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Abstract This paper presents the development of a genetic algorithm for 
determining a common linear machine sequence for multi-products with different 
operation sequences and facilities with a limited number of duplicate machine 
types available for a job. This work aims to minimize the total flow distance 
travelled by products, reduce the number of machines arranged in the final linear 
sequence, and decrease the total investment cost of the machines used in the final 
sequence. We assume that product flow runs only in the forward direction, either 
via in-sequence or bypass movement. We demonstrate the effectiveness of the 
proposed algorithm by solving a typical layout design problem taken from 
literature, and several randomly generated problems. Results indicate that the 
proposed algorithm serves as a practical decision support tool for resolving layout 
problems in manufacturing facilities.  
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1 Introduction 

Modern product lifecycles have become shorter in recent years given rapid 
technological development. Manufacturing companies have responded to this 
problem by enhancing their production processes, giving rise to the concept of 
multi-product flow lines in manufacturing systems. The application of this 
concept to multiple product manufacturing has become a challenge among 
researchers and enterprises. Multi-product flow lines enable the simultaneous 
production of different commodities in a single flow line setup, thereby 
maximizing the manufacturing process [1]. Machine layout or flow line design 
involves determining the relative positions of machines (i.e., the layout) in 
facilities where a given product is manufactured.  

Assembly cell layouts can be classified as a (a) unidirectional network 
loop layout, (b) linear single-row layout, (c) linear double-row layout, (d) circular 
layout, and (e) cluster layout [2,3]. A linear machine sequence is the most 
commonly used in production systems because of its simplicity and efficient flow 
structure [4,5], and because it lends itself to the arrangement of machines in a 
variety of flow configurations, such as a straight line, U-shaped line, serpentine 
line, or loop for a conveyor or automated guided vehicle system [6]. It presents the 
advantages of shorter flow distance, easier control of the production process, and 
easier material handling. It is also the most prevalent layout form in cellular 
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manufacturing systems and flexible manufacturing systems (FMSs) [7,5]. In this 
work, therefore, we choose a linear machine sequencing method. 
 

2 Literature review 

Many researchers have discussed the linear sequencing of machines for solving 
flow layout problems. Houshyar and McGinnis [8] introduced a heuristic for 
assigning facilities to locations for the purpose of minimizing the travel distance 
traversed during work progress in a straight track. The established heuristic 
exhibited better performance than did the modified and classical lower bound 
methods.  

The triangle assignment algorithm was used by Heragu and Kusiak [4] in 
solving the machine layout problems in an FMS. The computational time of the 
proposed algorithm was comparable to that of existing methods. The authors [9] 
also presented two efficient models, namely, a linear continuous and linear mixed 
integer, for facility layout problems. The models do not necessitate prior 
knowledge of site locations. The authors showed that the continuous models are 
more useful for solving facility layout problems than are other models presented 
in literature.  

Heragu and Alfa [3] experimentally analyzed simulated annealing-based 
algorithms, namely, a modified penalty algorithm, the simulated annealing 
algorithm, and a hybrid simulated annealing algorithm for single-row layout 
problems in facilities of unequal areas and for multi-row layout problems in 
facilities of equal areas. The authors concluded that the hybrid algorithm produces 
better quality solutions than do the first two algorithms, although the former 
involves slightly longer computational time.  

Kouvelis and Chiang [10] implemented a simulated annealing procedure to 
determine a flow line (or single-row layout) under the assumptions that the 
number of machines is fixed and backtrack movements are allowed. The authors 
aimed to determine a machine sequence with minimum total backtrack distance.  

Ho et al. [11] proposed two flow analysis methods for a multi-flow line 
layout design to realize shorter flow distances: The first method features a 
traditional line structure for analysis, whereas the second implements a network 
structure. The authors also developed a heuristic pattern-matching method for 
single-row layout problems in FMSs, in which a linear machine sequence is 
initially constructed for the product that entails the largest number of operations. 

Braglia [12] regarded the linear machine sequencing problem as a non-
polynomial hard combinatorial problem. The number of possible sequences grows 
exponentially because the use of duplicate machines is allowed. Moreover, the set 
of all feasible sequences is not merely a set of simple permutations of a fixed 
number of machines given that the sequences must satisfy the different operation 
sequences of all products. The author determined a linear machine sequence with  
minimum expected movement of the machine handling device located between 
machines in a machine cell. The expected movement is determined by the 
frequency of part displacements between machines.  

Wang et al. [13] formulated a model for minimizing the total material 
handling distance on a shop floor in both inter- and intra-cell facility layouts for 
cellular manufacturing systems. The authors used an improved simulated 
annealing algorithm to solve this problem. 

 Using a simulated annealing algorithm, Ho and Moodie [14] investigated 
a machine layout problem with a linear single-row flow line for an automated 
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manufacturing system. The authors also investigated the effect of flow line 
characteristics on machine layouts. They provided vital information on selecting 
appropriate flow line analysis methods and determining appropriate evaluation 
criteria for different layout problems.  

Chen et al. [15] addressed the problem of determining a common linear 
machine sequence for multi-products that have different operation sequences and 
facilities with a limited number of duplicate machine types. The authors intended 
to minimize the total flow distance travelled by products on this linear flow line 
by using a modified simulated annealing algorithm.  

