues for square tensors [1, 3, 10,
14, 15, 16, 18]. On the other hand, singular values of “non-square” tensors
have been introduced in [10]. However, little exploration on properties of
such singular values have been conducted.

In this paper, we systematically discuss properties of singular values of
such rectangular tensors.

In the next section, we formally define singular values, H-singular val-
ues and N-singular values for a real rectangular tensor and study their
properties. In Section 3, we study properties of singular values of a real
partially symmetric rectangular tensor. Some properties are different from
properties of eigenvalues of symmetric matrices. For example, we all know
that a real symmetric matrix has only real eigenvalues, and it is positive
definite if and only if all of its eigenvalues are positive. For a real even-
order partially symmetric rectangular tensor, we show that it is positive
definite if and only if all of its H-singular values are positive. This is
similar to the matrix case. But we also show that in a certain case, such
a positive definite partially symmetric tensor must have some N-singular
values, and the sum of such N-singular is a negative number. This shows
that singular values of a rectangular tensor have their own structure.

Then, in Section 4, we extend the Perron-Frobenius theorem to singular
values of nonnegative rectangular tensors. The crucial point is to define
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the irreducibility for rectangular tensors. We give an algorithm to find the
largest singular value of a nonnegative rectangular tensor, in Section 5.
Some numerical results are reported there. They show that our algorithm
is efficient.

2. Singular Values of a Real Rectangular Tensor

Assume that p, q, m and n are positive integers, and m,n ≥ 2. We call
A = (ai1···ipji···jq

), where ai1···ipji···jq
∈ <, for ik = 1, · · · ,m, k = 1, · · · , p,

and jk = 1, · · · , n, k = 1, · · · , q, a real (p, q)th order m × n dimensional
rectangular tensor, or simply a real rectangular tensor. When p = q =
1, A is simply a real m × n rectangular matrix. This justifies the word
“rectangular”.

Let

f(x, y) ≡ Axpyq ≡
m∑

i1,··· ,ip=1

n∑
j1,··· ,jq=1

ai1···ipj1···jq
xi1 · · · xipyj1 · · · yjq

.

When p = q = 1, this is simply a bilinear form of x and y.
For any vector x and any real number α, denote x[α] = [xα

1 , xα
2 , ..., xα

n]T .
Let Axp−1yq be a vector in <m such that

(Axp−1yq
)
i
=

m∑
i2,··· ,ip=1

n∑
j1,··· ,jq=1

aii2···ipji···jq
xi2 · · · xipyj1 · · · yjq

, i = 1, 2, ..., m.

Similarly, let Axpyq−1 be a vector in <n such that

(Axpyq−1)
j
=

m∑
i1,··· ,ip=1

n∑
j2,··· ,jq=1

ai1···ipjj2···jq
xi1 · · · xipyj2 · · · yjq

, j = 1, 2, ..., n.

Throughout this paper, we let M = p + q and N = m + n. Consider
{ Axp−1yq = λx[M−1]

Axpyq−1 = λy[M−1].
(1)

If λ ∈ C, x ∈ Cm\{0} and y ∈ Cn\{0} are solutions of (1), then we say that
λ is a singlular value of A, x and y are a left and a right eigenvectors
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of A, associated with the singular value λ. If λ ∈ <, x ∈ <m and y ∈ <n

are solutions of (1), then we say that λ is an H-singular value of A, x

and y are a left and a right H-eigenvectors of A, associated with the H-
singular value λ. If a singular value is not an H-singular value, we call it an
N-singular value of A. If p = q = 1, then this is just the usual definition
of singular values for a rectangular matrix. Hence, this definition extends
the classical concept of singular values of rectangular matrices to higher
order rectangular tensors. Here, we use the words “singular value”, “H-
singular value”, “N-singular value” parallel to the usage of “eigenvalue”,
“H-eigenvalue” and “N-singular value” for symmetric tensors [14]. When
M is even, our definition is the same as in [10]. When M is odd, our
definition is slightly different from that in [10], but parallel to the definition
of eigenvalues of square matrices [3].

Note that when p > 1, λ = 0, x = 0 and any nonzero y form a solution
of (1). Similarly, when q > 1, λ = 0, y = 0 and any nonzero x form a
solution of (1). In these cases, we say that 0 is a trivial value of A.

