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Biological examinations of Glaucosomatid fish species have suggested that they could produce sound

via swimbladder vibration, using “sonic” muscles. However, there have been few reported instances of

it in the family. West Australian dhufish (Glaucosoma hebraicum) is an iconic teleost, endemic to

Western Australia. Dissection of G. hebraicum in this study identified the presence of “sonic” muscle

pairs in immature and sexually mature individuals. The muscle tissue originates in the otic region of

the skull with its insertion at the anterior of the swimbladder. Recordings of sounds were acquired from

two male G. hebraicum, at a range of 1 m, during capture. Calls comprised 1 to 14 swimbladder pulses

with spectral peak frequency of 154 6 45 Hz (n¼ 67 calls) and 3 dB bandwidth of 110 6 50 Hz. The

mean of all call maximum source levels was 126 dB re 1 lPa at 1 m with the highest level at 137 dB re

1 lPa at 1 m. The confirmation of sound production by G. hebraicum and the acoustic characteristics of

those sounds could be used to gain a better understanding of its ecology and, particularly, whether the

production of sound is associated with specific behaviors, such as reproduction.
VC 2013 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4818775]

PACS number(s): 43.30.Sf, 43.80.Ka, 43.64.Tk [MCH] Pages: 2701–2709

I. INTRODUCTION

Over 800 species of fish are known to produce sound

via a number of different evolved mechanisms (Kaatz,

2002). Their sounds are often associated with a particular

behavior, such as spawning, feeding, or disturbance (Winn,

1964; Myrberg and Spires, 1972; Fine et al., 1977;

Slabbekoorn et al., 2010). As sound propagates efficiently

underwater (Urick, 1983), recordings of fish calls can offer

an effective means of determining natural fish behavior and

provide valuable information on the location and timing of

associated behavior (Gannon, 2008;, Rountree et al., 2006).

Of particular note is the formation of spawning aggregations.

Such information could be relevant to management when

making decisions about the respective locations and timing

of spatial or temporal closures to fishing for vulnerable spe-

cies. The use of sound as a research tool for determining

such behavior is particularly advantageous under certain cir-

cumstances, e.g., in conditions of low visibility (turbid

waters and/or low light levels) or for shy species (Mackie

et al., 2009), when other sampling techniques are less suc-

cessful. However, it is first necessary to have an

understanding of the acoustic features of a species’ calls and

how they are produced (e.g., swimbladder vibration or strid-

ulation), to determine how best to characterize them.

The West Australian dhufish (Glaucosoma hebraicum;

Glaucosomatidae) is an iconic and heavily targeted species

that is endemic to coastal waters of Western Australia

(Fig. 1; McKay, 1997; St John and Syers; 2005; Wise et al.,
2007). It is a slow growing, sedentary, demersal species

inhabiting reefs and caves to depths of 200 m (Hutchins and

Swainston, 1986; St John and Syers, 2005; Hesp et al.,
2002). G. hebraicum is a large species which reaches 1.22 m

total length and 26 kg, and matures at approximately 25% of

maximum length (Hutchins and Swainston, 1986; Hesp

et al., 2002; Mackie et al., 2009). G. hebraicum display little

variation in reproductive seasonality along the west coast

between Augusta and Kalbarri, with ovarian development

commencing as water temperatures begin to increase from

their annual low, rather than in relation to a latitudinal gradi-

ent, and spawning occurring predominantly in austral

summer/autumn (Hesp et al., 2002; St John and Syers, 2005;

Lenanton et al., 2009; Mackie et al., 2009). Males have been

recorded as co-inhabiting small areas during spawning peri-

ods, often with a dominant male displaying a larger dorsal fil-

ament than other males, indicating they may exhibit lekking

behavior (Mackie et al., 2009; Hauser, 1996). At spawning
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times, groups of up to three fish are typical, up to ten fish to

a lesser extent, and occasionally tens or hundreds of fish,

have been reported (Mackie et al., 2009). Males have small

testes relative to other gonochoristic species, which implies

they are likely to exhibit pair spawning behavior.

Furthermore, spawning frequency has a positive relationship

with size and the larger males are thought to spawn most fre-

quently with the largest females (St John and Syers, 2005).

Together, these facts indicate that social cues, such as visual

or acoustic cues, may be important during spawning. Mackie

et al. (2009) also suggested that vocalization may be a form

of communication in this species.

Chiu et al. (2006) reported that biochemical assessment

of elevated levels of citrate synthase and L-lactate dehydro-

genase (enzymes associated with energy supply for muscle

contraction) in swimbladder muscles of the pearl perch

(Glaucosoma buergeri) suggested the ability of the muscle

to act as a “super-fast” twitch muscle (Rome, 2005). This

muscle may be involved in sound production. Mok et al.
(2011) detailed the mechanism for sound production in

G. buergeri demonstrating that the “sonic” muscles could

vibrate two different chambers within the swimbladder.