Diponegoro and Sarker [16] presented a two-stage solution methodology 
that simplifies computation and generates better solutions for reducing travel 
distances in production processes that involve sets of identical machines. This 
problem is often formulated as a tertiary assignment problem because of its 
combinatorial nature.  

According to Hicks [17], layouts produced by a genetic algorithm-based 
optimization method significantly minimize material movement for a given work 
schedule in both greenfield and brownfield scenarios. A model for designing an 
FMS in one or multiple rows with genetic algorithms was discussed by Ficko et 
al. [18], who established the most favorable number of rows and the sequence of 
devices in an individual row by using genetic algorithms.  

Chrysostomos and Vlachos [1] used the linear programming model for 
minimal backward flow to determine the optimal linear machine sequence in a 
manufacturing cell. They applied a modified ACS algorithm to the conditions and 
parameters of the linear machine layout problem. To determine the optimal linear 
placement of facilities with varying dimensions on a straight line, Anjosa et al. 
[19] introduced a semi-definite programming approach for the one-dimensional 
space-allocation problem, also known as the single-row facility layout problem.  

Pillai et al. [20] identified a linear sequence that minimizes the total 
distance travelled by multiple items with different operation sequences. The 
authors regarded each type of machine available as limited, and adopted a 
simulated annealing algorithm in determining the best solution. Solimanpur et al. 
[21] formulated the single-row machine layout problem as a non-linear 0-1 
programming model, in which the distance between the machines is sequence 
dependent. They developed an ant colony algorithm to solve this problem. 

To minimize the total cost of material handling and maximize the 
requirements of adjacent resources, Gengui et al. [2] developed a multiple 
objective genetic algorithm approach with a local search method. On the basis of 
previously developed formulations, solution methodologies, and software 
packages, Singh et al. [22] discussed the current and future trends of research on 
facility layout problems. The authors observed a trend toward multi-objective 
approaches by developing facility layout software using meta-heuristics, such as 
simulated annealing, genetic algorithm, and concurrent engineering for facility 
layouts. 

 Andre and Amaral [23] proposed a mixed 0-1 linear program for the one-
dimensional facility layout problem to minimize the weighted sum of distances, 
while Teo and Ponnambalam [24] proposed a hybrid ACO/PSO heuristic to solve 
single-row layout problems. For apparel manufacturing, Lin [25] proposed a 
hierarchical order-based genetic algorithm to minimize the moving distance 
among cutting pieces in a U-shaped single-row machine layout.  

Ramazan et al. [26] and Jannat et al. [5] both considered the same two 
objectives in solving flow layout problems: minimizing material handling costs 
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and maximizing closeness rating scores. Ramazan et al. proposed a simulated 
annealing algorithm to identify the non-dominated solution (Pareto optimal) set, 
while Jannat et al. developed a genetic algorithm for the multi-objective facility 
layout problem and determined the optimal facility location for a particular 
problem.  

Satheesh Kumar et al. [27] employed an artificial immune system 
algorithm to minimize material handling costs both in single-row and loop layout 
problems in FMSs. Siva Kumar M et al. [28] developed a simple heuristic to 
determine the optimal linear sequence that minimizes the flow distance travelled 
by products. 

Despite the considerable effort directed toward solving flow layout 
problems, most of these studies focused on the optimization of a single parameter 
only—flow distance. In practice, however, the total number of machines in a 
layout and the total investment cost of machines are equally important factors. In 
this work, we aim to determine the linear sequence of machine arrangement that 
minimizes total flow distance in units; total number of machines in the final linear 
sequence; and total investment cost of machines.  
 

3 Problem definition 

The locations and number of machines in a linear machine sequence of a single-
row layout design are keys to determine the flow distance of multi-products and 
total investment cost of machines. In facilities with duplicate machines and 
multiple products, the single-row layout design is considered a non-polynomial 
hard problem [12].  

We present the following assumptions in the proposed method: 
a) The number of products, demand for products, machine type 

sequences, and individual costs of machines are known, along with the 
availability of duplicate machines.  

b) The products always enter the first machine to which they are assigned 
in the final linear machine sequence. 

c) The products’ flow distances extend to the end of the respective 
machine types of the products without affecting the preceding flow.  

d) The machines have sufficiently large capacities. 
e) Backtracking is prohibited. 

 

4 Mathematical model 

The total flow distance of a product in units (td) is determined using Eq. 1. The 
constraints are presented in Eqs. 2–6: 
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where 
 td  – total flow distance; 
 di  – ith product flow distance; 
 Lij+1 – ith product’s j+1th machine location in the final machine  

sequence; 
 Lij – ith product’s jth machine location in the final machine sequence 
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 np – number of products;  
 nmi – number of machines in the ith product machine sequence. 
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where 
nmk  – number of kth  machines available in the final linear machine 

sequence; 
ndmk  – number of duplicate kth  machine types available for use. 
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where 

tm – total number of machines available for use; 
nmt  – number of machine types; 
k  – index that represents machine type k =1,2,3,…nmt. 

 
                                         tmnms                                               (6) 

where 
nms  – total number of machines available in the final linear sequence. 