Let

z =

(
x

y

)
.

The system (1) can be regarded as a homogeneous polynomial of z ∈ <N ,
with λ as a parameter. Then the resultant of (1) is a one-dimensional
polynomial of λ. Denote it as φ(λ), and call it the characteristic poly-
nomial of A.

Theorem 1 Suppose that A is a real (p, q)th order m × n dimensional
rectangular tensor. We have the following conclusions on singular values
of A:

(a). If x and y are a left and a right eigenvectors of A, associated with
a singular value λ of A, then

f(x, y) = λ

p∑

i=1

xM
i = λ

q∑

j=1

yM
j . (2)

(b). When both p and q are odd, if λ is a singular value of A, then −λ
is also a singular value of A.
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(c). Any singular value of A is a root of the characteristic polynomial
φ. Any nonzero root of φ is a singular value of A.

(d). The number of singular values is at most N(M − 1)N−1.

Proof. By the first equation of (1), we have

f(x, y) = Axpyq = λ
(
x[M−1]

)>
x = λ

p∑

i=1

xM
i .

By the second equation of (1), we have

f(x, y) = Axpyq = λ
(
y[M−1]

)>
y = λ

q∑
j=1

yM
j .

We thus have conclusion (a).
Suppose that both p and q are odd. If λ is a singular value of A with x

and y as a left and a right eigenvectors. Then −λ is a singular value of A
with −x and y as a left and a right eigenvectors. This proves conclusion
(b).

According to the definition of the resultant [4, 7], (1) has a nonzero
solution (x, y) if and only if φ(λ) = 0. If x 6= 0 and y 6= 0, then λ is
a singular value of A. Otherwise, λ = 0 is a trivial value of A. The
conclusion (c) follows.

By the knowledge of resultants [4, 7], the degree of φ is at most N(M−
1)N−1. Hence, by (c), the conclusion (d) follows. ¤

3. Singular Values of a Real Partially Symmetric

Rectangular Tensor

Suppose that A = (ai1···ipji···jq
) is a real (p, q)th order m × n dimensional

rectangular tensor. We say thatA is a real partially symmetric rectangular
tensor, if ai1···ipji···jq

is invariant under any permutation of indices among
i1, · · · , ip, and any permutation of indices among j1, · · · , jq, i.e.,

aπ(i1···ip)σ(j1···jq) = ai1···ipji···jq
, π ∈ Sp, σ ∈ Sq,
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where Sr is the permutation group of r indices.
When p = q = 1, such a tensor A is simply an m× n rectangular ma-

trix. Hence, we call such a tensor a partially symmetric rectangular
tensor. When p = q = 2 and m = n = 2 or 3, the elasticity tensor is
such a tensor [8, 9, 17, 20, 22, 23]. When p = q = 2, such a partially
symmetric rectangular tensor is useful for the entanglement problem in
quantum physics [5, 6, 11, 21, 24].

When both p and q are even, if f(x, y) > 0 for all x ∈ <m, x 6= 0, y ∈
<n, y 6= 0, then we say that A is positive definite. When A is the elasticity
tensor, the strong ellipticity condition holds if and only if A is positive
definite [17]. Since the strong ellipticity condition plays an important
role in nonlinear elasticity and materials, positive definiteness of such a
partially symmetric tensor has a sound application background.

We now have the following theorem on H-singular values of A.

Theorem 2 Suppose that A is a real (p, q)th order m × n dimensional
partially symmetric rectangular tensor. We have the following conclusions
on H-singular values of A:

(a). If M is even, then H-singular values always exist.
(b). When both p and q are even, A is positive definite if and only if

all of its H-singular values are positive.

Proof. Consider the optimization problem

min{f(x, y) :

p∑
i=1

xM
i = 1,

q∑
j=1

yM
j = 1}. (3)

The objective function of (3) is continuous. When M is even, the feasi-
ble set of (3) is compact. Hence, when M is even, (3) has at least one
maximizer and one minimizer. Since the constraints of (3) satisfy the
linear independence constraint qualification, this minimizer or maximizer
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satisfies the following optimality conditions of (3):




Axp−1yq = λx[M−1]

Axpyq−1 = µy[M−1]

p∑
i=1

xM
i = 1

q∑
j=1

yM
j = 1,

(4)

where M
p λ and M

q µ are the optimal Lagrangian multipliers. By the first
and the third equations of (12), we have

f(x, y) = Axpyq = λ
(
x[M−1]

)>
x = λ

p∑
i=1

xM
i = λ.