This study tested the hypothesis that, like its congener

G. buergeri, G. hebraicum contains the physical mechanisms

to produce sound. Once confirmed, direct field recordings

were acquired of G. hebraicum calls to describe the acoustic

characteristics of the calls, including source levels (SLs) and

the behaviors with which those calls may be associated.

II. METHODS

Six adults (purchased or donated to Curtin University)

and two juvenile G. hebraicum were dissected (the latter as

part of a Department of Fisheries research project). The total

length and sex of each fish were recorded. Examinations

were conducted to identify the presence and location of

potential sonic muscles used in sound production similar to

those in G. buergeri (Chiu et al., 2006) and determine

whether such muscles were present in sexually immature

and mature individuals (Fig. 2).

On 13 December 2011, sound recordings of two G.
hebraicum, captured using rod and line in 14 m of water near

Rottnest Island (Fig. 1; approximately E115�300, S32� 00),
were made using calibrated, omni-directional, HTI 90-U and

96-min hydrophones (HighTech Inc., Long Beach, MS). The

90-U hydrophone was attached to an autonomous sea-noise

logger developed at Curtin University, Western Australia

and the Defense Science and Technology Organisation, sam-

pling for five of every seven minutes at a rate of 11 kHz. The

HTI-min hydrophone was attached to an HR-5 “Jammin-

pro” recorder sampling continuously at 16 kHz. The fish

were raised to the surface over a period of 10 min to limit

swimbladder expansion, during which time a hydrophone

(HTI 96-min) was located approximately 1 m from the fish.

In each case, a snorkeler at the water’s surface capable of

free-diving to the seafloor ensured the range between fish

and hydrophone was kept as close to 1 m as possible.

The fish was briefly removed from the water so the sex

could be determined from the presence/absence of a dorsal

fin filament, which is only present in males (Mackie et al.,
2009), and the total length was measured to the nearest

1 mm. Each fish was then rapidly returned to the seabed

using a release weight, attached to the fishing line, which

reduces the effects of barotrauma (Bartholomew and

Bohnsack, 2005). The release weight comprises a weighted,

barbless hook which is passed through the upper jaw, from

above, so that the hook points downward. The weight and

fish are lowered to the desired depth, whereby a sharp tug on

FIG. 1. Map of Western Australia with a magnification of Rottnest Island. Distribution of G. hebraicum in WA shown by black line.
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the line releases the fish. The release weight is then

retrieved. During the release, the Centre for Marine Science

and Technology (CMST) logger (HTI 90-U) was simultane-

ously deployed to the seabed, as close as possible to 1 m

from the fish. Once again, a free-diving snorkeler maintained

the range between hydrophone and fish.

Removal of background noise and call energy level anal-

yses were conducted using methods outlined in McCauley

(2001) and Parsons et al. (2012) with a suite of MATLAB

programs developed at the CMST, including the characterisa-

tion of recorded underwater sounds (CHORUS) toolbox.

Spectrograms were produced using either a 1024 - or

256-sample Hanning window. Spectral peak frequency of

each call and pulse was determined from power spectral den-

sity plots. For comparison, the durations of the first and sec-

ond cycles of each pulse and the pulse duration were

determined from the waveforms of numerous calls, as per

Connaughton et al. (2000). The frequencies of each cycle and

the total duration were then compared to that of the spectral

peak frequency of the equivalent pulse.

Where recordings were taken at a range of 1 m, the trans-

mission loss was 0 dB and therefore received levels (RL) and

SL were effectively the same. However, maintaining a range

of 1 m between a fish on a line and a hydrophone was non-

trivial. Three standard deviations in the distribution of ranges

at which recordings were taken have been estimated at 0.5 m

to provide maximum and minimum limits in the possible SL

of each recorded call. For each maximum and minimum, the

transmission loss between fish and hydrophone was assumed

to be equal to spherical spreading (Cato, 1998). The RLs were

measured for all calls from time-averaged power spectrum

densities over the 50 Hz to 750 Hz bandwidth. Mean levels

and confidence limits were calculated in the linear domain.

Similar to Parsons et al. (2012), the call SLs are pre-

sented in three formats to aid comparison of the results

reported here with other past and future results. SLs have

been quoted in sound pressure level (SPL; dB re 1 lPa at

1 m), sound exposure level (SEL; dB re 1 lPa2 s at 1 m), and

peak–peak pressure (Pa) as defined in Southall et al. (2007).

III. RESULTS

Dissections revealed that in each adult and juvenile

G. hebraicum, the swimbladder was located at the posterior

end of the abdominal cavity, approximately halfway along

the body [Figs. 2(a) and 2(b)]. Bi-lateral sonic muscles

(Chiu et al., 2006; Mok et al., 2011), were observed in all

examined individuals (Fig. 2). These muscles had the same

characteristics as Baudelot’s ligament, originating in the otic

region of the skull, either side of the posterior part of the

brain casing, near the otoliths [Fig. 2(c), mark ii]. Two inser-

tion points were observed [Fig. 2(d), right image] before the

muscle joined, forming one striated muscle which extended

posteriorly to insert at the anterior of the swimbladder [Figs.