 
Equation 2 shows that the location of the j+1th machine should always be 

larger than the location of the jth machine in the linear machine sequence. 
Equation 3 indicates that the location of the j+1th machine in the individual 
product machine sequence should always be larger than the location of the first 
machine in the linear machine sequence. According to Eq. 4, the number of kth 
machines types available in the final linear machine sequence should be less than 
or equal to the number of duplicate kth machine types available for use. The total 
number of machines is equal to the sum of the duplicates of individual machine 
types; this total is given in Eq. 5. Equation 6 shows that the total number of 
machines in the linear sequence must be less than or equal to the total number of 
machines available for use, including the duplicate machines. 
 
4.2 Total number of machines in the final linear sequence 

The minimum number of machines in the final linear sequence (nms) of the 
single-row layout design reduces both flow distance and initial investment. This 
reduction can be expressed using 
 

[......])(bcountnms  ,   (7) 

where b[……] represents the final linear machine sequence. 
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4.3 Investment cost of machines 

Companies prefer to reduce not only their operation/manufacturing costs but also 
their initial investment. In the single-row layout design, the investment cost of 
machines is expressed by 


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
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k
kk nmctc

1
    (8) 

where 
tc – total investment cost of machines in the final linear sequence; 
ck – cost of the kth machine type. 

 
4.4 Average fitness factor 

The total flow distance in units, total number of machines in the final linear 
sequence, and total investment cost of machines are at different ranges or levels. 
Summing up the above-mentioned values of different levels will not produce the 
best result. We therefore apply the average fitness factor method [29] to derive 
values within the range of 0 to 1. The normalized values of total flow distance, 
total number of machines, and investment cost of machines are determined using 
Eqs. 9–11.  
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where 
ntdl  – normalized value of the total flow distance of multi- 
 products for the lth  sequence of products; 
nnmsl  – normalized value of the total number of machines in the 

final linear machine sequence for the lth sequence of 
products; 

ntcl  – normalized value of the total investment cost of  
machines for the lth sequence of products; 

tdmin and tdmax  – minimum and maximum values of the total flow distance  
for 1,2,3, …l number of sequences of products; 

nmsmin and       – minimum and maximum number of machines in the 
nmsmax   final linear sequence for 1,2,3, …l number of  

sequences of products; 
tcmin and tcmax  – minimum and maximum values of the total investment  

cost of machines for 1,2,3, …l number of sequences  
of products; 

tdl   – total flow distance of multi-products for the lth  
sequence of products; 

nmsl  – total number of machines in the final sequence of the  lth 

sequence of products; 
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tcl   – total investment on machines for the lth sequence of 
   products. 

 
The average fitness factor value is determined by Eq. 12. In the 

minimization problem, the maximum value of the average fitness factor is 
considered.  
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where 
ndmcl   – average fitness factor for the lth sequence of products. 
 
The corresponding linear machine sequence of the aforementioned 

maximum average fitness factor value is the optimum sequence among the l 
number of sequences of products. 

 
5 Genetic algorithm 

The basic concept of genetic algorithms is explained in Gengui et al. [2]. In the 
present work, the product numbers are considered as genes, the product sequences 
are regarded as chromosomes, and the number of products is viewed as 
chromosome length. The general schematic of the genetic algorithm proposed in 
the current paper is shown in Fig. 1.  

The proposed algorithm yields consistent solutions with minimum total 
flow distance, minimum number of machines, and minimum total investment cost 
of machines with acceptable computational time. A detailed numerical illustration 
is provided in the succeeding section. 
 
6 Numerical illustration 

The following example problem is considered to illustrate the effectiveness of the 
proposed genetic algorithm. Table 1 shows the number of machine types (M.No.), 
their availability, and their individual costs.  

The product number (P.No.), individual product’s machine type sequences, 
and demand for the product in units (flow distance) are listed in Table 2. 

The product numbers (e.g., 1, 2, 3, 4, 5, 6) are genes, whereas the product 
sequences (e.g., 1-3-4-5-2-6) are chromosomes. The chromosome length is the 
number of products involved in the problem. The roulette wheel selection is used 
for the selection of reproduction. The single-point cross-over technique is adopted 
for the search of new strings in the search space. After many trials, the cross-over 
and mutation probabilities considered are 0.5 and 0.02, respectively [30]. The 
complete replacement policy is implemented because it yields better results [30].   

The C program developed for this purpose terminates automatically when 
no further change occurs in the previously derived best solutions, and it operates 
for an additional 50 iterations to ascertain the best solution obtained in continuous 
mode. The number of iterations required (e.g., 1,000) may be incorporated into the 
developed program. Table 3 shows the initial population and Fig. 2 presents the 
flow chart of chromosome evaluation. The detailed procedure for calculating the 
final machine sequence for product sequence 1-3-4-5-2-6 is presented in Table 4. 
The flow distance and total investment cost of machines for the aforementioned 
product sequence are listed in Tables 5 and 6, respectively. The final machine 
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sequence, total investment cost of machines, total number of machines, and total 
flow distance of the individual chromosomes are presented in Table 7. 

The calculated values of total flow distance in units, total number of 
machines in the final linear sequence, and total investment cost of machines are at 
different levels. To obtain the same level for all three, we introduce an average 
fitness factor method (Table 8) [25]. The fitness function is considered the sum of 
all the normalized values of Z1, Z2, and Z3, and the new fitness values are 
calculated on the basis of the expression given below. Equation 14 is used to 
determine the probability of the chromosomes. The probability and cumulative 
probability of the individual chromosomes are listed in Table 8. 
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where  

nZ1, nZ2, and nZ3  –normalized objective values of Z1, Z2, and Z3;  
f(x)    –fitness value; 
nf(x)    –new fitness value;  
Pro    –probability;  
cum_pro   –cumulative probability.  
 