By the second and the fourth equations of (12), we have

f(x, y) = Axpyq = λ
(
y[M−1]

)>
y = λ

q∑
j=1

yM
j = µ.

Hence λ = µ. i.e., λ, x and y satisfy (1). This proves (a).
When m and n are even, A is positive definite if and only if the optimal

objective function value of (3) is positive. Suppose that all the H-singular
values of A are positive. By the proof for (a), the optimal solution (x∗, y∗)
and λ∗, where M

p λ∗ and M
q λ∗ are optimal Lagrangian multipliers of (3),

satisfy (1) and λ∗ = f(x∗, y∗). This shows that λ∗ is an H-singular value
of A. Then λ∗ > 0. Hence the optimal objective function value of (3),
f(x∗, y∗) = λ∗ > 0. Hence, A is positive definite. This proves the “if”
part of (b).

On the other hand, suppose that A is positive definite. Let λ be an
H-singular value of A, x and y be a left and a right eigenvectors of A,

associated with λ. The f(x, y) > 0. Since x 6= 0 and y 6= 0,
p∑

i=1
xM

i > 0

and
q∑

j=1
yM

j > 0. By Theorem 1 (a), we have λ > 0. This proves the “only

if” part of (b). The proof of the theorem is completed. ¤
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Theorem 3 Suppose that A is a real (p, p)th order m × n dimensional
partially symmetric rectangular tensor. Then the sum of all the singular
values of A is zero. If further more p is even and A is positive definite,
then the sum of all the N-singular values of A is a negative number.

Proof. Consider
f(z) ≡ f(x, y) = Axpyp.

It is a homogeneous polynomial of z with degree M = 2p. There exist a
unique Mth order N dimensional symmetric square tensor B = (bi1···iN )
such that

f(z) ≡ BzM .

It is not difficult to see that the left side of (1) is 1
p∇f(z) = 2BzM−1. On

the other side, the right hand side of (1) is λz[M−1]. By [14], if z 6= 0 and
λ are solutions of

Bzm−1 = λz[M−1],

then λ is an eigenvalue of B. Then, in this case, by Theorem 1 of [14],
the sum of all the eigenvalues of B is (M − 1)N−1tr(B). By the definition
of B, bi··· ,i = 0 for i = 1, · · · , N , i.e., tr(B) = 0. Since the collection of all
the eigenvalues of B is the collection of all the singular and trivial values
of A, and trivial values are zeros, we have the the first conclusion. The
second conclusion follows from the first conclusion and Theorem 2 (b). ¤

The last conclusion of this theorem is very different from the matrix
case, as discussed in the introduction. It is not sure if this conclusion also
holds in the case p 6= q.

We may prove a Gerschgorin-type theorem for singular values of regular
tensors as for eigenvalues of symmetric tensors in (1). When m = n = 2,
a direct method for finding singular values can be established like in [17].
This is useful for checking strong ellipticity condition in plane [8, 9, 17,
20, 22, 23].

8



4. The Perron-Frobenius Theorem

In this section we extend the Perron-Frobenius theorem for eigenvalues of
nonnegative square tensors in [2] to singular values of nonnegative rect-
angular tensors. The crucial point is to define the irreducibility of rect-
angular tensors. The argument used in the following proof is parallel to
that in [2]. We proceed the proof for completeness.

Let Pk = {x ∈ <k : xi ≥ 0, i = 1, 2, ..., k} and int(Pk) = {x ∈ <k :
xi > 0, i = 1, 2, ..., k}. A vector x ∈ <k is called nonnegative if x ∈ Pk

and it is called strongly positive if x ∈ int(Pk). In this section, we denote
the zero vector in <k by θ.