We generate a random number (rsrp) for each chromosome to select the 

reproduction process. From Table 8, we choose the chromosomes that correspond 
to the cumulative probability value, which is the next highest value after rsrp. 
Table 9 lists the chromosomes selected for reproduction. The cross-over 
probability (p_cro) is assumed to be 0.6, and a random number (rco) is generated 
for each chromosome selected for reproduction. The chromosome is chosen for 
cross-over operation only if rco is less than or equal to p_cro.  
 A random number (rcp) is generated within the number of products (np) 
for each chromosome selected for cross-over. The genes after and before the 
cutting point (rcp) are interchanged and presented in Table 10. 

To avoid local minima, mutation is carried out using the genetic algorithm. 
A value of 0.02 is assumed as the mutation probability (p_mut), and a random 
number (rm) is generated for each gene of all the chromosomes. If rm is less than 
or equal to p_mut, then the corresponding gene is mutated with a neighbor gene 
(Table 11). 

A complete replacement strategy is assumed, which replaces the initial 
population with the mutated chromosomes. Table 12 shows the chromosomes 
generated after the first iteration. The above-mentioned steps are repeated until a 
specific number of iterations is reached.  
 

7 Computational results and discussion 

We use the proposed algorithm to solve additional problems; the ones discussed in 
this paper are the first five problems solved by Pillai et al.  [20], Chen et al. [15], 
and Siva Kumar M et al. [28], as well as problems that are randomly generated. 
Input data, such as the number of products and their machine type sequences and 
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product demand, are listed in Appendix Table A1. The number of machine types 
and their duplicate numbers are listed in Appendix Table A2. The cost of 
individual machine types is listed in Appendix Table A3. The final linear machine 
sequence, product sequence, total flow distance, total machine cost, and total 
number of machines in the final linear sequence are presented in Table 13. 

#In Figs. 7–9, the Y axis value is the sum of flow distance (considered in 
1,000), investment cost of machines (considered in 100,000) and number of 
machines in the final machine sequence. 

The computational results of the proposed method (i.e., total flow distance, 
total investment cost of machines, and total number of machines in the final linear 
sequence) are compared with the findings of Siva Kumar M et al. [28] and Chen et 
al. [15]. The comparisons of the individual objective functions are illustrated in 
Figs. 3–5, which show that the proposed method is superior to the other two 
methods. In all the problems, the proposed method generates lower objective 
values. In the first two problems, the three methods derive equal objective values. 
In problem numbers 7 and 8, the method proposed by Siva Kumar M et al. [28] 
produces an infeasible solution. The comparison of the combined objectives of the 
above-mentioned methods is illustrated in Fig. 6, which shows that the proposed 
method produces a minimum objective value. Figures 7–9 demonstrate that the 
proposed method not only produces lower values of individual objective 
functions, but also yields minimum combined objective values compared with the 
other approaches. From these illustrations, we conclude that the proposed 
algorithm yields the best linear sequence of machines; it minimizes the total flow 
distance in units, total investment cost of machines, and total number of machines.  

The proposed algorithm yields minimum flow distance, minimum number 
of machines, and minimum investment cost of machines because of the following 
reasons: 

a) Machines are assigned not on the basis of the descending order of the flow 
distance of a product’s sequence.  

b) The number of machines used in every machine type in the final linear 
machine sequence is reduced.  

c) The unassigned machine types are incorporated at the front or back flow of 
the existing machine sequence, depending on availability. 

d) If one of the machine types is assigned and it is available in the existing 
sequence, its availability in this sequence is verified even if the remaining 
machine types are unassigned. If any of the remaining machine types are 
unavailable in the existing sequence and are unassigned, then the machine 
type is incorporated at the back flow of the existing sequence without 
affecting the previous product machine type sequences.   

 
8 Conclusion 

The linear sequence of machines in a layout design determines the flow distance 
and investment cost of machines for multi-products of different operation 
sequences with a single or limited number of duplicate machines of each type. We 
proposed a genetic algorithm for constructing a linear sequence of machines that 
minimizes total flow distance in units, total investment cost of machines, and total 
number of machine types arranged in the final linear sequence. We conclude that 
the proposed method is highly efficient both in individual objective functions and 
in combined objective functions. Other than the problems discussed in literature, 
several other problems were generated and experimented on using the proposed 
algorithm. Compared with previous approaches, our method generates more 
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favorable results. As an extension to this work, we will consider the material 
handling costs of machine types. Optimization techniques such as PSO and Tabu 
Search may also be used to solve problems.  
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Table 1. Details of machine, its availability and cost. 
 

M.No. 1 2 3 4 5 6 7 8 9 
Availability 

of duplicate machines 
2 1 2 2 1 1 2 2 2 

Machine cost 
 (Rs.) 

24121 4546 25742 27159 26738 18822 21612 979 12257

 
 
Table 2. Details of machine sequence and demand of individual product. 
 