Let A = (ai1···ipji···jq
) be a (p, q)th order m×n dimensional nonnegative

rectangular tensor, where p, q ≥ 1. Denote {ei}m
1 and {fi}n

1 the basis
of <m and <n, respectively, and let ep

i = ei ⊗ · · · ⊗ ei (p times) and
f q

j = fj ⊗ · · · ⊗ fj (q times).
For any j = 1, 2, ..., n, let A(·, f q

j ) = (ai1,··· ,ip,j,···j) be a pth order m
dimensional square tensor.

For any i = 1, 2, ..., m, let A(ep
i , ·) = (ai,··· ,i,j1,··· ,jq

) be a qth order n

dimensional square tensor.

Definition 1 A nonnegative rectangular tensor A is called irreducible if
all the square tensors A(·, f q

j ), j = 1, · · ·n, and A(ep
i , ·), i = 1, · · ·m, are

irreducible in the sense of [2].

Lemma 1 If A is irreducible, then all the tensors A(·, f q
j ), j = 1, · · ·n,

and A(ep
i , ·), i = 1, · · ·m, do not have eigenvalue 0.

Proof. Suppose it is not true. Then, either there exists j0 such
that A(·, f q

j0
) has eigenvalue 0 or there exists i0 such that A(ep

i0
, ·) has

eigenvalue 0. We suppose that A(·, f q
j0
) has eigenvalue 0, i.e, ∃x0 6= θ,

such that A(xp−1
0 , f q

j0
) = θ. If (x0)i > 0, ∀ i, then A(·, f q

j0
) = 0. So it is

reducible, which is a contradiction. Otherwise, there exist a nonempty
index set I and δ > 0, such that (x0)i = 0, ∀ i ∈ I, and (x0)i ≥ δ, ∀ i /∈ I.
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We have

δp−1Σi2,··· ,ip /∈Iai,i2,··· ,ip,j0,··· ,j0
≤ Σ1≤i2,··· ,ip≤mai,i2,··· ,ip,j0,··· ,j0(x0)i2 · · · (x0)ip

= (Axp−1
0 , fj0)i = 0, ∀ i.

It implies

ai1,i2,··· ,ip,j0,··· ,j0 = 0, ∀ i1 ∈ I, ∀ i2, · · · , ip, /∈ I.

Then A(·, f q
j0
) is reducible. This is a contradiction.

Similarly, we prove that A(ep
i0
, ·) cannot have eigenvalue 0. ¤

Lemma 2 If A is irreducible, then for any (x, y) ∈ (Pm\{θ})× (Pn\{θ}),
Axp−1yq 6= θ and Axpyq−1 6= θ.

Proof. Suppose Axp−1yq = θ, i.e., (Axp−1yq)i = 0, ∀ i. Since y 6= θ, ∃j0

and δ > 0 such that y ≥ δfj0, we have

0 = (Axp−1yq)i ≥ δq(A(xp−1, f q
j0
))i ≥ 0, ∀ i.

Namely,

A(xp−1, f q
j0
) = θ.

This means that x is an eigenvector of A(·, f q
j0
) with eigenvalue 0. Accord-

ing to Lemma 1, this is a contradiction. Similarly we prove Axpyq−1 6= θ.

¤
The following lemma is a version of Lemma 4.3 in [2].

Lemma 3 Let A be nonnegative and irreducible, and let (λ, (x, y)) ∈ R+×
(int(Pm) × int(Pn)) be a solution of (1). If (µ, (u, v)) ∈ R+ × ((Pm\θ) ×
(Pn\θ)) satisfies

Aup−1vq ≥ (or ≤) µuM−1, and Aupvq−1 ≥ (or ≤) µvM−1

then µ ≤ (or ≥ resp.) λ.
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Proof. Define t0 = max{s ≥ 0 |x − su ∈ Pm, y − sv ∈ Pn}. Since
(x, y) ∈ int(Pm)× int(Pn), t0 > 0. Also, we have

{
x− tu ≥ 0,
y − tv ≥ 0,

(5)

if and only if t ∈ [0, t0]. Thus




λx[M−1] = Axp−1yq ≥ tM−1
0 Aup−1vq ≥ tM−1

0 µuM−1,

λy[M−1] = Axpyq−1 ≥ tM−1
0 Aupvq−1 ≥ tM−1

0 µvM−1,

(6)

i.e., 



x ≥ t0(
µ
λ)

1
M−1u,

y ≥ t0(
µ
λ)

1
M−1v.

(7)

This implies µ ≤ λ. ¤

Theorem 4 Assume that the nonnegative tensor A is irreducible, then
there exists a solution (λ0, (x0, y0)) of the system (1), satisfying λ0 > 0
and (x0, y0) ∈ int(Pm)× int(Pn).