P.No. Machine sequence Demand in units 
1 4-6-8-1 8 
2 7-1-8-2 15 
3 5-6-9-8-3 32 
4 3-5-1-8 50 
5 5-9-8-1-7 42 
6 4-6-2-9 29 

 
 

Table 3. Initial population 
 

 
 
 
 
 
 
 
 

C.No. – Chromosome number Chromosomes 
1 1-3-4-5-2-6 
2 2-3-1-5-6-4 
3 2-3-5-4-6-1 
4 2-6-3-4-5-1 
5 3-4-1-5-6-2 
6 6-1-2-3-4-5 
7 2-3-1-6-5-4 
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Table 4. Final machine sequence for the product sequence 1-3-4-5-2-6.  
 

P 
No. 

Product’s 
machines 
sequence 

Machine types 1 2 3 4 5 6 7 8 9 Machine type numbers 
Nos. of duplicate machine types available 2 1 2 2 1 1 2 2 2 Available machines type in stock 

Machines available in stock after 
assignment 

Existing machine sequence Remarks 

1 4 6 8 1  1 1 2 1 1 0 2 1 2 4 6 8 1            
All machine types are available in stock 

ie. Mtn[mno] <> 0 

3 5 6 9 8 3 1 1 2 1 0 0 2 1 2 5 4 6 8 1           

Machine 5 is available in stock. Add this 
machine in front of the existing sequence. 
Machine 6 is unavailable in stock. Hence, 

search the machine 6 in existing 
sequence. It is available in the existing 
sequence and take the next machine 9. 

   9 8 3 1 1 1 1 0 0 2 0 1 5 4 6 8 1 9 8 3        

Machine 9 is unavailable in existing 
sequence after machine 6 but available in 
stock. Hence, add it at the end of existing 
sequence. Similarly, add machine 8 and 3 
at the end of existing sequence since, it is 

available in stock. 

4 3 5 1 8  1 1 0 1 0 0 2 0 1 3 5 4 6 8 1 9 8 3       

Machine 3 is available in stock. But 
machine 5 is unavailable in stock and 

available in existing sequence. Similarly, 
machine 1 and 8 are also available in the 

existing sequence after machine 5. 

5 5 9 8 1 7 1 1 0 1 0 0 2 0 1 3 5 4 6 8 1 9 8 3       

Machine 5 is unavailable in stock. But 
available in the existing sequence. 
Similarly, machine 9 and 8 are also 

available in the existing sequence after 
machine 5. 
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    1 7 0 1 0 1 0 0 1 0 1 3 5 4 6 8 1 9 8 3 1 7     

Machine 1 is not available in the existing 
sequence after machines 9 and 8. But 

machines 1 and 7 are available in stock. 
Add these machines at the end of existing 

sequence. 

2 7 1 8 2  0 1 0 1 0 0 0 0 1 7 3 5 4 6 8 1 9 8 3 1 7    
Machine 7 is available in stock. Add the 

machine 7 in front of the existing 
sequence. 

  1 8 2  0 0 0 1 0 0 0 0 1 7 3 5 4 6 8 1 9 8 3 1 7 2   

Machines 1 and 8 are unavailable in 
stock. But available in the existing 
sequence. Machine 2 unavailable in 

existing sequence after machines 1 and 8, 
but available in stock, Hence add at the 

end of existing sequence. 

6 4 6 2 9  0 0 0 0 0 0 0 0 1 4 7 3 5 4 6 8 1 9 8 3 1 7 2  
Machine 4 is available in stock. Add the 

machine 4 in front of the existing 
sequence. 

  6 2 9  0 0 0 0 0 0 0 0 0 4 7 3 5 4 6 8 1 9 8 3 1 7 2 9 

Machines 6 and 2 are unavailable in 
stock. But available in the existing 

sequence. Machine 9 is unavailable after 
machines 6 and 2 in the existing sequence 
but available in stock, hence add machine 

9 at the end of existing sequence. 

 
 
 
 
 
 
 
 
 

 
Product number  

Machines available in stock after 
assignment 

 
Assigned machine before the existing machine 
sequence 

 
Machine type already available in the 
existing sequence 

  Assigned machine after the existing machine sequence 
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Table 5. Determination of flow distance for the final machine sequence of product sequence 1-3-4-5-2-6.   

 

P.No. 
Product’s 
machine 
sequence 

Final machine sequence 

Li1 Lif di fdi 

4 7 3 5 4 6 8 1 9 8 3 1 7 2 9
Location of final machine sequence 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
List of machines involved in final machine sequence for 

the individual product’s machine sequence 
1 4 6 8 1      4 6 8 1        5 8 8 24
2 7 1 8 2   7 3 5 4 6 8 1 9 8 3 1 7 2  2 14 15 180
3 5 6 9 8 3    5 4 6 8 1 9 8 3     4 11 32 224
4 3 5 1 8    3 5 4 6 8 1 9 8      3 10 50 350
5 5 9 8 1 7    5 4 6 8 1 9 8 3 1 7   4 13 42 378
6 4 6 2 9      4 6 8 1 9 8 3 1 7 2 9 5 15 29 290

Total flow distance 1446
   fdi – Flow distance of ith product 
 
 
Table 6. Determination of total investment cost of machines for the final machine sequence of product sequence 1-3-4-5-2-6. 

 
Machine type 1 2 3 4 5 6 7 8 9 Total 

investment 
cost of 

machines 
in Rs. 

No. of machine type available in final sequence 2 1 2 2 1 1 2 2 2 

Cost of machine type in Rs. 24121 4546 25742 27159 26738 18822 21612 979 12257

Investment cost of each machine types in Rs. 48242 4546 51484 54318 26738 18822 43224 1958 24514 2,73,846 
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Table 7. Evaluation result of chromosomes. 
 