Moreover, If λ is a singular value with strongly positive left and right
eigenvectors, then λ = λ0. The strongly positive left and right eigenvectors
are unique up to a multiplicative constant.

Proof. Denote Dk = {z = (z1, · · · , zk) ∈ Pk |Σk
i=1zi = 1}. Provided

by Lemma 2, the map F on Dm ×Dn into itself:

F (ξ, η) = (
(Aξp−1ηq)

1
M−1

i

Σm
i=1(Aξp−1ηq)

1
M−1

i

,
(Aξpηq−1)

1
M−1

j

Σn
j=1(Aξpηq−1)

1
M−1

j

)

is well defined.
According to the Brouwer Fixed Point Theorem, there exists (ξ0, η0) ∈

Dm ×Dn such that {
Aξp−1

0 ηq
0 = µ0ξ

[M−1]
0

Aξp
0η

q−1
0 = ν0η

[M−1]
0 ,

(8)
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where {
µ0 = (Σm

i=1(Aξp−1
0 ηq

0)
1

M−1

i )M−1

ν0 = (Σn
j=1(Aξp

0η
q−1
0 )

1
M−1

j )M−1.
(9)

Define t = ( ν0

µ0
)

1
M , x0 = ξ0, y0 = tη0 and λ0 = (µp

0ν
q
0)

1
M . Then, (λ0, (x0, y0))

is a solution of (1).
Now we want to show: (x0, y0) ∈ int(Pm)× int(Pn). Suppose not, then

either there exists a proper nonempty index subset I ⊂ {1, · · · ,m} and
a nonempty subset J ⊂ {1, · · · , n}, such that (x0)i = 0, ∀ i /∈ I, (x0)i ≥
δ > 0,∀ i ∈ I and (y0)j ≥ δ > 0, ∀j ∈ J, or a proper nonempty index
subset J ⊂ {1, · · · , n} and a nonempty subset I ⊂ {1, · · · ,m}, such that
(y0)j = 0, ∀j /∈ J, (y0)j ≥ δ > 0,∀j ∈ J, and (x0)i ≥ δ, ∀ i ∈ I.

Since A(·, f q
j ),∀ j ∈ J, are all irreducible, if I is proper, ∀ i /∈ I, j ∈ J

we have

δM−1Σi2,··· ,ip∈Iai,i2··· ,ip,j,j,··· ,j
≤ δqΣ1≤i2···ip≤m,1≤j≤nai1,i2,··· ,ip,j,··· ,j(x0)i2 · · · (x0)ip

≤ Σ1≤i2,···ip≤m,1≤j1,··· ,jq≤nai,i2,··· ,ip,j1,··· ,jq
(x0)i2 · · · (x0)ip(y0)j1 · · · (y0)jq

= (Axp−1
0 yq

0)i = 0.

This contradicts the irreducibility of A(·, f q
j ), ∀ j ∈ J. Therefore I is not

proper. Similarly, we prove that J is not proper. This implies that x0 ∈
int(Pm) and y0 ∈ int(Pn).

The uniqueness of the positive singular value with strongly positive left
and right eigenvectors now follows from Lemma 3 directly. The unique-
ness up to a multiplicative constant of the strongly positive left and right
eigenvectors is proved in the same way as in [2] ¤

The following minimax characterization of the unique positive eigen-
value with strongly positive eigenvectors for nonnegative tensors in [2] is
also extended to the unique singular value with strongly positive left and
right eigenvectors for nonnegative rectangular tensors.
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Theorem 5 Assume that A is an irreducible nonnegative rectangular ten-
sor of order (p, q) and dimension m× n, then

min
(x,y)∈(Pm\{θ})×(Pn\{θ})

max
i,j

(
(Axp−1yq)i

xM−1
i

,
(Axpyq−1)j

yM−1
j

)

= λ0

= max
(x,y)∈(Pm\{θ})×(Pn\{θ})

min
i,j

(
(Axp−1yq)i

xM−1
i

,
(Axpyq−1)j

yM−1
j

),

where λ0 is the unique positive singular value corresponding to strongly
positive left and right eigenvectors.