C.No. Machine sequence 

Total 
investment 

cost of 
machines 

(Z1) 

Total number 
of machines 

(Z2) 

Total 
flow 

distance in 
units (Z3) 

1 4-7-3-5-4-6-8-1-9-8-3-1-7-2-9  273846 15 1446 
2 3-4-5-6-9-8-3-7-1-8-2-7-9  222566 13 1376 
3 4-3-5-6-9-8-3-7-1-8-2-7-9  222566 13 1363 
4 4-3-5-4-6-7-1-8-2-9-8-3-1-7  261589 14 1341 
5 7-1-4-3-5-6-9-8-3-1-8-7-2-9  246687 14 1327 
6 3-5-7-1-8-4-6-2-9-8-1-3-7  234430 13 1184 
7 3-4-5-6-9-8-3-7-1-8-2-9-7  222566 13 1389 

Minimum 222566 13 1184 
Maximum 273846 15 1446 

 
 

Table 8. Probability and cumulative probability of the chromosomes. 
 

C.No. nZ1 nZ2 nZ3 f(x) nf(x) Pro cum_pro 
1 0 0 0 0 1 0.18387 0.18387 
2 1 1 0.267176 2.267176 0.711716 0.130863 0.314733
3 1 1 0.316794 2.316794 0.706439 0.129893 0.444625
4 0.239021 0.5 0.400763 1.139784 0.842849 0.154974 0.599599
5 0.529622 0.5 0.454198 1.48382 0.800457 0.14718 0.746779
6 0.768643 1 1 2.768643 0.660145 0.121381 0.868159
7 1 1 0.217557 2.217557 0.717033 0.131841 1 

nZ1, nZ2 and nZ3 – normalized objective values of Z1, Z2 and Z3; f(x) – fitness 
value; nf(x) – new fitness value; Pro – probability; cum_pro – cumulative 
probability   
 
Table 9. Selected chromosomes for reproduction. 

 

C.No. rsrp O.C.No. R.C.No. 
Selected  Chromosomes  

for reproduction 
1 0.6300 5 1' 3-4-1-5-6-2 
2 0.4100 3 2' 2-3-5-4-6-1 
3 0.1250 1 3' 1-3-4-5-2-6 
4 0.8300 6 4' 6-1-2-3-4-5 
5 0.260 2 5' 2-3-1-5-6-4 
6 0.7300 6 6' 6-1-2-3-4-5 
7 0.3250 3 7' 2-3-5-4-6-1 

rsrp – random number for selection for reproduction; O.C.No. – old chromosome 
number; R.C.No. – selected chromosomes for reproduction 
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Table 10. Chromosomes before and after cross over. 
 

R.C.No. 
Chromosomes 
before cross 

over 
rco Selected rcp 

Chromosomes 
after cross 

over 
C.C.No. 

1' 3-4-1-5-6-2 0.32 Yes 4 6-2-3-4-1-5 1’’ 
2' 2-3-5-4-6-1 0.76 No  2-3-5-4-6-1 2’’ 
3' 1-3-4-5-2-6 0.08 Yes 1 3-4-5-2-6-1 3’’ 
4' 6-1-2-3-4-5 0.019 Yes 2 2-3-4-5-6-1 4’’ 
5' 2-3-1-5-6-4 0.89 No  2-3-1-5-6-4 5’’ 
6' 6-1-2-3-4-5 0.28 Yes 3 3-4-5-6-1-2 6’’ 
7' 2-3-5-4-6-1 0.92 No  2-3-5-4-6-1 7’’ 

rco – random number for cross over; rcp - cutting point; C.C.No. – chromosome 
number after cross over  
 
Table 11. Chromosomes before and after mutation. 
 

C.C. 
No. 

Chromosomes 
before 

mutation 
rm 

Chromosomes 
after mutation 

M.C. 
No. 

1’’ 6-2-3-4-1-5 0.31 0.49 0.74 0.92 0.84 0.04 6-2-3-4-1-5 1’’’ 
2’’ 2-3-5-4-6-1 0.1 0.43 0.21 0.85 0.012 0.54 2-3-5-4-1-6 2’’’ 
3’’ 3-4-5-2-6-1 0.01 0.56 0.67 0.89 0.005 0.45 4-3-5-2-1-6 3’’’ 
4’’ 2-3-4-5-6-1 0.008 0.003 0.61 0.07 0.09 0.12 3-4-2-5-6-1 4’’’ 
5’’ 2-3-1-5-6-4 0.4 0.21 0.006 0.32 0.007 0.38 2-3-5-1-4-6 5’’’ 
6’’ 3-4-5-6-1-2 0.05 0.003 0.002 0.07 0.94 0.12 3-4-6-5-1-2 6’’’ 
7’’ 2-3-5-4-6-1 0.1 0.43 0.21 0.85 0.012 0.54 2-3-5-4-1-6 7’’’ 

 rm – Random number for mutation; M.C.No. – Chromosome number after 
mutation  
 
Table 12. Chromosomes after first iteration / New population chromosomes. 

 

M.C. 
No. 