Proof. On (Pm\{θ})× (Pn\{θ}) we define the function:

µ∗(x, y) = min
i,j

(
(Axp−1yq)i

xM−1
i

,
(Axpyq−1)j

yM−1
j

).

Since it is a positively 0-homogeneous function, it can be restricted on
(Dm)× (Dn). Let

r∗ := µ∗(x∗, y∗) = max
x∈∆m,y∈Dn

µ∗(x, y) = max
(x,y)∈(Pm\{θ})×(Pn\{θ})

µ∗(x, y), (10)

Let (λ0, (x0, y0)) ∈ R+ × (int(Pm) × int(Pn)) be the solution of (1). On
one hand we have

λ0 = µ∗(x0, y0) ≤ µ∗(x∗, y∗).

i.e.,
λ0 ≤ r∗. (11)

On the other hand, by the definition of µ∗(x, y), we have

r∗ = µ∗(x∗, y∗) = min
i,j

(
(Axp−1

∗ yq
∗)i

(x∗)M−1
i

,
(Axp

∗y
q−1
∗ )j

(y∗)M−1
j

).

This means
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{
Axp−1

∗ yq
∗ ≥ r∗x

[M−1]
∗ ,

Axp
∗y

q−1
∗ ≥ r∗y

[M−1]
∗ .

(12)

According to Lemma 3, we have r∗ ≤ λ0, and then

λ0 = r∗.

Similarly, we prove the other equality. ¤
As a consequence, we have

Theorem 6 Assume that A is an irreducible nonnegative rectangular ten-
sor, and λ0 is the positive singular value with strongly positive left and right
eigenvectors. Then |λ| ≤ λ0 for all singular values λ of A.

5. An Algorithm

In this section, based on Theorems 5 and 6, we give an algorithm for
calculating the largest singular value of an irreducible nonnegative rect-
angular tensor A. This algorithm is parallel to the one in [12] for finding
the largest eigenvalue of an irreducible nonnegative square tensor. We
first give some results which will be used later.

By a direct computation, we obtain the following lemma.

Lemma 4 Suppose that A is a nonnegative (p, q)th order m × n dimen-
sional rectangular tensor, x ∈ <m and y ∈ <n are two positive column
vectors and t is a positive number. Then, we have

(1) If x ≥ x̄ ≥ 0 and y ≥ ȳ ≥ 0, then Axp−1yq ≥ Ax̄p−1ȳq and Axpyq−1 ≥
Ax̄pȳq−1.

(2) A(tx)p−1(ty)q = tM−1Axp−1yq and A(tx)p(ty)q−1 = tM−1Axpyq−1.

Lemma 5 Suppose that a nonnegative (p, q)th order m × n dimensional
rectangular tensor A is irreducible. Then, for any positive vectors x >

0, x ∈ <m and y > 0, y ∈ <n, Axp−1yq and Axpyq−1 are positive vectors,
i.e.,

Axp−1yq > 0, Axpyq−1 > 0.
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Proof. Clearly, Axp−1yq ≥ 0. Suppose (Axp−1yq)i = 0, for some i.
Since y > 0, there exist j0 and δ > 0 such that y ≥ δfj0. So we have

0 = (Axp−1yq)i ≥ δq(A(xp−1, f q
j0
))i ≥ 0.

Hence, (A(xp−1, f q
j0
)
)
i
= 0. (13)

Since x > 0 and A(·, f q
j0
) is irreducible, by Lemma 2.2 [2], we have

A(xp−1, f q
j0
) > 0. This contradicts with (13). Therefore, Axp−1yq > 0.

Similarly, we can prove Axpyq−1 > 0. ¤
Now we give the main result of this section. Based on this result,

we will obtain an iterative method to calculate a lower bound and an
upper bound of the largest singular value of an irreducible nonnegative
rectangular tensor A.