Chromosomes 
after mutation 

C.No.
Machine 
sequence 

Total 
Machine 

Cost 
(Z1) 

Total 
number of 
machines 

(Z2) 

Total 
flow 

distance 
(Z3) 

1’’’ 6-2-3-4-1-5 1 
4-3-5-7-1-8-4-
6-2-9-8-3-1-7 

261589 14 1160 

2’’’ 2-3-5-4-1-6 2 
4-3-5-6-9-8-3-

7-1-8-2-7-9 
222566 13 1363 

3’’’ 4-3-5-2-1-6 3 
4-7-3-5-1-8-6-
9-8-3-1-7-2-9 

246687 14 1300 

4’’’ 3-4-2-5-6-1 4 
4-7-1-3-5-6-9-
8-3-1-8-2-7-9 

246687 14 1413 

5’’’ 2-3-5-1-4-6 5 
4-3-4-5-6-9-8-
3-7-1-8-2-7-9 

249725 14 1376 

6’’’ 3-4-6-5-1-2 6 
7-1-4-3-5-6-9-
8-3-1-8-2-9-7 

246687 14 1367 

7’’’ 2-3-5-4-1-6 7 
4-3-5-6-9-8-3-

7-1-8-2-7-9 
222566 13 1363 
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Table 13. Computation results. 

Problem 
no. 

No. of 
machine 

types 

No. of 
products 

 
Method 

Total 
flow 

distance 
in units 

Total 
machine 
cost in 

Rs. 

Total no. 
of 

machines 
in the 

sequence 

 
Product’s 
sequence 

Optimal 
final 
linear 

sequence

1 14 4 

Proposed 475 73,567 14 1-3-2-4 

1-14-2-
3-4-6-8-
9-7-13-
5-10-11-

12 

Siva Kumar 
M et al 

475 73,567 14 1-3-2-4 

1-14-2-
3-4-6-8-
9-7-13-
5-10-11-

12 

Pillai et al + 
Chen et al 

475 73,567 14 1-3-2-4 

14-1-2-
3-4-6-8-
9-7-13-
5-10-11-

12 

2 10 5 

Proposed 12800 11,51,057 10 1-2-3-4-5
5-3-2-7-
1-8-9-6-

4-10 

Siva Kumar 
M et al 

12800 11,51,057 10 1-2-3-4-5
5-3-2-7-
1-8-9-6-

4-10 

Pillai et al 12800 11,51,057 10 1-5-3-4-2
5-3-2-7-
1-8-9-6-

4-10 

3 7 5 

Proposed 8800 1,01,000 8 1-4-3-2-5
4-1-3-2-
6-5-1-7 

Siva Kumar 
M et al 

9000 1,14,000 9 1-2-3-4-5
4-6-1-7-
1-3-2-6-

5 

Pillai et al 9000 1,14,000 9 1-2-3-4-5
4-6-1-7-
1-3-2-6-

5 

4 15 4 

Proposed 890 58,562 12 3-4-1-2 

2-10-12-
14-13-7-
11-15-5-

3-1-4 

Siva Kumar 
M et al 

890 58,562 12 3-4-1-2 

2-10-12-
14-13-7-
11-15-5-

3-1-4 

Chen et al 989 58,562 12 3-4-1-2 

2-10-12-
14-13-7-
11-15-5-

1-4-3 
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5 14 6 

Proposed 2388 2,96,406 14 

5-3-4-1-
6-2 

2-4-8-5-
3-11-13-
14-7-12-
9-1-10-6 

Siva Kumar 
M et al 

2388 2,96,406 14 

2-4-8-5-
3-11-13-
14-7-12-
9-1-10-6 

Chen et al 2939 2,96,406 14 

4-2-8-5-
3-11-13-
14-1-10-
7-12-9-6 

6 13 5 

Proposed 640 2,69,198 17 1-5-2-3-4

12-3-7-
1-11-4-
8-6-5-8-
2-10-9-
6-5-7-2 

Siva Kumar 
M et al 

776 3,14,687 19 5-4-1-3-2

4-8-6-1-
11-4-5-
8-2-12-
3-7-1-
10-9-5-
7-2-6 

Chen et al 694 2,69,198 17 5-4-1-3-2

12-3-7-
1-11-4-
8-6-5-8-
2-10-9-
5-7-2-6 

7 9 6 

Proposed 1080 2,34,430 13 
6-1-4-5-

2-3 

7-3-5-1-
8-4-6-2-
9-8-1-7-

3 
Siva Kumar 

M et al 
Infeasible solution 

Chen et al 1174 2,34,430 13 
4-5-3-6-

2-1 

3-5-7-1-
8-4-6-2-
9-8-1-7-

3 

8 7 7 

Proposed 558 1,86,514 13 
2-3-5-1-

4-6-7 

4-2-1-3-
5-7-1-2-
4-6-7-5-

6  
Siva Kumar 

M et al 
Infeasible solution 

Chen et al 606 2,06,368 14 
5-2-4-3-

7-6-1 

4-2-1-3-
5-4-6-7-
1-3-7-2-

5-6 
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Appendix  

Table A1. Operation sequences and product demand of example problems. 