Theorem 7 Suppose that a nonnegative (p, q)th order m×n dimensional
rectangular tensor A is irreducible. Let x(0) ∈ <m and y(0) ∈ <n are

two arbitrary positive vectors. Let ξ(0) = A (
x(0)

)p−1 (
y(0)

)q
and η(0) =

A (
x(0)

)p (
y(0)

)q−1
. Define

x(1) =
(ξ(0))[

1
M−1 ]

∥∥∥∥∥(ξ(0), η(0))[
1

M−1 ]
∥∥∥∥∥

, y(1) =
(η(0))[

1
M−1 ]

∥∥∥∥∥(ξ(0), η(0))[
1

M−1 ]
∥∥∥∥∥

,

ξ(1) = A (
x(1)

)p−1 (
y(1)

)q
, η(1) = A (

x(1)
)p (

y(1)
)q−1

,

...

x(k+1) =
(ξ(k))[

1
M−1 ]

∥∥∥∥∥(ξ(k), η(k))[
1

M−1 ]
∥∥∥∥∥

, y(k+1) =
(η(k))[

1
M−1 ]

∥∥∥∥∥(ξ(k), η(k))[
1

M−1 ]
∥∥∥∥∥

,

ξ(k+1) = A (
x(k+1)

)p−1 (
y(k+1)

)q
, η(k+1) = A (

x(k+1)
)p (

y(k+1)
)q−1

, k ≥ 1,
...
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and let

λk = min
x

(k)
i >0, y

(k)
j >0

{
ξ
(k)
i

(x
(k)
i )

M−1 ,
η
(k)
j

(y
(k)
j )

M−1

}
,

λ̄k = max
x

(k)
i >0, y

(k)
j >0

{
ξ
(k)
i

(x
(k)
i )

M−1 ,
η
(k)
j

(y
(k)
j )

M−1

}
, k = 1, 2, ...

Assume that λ0 is the unique positive singular value of A. Then,

λ1 ≤ λ2 ≤ · · · ≤ λ0 ≤ · · · ≤ λ̄2 ≤ λ̄1.

Proof. Clearly, by Theorem 5, for k = 1, 2, ...,

λk ≤ λ0 ≤ λ̄k.

We now prove for any k ≥ 1,

λk ≤ λk+1 and λ̄k+1 ≤ λ̄k.

For each k = 1, 2, ..., by the definition of λk and Lemma 5, we have

ξ(k) ≥ λk

(
x(k)

)[M−1]
> 0, η(k) ≥ λk

(
y(k)

)[M−1]
> 0.

Then,

(
ξ(k)

)[ 1
M−1 ] ≥ (λk)

1
M−1 x(k) > 0,

(
η(k)

)[ 1
M−1 ] ≥ (λk)

1
M−1 y(k) > 0.

So,

x(k+1) =
(ξ(k))[

1
M−1 ]

∥∥∥∥∥(ξ(k), η(k))[
1

M−1 ]
∥∥∥∥∥

≥ (λk)
1

M−1 x(k)∥∥∥∥∥(ξ(k), η(k))[
1

M−1 ]
∥∥∥∥∥

> 0,

y(k+1) =
(η(k))[

1
M−1 ]

∥∥∥∥∥(ξ(k), η(k))[
1

M−1 ]
∥∥∥∥∥

≥ (λk)
1

M−1 y(k)∥∥∥∥∥(ξ(k), η(k))[
1

M−1 ]
∥∥∥∥∥

> 0.
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Hence, by Lemma 4, we get

A
(
x(k+1)

)p−1 (
y(k+1)

)q

≥ λkA
(
x(k)

)p−1 (
y(k)

)q

∥∥∥∥
(
ξ(k), η(k)

)[ 1
M−1 ]

∥∥∥∥
M−1

=
λkξ

(k)

∥∥∥∥
(
ξ(k), η(k)

)[ 1
M−1 ]

∥∥∥∥
M−1

= λk

(
x(k+1)

)[M−1]

and

A
(
x(k+1)

)p (
y(k+1)

)q−1
≥ λkA

(
x(k)

)p (
y(k)

)q−1

∥∥∥∥
(
ξ(k), η(k)

)[ 1
M−1 ]

∥∥∥∥
M−1

=
λkη

(k)

∥∥∥∥
(
ξ(k), η(k)

)[ 1
M−1 ]

∥∥∥∥
M−1

= λk

(
y(k+1)

)[M−1]
,

which means for each i = 1, 2, ..., m, j = 1, 2, ..., n,

λk ≤

(
A (

x(k+1)
)p−1 (

y(k+1)
)q

)
i(

x
(k+1)
i

)M−1 , λk ≤

(
A (

x(k+1)
)p (

y(k+1)
)q−1

)
j(

y
(k+1)
j

)M−1 ,

Therefore, we obtain
λk ≤ λk+1.