Problem no Products Operation sequence Product demand 
1 

Pillai et al 
+ 

Chen et al 

1 2-3-4-6-8-9-7 20 
2 14-2-3-4-5-10-11-12 10 
3 2-4-6-8-9-13 15 
4 1-2-3-5-11-12 10 

2 
Pillai et al 

1 1-8-9-6-4 700 
2 5-3-2-7 600 
3 5-3-2-9 500 
4 3-7-6-4 400 
5 3-2-7-9-10 300 

3 
Pillai et al 

1 1-3-2-6-5 800 
2 4-6-1-7 400 
3 4-1-6-5 300 
4 4-3-2-5 200 
5 4-1-3-2 100 

4 
Chen et al 

1 14-13-7-15 34 
2 2-10-12-13 29 
3 11-15-5-3 94 
4 15-5-1-4 89 

5 
Chen et al 

1 4-5-3-9 69 
2 5-3-7-6 13 
3 13-7-12-9 113 
4 8-5-3-14 72 
5 11-13-14-7 131 
6 2-5-1-10 36 

6 

1 8-2-10-9-6  34 
2 4-8-6-5 2 
3 1-11-4-5 30 
4 12-3-7-1 36 
5 10-9-5-7-2 48 

7 
 

1 4-6-8-1 8 
2 7-1-8-2 15 
3 5-6-9-8-3 32 
4 3-5-1-8 50 
5 5-9-8-1-7 42 
6 4-6-2-9 29 

8 

1 1-3-5-7 12 
2 2-4-6-7 18 
3 3-5-7-1 15 
4 4-2-3-7 16 
5 7-2-5-6 20 
6 1-3-2-6 13 
7 5-4-7-6 14 
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Table A2. Machine types and its duplicates for the example problems. 

Problem 
No. 

Machines Types 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
2 1 1 1 1 1 1 1 1 1 1      
3 2 1 1 1 1 2 1         
4 1 1 1 2 1 2 2 2 2 2 1 2 1 1 1 
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
6 2 2 2 2 2 2 2 2 2 1 2 1 2   
7 2 1 2 2 1 1 2 2 2       
8 2 2 2 2 2 2 2         

 

Table A3. Machine types and its cost for the example literature problems. 

Machines 
Types 

Problem No. 
1 2 3 4 5 6 7 8 

1 8,788 84,565 10,000 8,788 21,011 20,831 24,121 12,315
2 6,589 74,325 15,000 6,589 28,752 12,380 4,546 14,445
3 3,512 59,874 16,000 3,512 26,354 22,658 25,742 19,854
4 6,541 39,998 12,000 6,541 17,655 24,658 27,159 16,547
5 3,254 47,775 11,000 3,254 21,357 17,230 26,738 15,487
6 9,874 22,225 13,000 9,874 16,554 16,660 18,822 13,221
7 6,547 14,411 14,000 6,547 11,357 12,557 21,612 11,315
8 8,541 15,455 8,541 30,699 6,088 979 
9 3,256 1,34,545 3,256 19,220 10,912 12,257 
10 1,111 6,57,884 1,111 12,632 27,943  
11 2,222 2,222 10,228 24,234  
12 3,333 3,333 24,998 8,132  
13 4,445 4,445 27,111 20,831  
14 5,554 5,554 28,478   
15  6,666   
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Fig. 1. General schematic diagram of genetic algorithm. 
 

 

Read the number of machine types (nm), number of duplicate 
machines in each type (mtn[]), number of products (np), number 
of machine types in each product (nmp[]), machine type 
sequence for each product (pseq[][]), distance of  each product 
(pd[]), machine cost (mc[]) and the product sequence (pno[]) 

Generation of p_size chromosomes and set itr = 1 

Evaluation Module 
Estimate objective and fitness value for each 
chromosome. Store best value (best combination of 
product sequence and their objective values) 

GA operators 
Reproduction () 
Cross over () 
Mutation () 

Yes 

No 

If itr<=nitr 

Reinitialize population and 
increment itr by 1 

Display the best product 
sequence and its objective 
values 
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Fig. 2. Evaluation of chromosome. 

 
 
 
 

Read the number of machine types (nm), number of duplicate 
machines in each type (mtn[]), number of products (np), number of 
machine types in each product (nmp[]), machine type sequence for 
each product (pseq[][]), distance of  each product (pd[]), machine 
cost (mc[]) and the product sequence (pno[]) 

For (J=1 to nmp[I]) 
     Mno=pseq[I][J] 
     B[k]=Mno 
     mtn[Mno]= mtn[Mno]-1

Assign Mno in front of B[K]     

Set I=1 

Yes 

If J<=nmp[I] 

If Mno in B[K]

Increment J by 1  

Increment I by 1    

Yes 

No 
If  mtn[Mno]<>0) 

Yes 

No 

Mno=pseq[I][J]  

Yes 

If  mtn[Mno]<>0) 

No 

Assign Mno at the end of B[K]

A

A

Infeasible 

No 

If  I<=np 

Set J=1, Mno=pseq[I][J]

Yes 

No 

Print the output B[K]      
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Fig. 3 Comparison of total flow distances 
 
 

 
 
Fig. 4 Comparison of total investment cost of machines 
 
 

 
 
Fig. 5 Comparison of total number of machines 
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Fig. 6 Comparison of combined objectives 
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#Fig. 7 Problem number versus combined values of number of machines, 
machine cost, and flow distances for the proposed method 
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#Fig. 8 Problem number versus combined values of number of machines, 
machine cost, and flow distances for the method of Siva Kumar M et al.  
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#Fig. 9 Problem number versus combined values of number of machines, 
machine cost, and flow distances for the method of Chen et al.  

 
 