Similarly, we can prove that

λ̄k+1 ≤ λ̄k.

This completes our proof. ¤
Based on Theorem 7, we state our algorithm as follows:
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Algorithm 1

Step 0. Choose x(0) > 0, x(0) ∈ <m and y(0) > 0, y(0) ∈ <n. Let ξ(0) =

A (
x(0)

)p−1 (
y(0)

)q
and η(0) = A (

x(0)
)p (

y(0)
)q−1

. Set k := 0.

Step 1. Compute

x(k+1) =

(
ξ(k)

)[ 1
M−1 ]

∥∥∥∥
(
ξ(k), η(k)

)[ 1
M−1 ]

∥∥∥∥
,

y(k+1) =

(
η(k)

)[ 1
M−1 ]

∥∥∥∥
(
ξ(k), η(k)

)[ 1
M−1 ]

∥∥∥∥
,

ξ(k+1) = A
(
x(k+1)

)p−1 (
y(k+1)

)q

,

η(k+1) = A
(
x(k+1)

)p (
y(k+1)

)q−1
.

Let

λk+1 = min
x

(k+1)
i >0, y

(k+1)
j >0

{
ξ
(k+1)
i

(x
(k+1)
i )

M−1 ,
η
(k+1)
j

(y
(k+1)
j )

M−1

}
,

λ̄k+1 = max
x

(k+1)
i >0, y

(k+1)
j >0

{
ξ
(k+1)
i

(x
(k+1)
i )

M−1 ,
η
(k+1)
j

(y
(k+1)
j )

M−1

}
.

Step 2. If λ̄k+1 = λk+1, stop. Otherwise, replace k by k + 1 and go to
Step 1.

For Algorithm 1, by Theorem 7, we obtain the following result.

Theorem 8 Suppose that a nonnegative (p, q)th order m×n dimensional
rectangular tensor A is irreducible. Assume that λ0 is the unique positive
singular value of A. Then, Algorithm 1 produces the value of λ0 in a finite
number of steps, or generates two convergent sequences {λk} and {λ̄k}.

18



Furthermore, let λ = limk→+∞ λk and λ̄ = limk→+∞ λ̄k. Then, λ and λ̄

are a lower bound and an upper bound of λ0, respectively. If λ = λ̄, then
λ0 = λ = λ̄.

Since {λk} is a monotonic increasing sequence and has an upper bound,
the limit exists. {λ̄k} is monotonic decreasing sequence and has a lower
bound, so the limit exists. Since {x(k)} and {y(k)} are two bounded se-
quences, {x(k)} and {y(k)} have convergent subsequences which converge
to a vector x and a vector y, respectively.

In the following, in order to show the viability of Algorithm 1, we used
Matlab 7.1 to test it some randomly generated rectangular tensors. For
these randomly generated tensors, the value of each entry is between 0 and
10. Throughout the computational experiments, x(0) = [1, 1, ..., 1]T ∈ <m

and y(0) = [1, 1, ..., 1]T ∈ <n. We terminated our iteration when λ̄k−λk ≤
10−7.

Our numerical results are reported in Table 1. In this table, (p, q) and
(m, n) specify the order and the dimension of the randomly generated
tensor, respectively. Ite denotes the number of iterations, λ̄ − λ and λ
denote the values of λ̄k−λk and 0.5(λ̄k +λk) at the final iteration, respec-

tively. NormX and NormY denote the values of ‖A(
x(k)

)p−1(
y(k)

)q −
λk

(
x(k)

)[M−1] ‖∞ and ‖A(
x(k)

)p(
y(k)

)q−1 − λk

(
y(k)

)[M−1] ‖∞ at the final
iteration, respectively. The results reported in Table 1 show that the pro-
posed algorithm is promising. The algorithm is able to produce the largest
singular values for all these randomly generated tensors.
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