2(c), mark i and 2(d), left image]. The sonic muscles were

the only muscles observed to be attached to the swimblad-

der. In the adult G. hebraicum (range of 32.5–56.1 cm total

length), these muscles were striated, highly vascularized,

and deep red in color, while in the 11 and 13 cm juveniles,

the muscles were striated, but white.

The two G. hebraicum captured in the field were male

and were 45 and 32 cm total length and considered likely to

be sexually mature, based on comparison with the length at

sexual maturity (L50) of males of this species (Hesp et al.,
2002). Both captured individuals produced sounds while

being raised to the surface and when lowered back to the

seafloor (see Table I for acoustic characteristics). When

the fish was close to the surface or handled, vibrations of the

body were visibly detectable at the same time as these

sounds were being produced, confirming the G. hebraicum
as the sound source.

The mean of call maximum root-mean-square (rms) SLs

of the two fish was 126 dB re 1 lPa (n¼ 67, max¼ 137, min-

¼ 113) with upper and lower confidence limits of 130 and

116 dB re 1 lPa, respectively. Separately, the mean of the

maximum SLs of calls from the first (45 cm, n¼ 13) and sec-

ond (32 cm, n¼ 54) fish were 128 and 125 dB re 1 lPa,

respectively (Table I). The mean of the call maximum SELs

for both fish together, the 45 cm fish, and the 32 cm fish were

117, 110, and 118 dB re 1 lPa2 s, respectively. The differ-

ence between upper and lower confidence limits for the rms

SL was 8 and 17 dB re 1 lPa for the first and second fish,

FIG. 2. (a) Whole and (b) dissected 113 mm (left images) and 425 mm (right

images) male G. hebraicum. Magnification of likely sonic muscles con-

nected at the anterior of the swimbladder (i) and posterior of either side of

the brain case (ii) are shown (c). Structure of adult sonic muscle and vascu-

larized muscle are highlighted. (d) Lateral view of sonic muscle attachment

to swimbladder (left) and dorsal view of sonic muscle separating to two

insertion points around the otic region of the brain casing (right) in the adult

G. hebraicum.
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TABLE I. Characteristics of calls of differing numbers of pulses, produced by two male WA dhufish (G. hebraicum), including SLs in peak-to-peak pressure (Pa), SPL (dB re 1 lPa at 1 m), maximum SEL (dB re

1 lPa2 s at 1 m), duration (s), and spectral peak frequency (Hz). Numbers in parentheses in the fish column are the sample number. Elsewhere, numbers in parentheses represent the standard deviation, maximum and min-

imum values.

Call type Fish (n) Peak–peak pressure (Pa) Maximum SL (dB re 1 lPa) Maximum SEL (dB re 1 lPa2 s) Call duration (s) Spectral peak frequency (Hz)

All calls All (67) 10.8 (67.4, 35.2, 2.3) 126 (130, 116, 137, 113) 117 (122, 109, 126, 97) 0.38 (60.37, 2.6, 0.01) 154 (643.5, 251, 82)

1 (13) 0.39 (60.29, 0.85, 0.05) 128 (131, 123, 133,122) 110 (113, 104, 117, 97) 0.39 (60.29, 0.85, 0.05) 144 (638, 199, 95)

2 (54) 0.38 (60.39, 2.6, 0.02) 125 (130, 113, 137, 113) 118 (122, 112, 126, 108) 0.38 (60.39, 2.6, 0.02) 157 (645, 250, 82)

1 Pulse 1 (0) n/a n/a n/a n/a n/a

2 (9) 15 (69.3, 28.3, 5.4) 128 (133, 119, 133, 115) 120 (124, 113, 124, 112) 0.11 (60.12, 0.39, 0.08) 148 (645, 220, 98)

2 Pulse 1 (3) 6.13 (63.5, 9.2, 2.3) 130 (134, 123, 134, 122) 108 (113, 97, 113, 98) 0.11 (60.06, 0.15, 0.05) 113 (615.6, 122, 95)

2 (16) 11.4 (69.2, 35.2, 4.9) 125 (130, 121, 137, 115) 118 (122, 112, 126, 113) 0.21 (60.07, 0.38, 0.13) 161 (642, 221, 97)

3 Pulse 1 (5) 5.3 (62.4, 9.0, 3.6) 129 (132, 125, 132, 125) 112 (115, 106, 117, 108) 0.38 (60.26, 0.75, 0.17) 170 (632, 193, 121)

2 (9) 12.2 (65.3, 20.1, 6.8) 125 (129, 117, 131, 117) 119 (122, 114, 123115) 0.26 (60.05, 0.35, 0.20) 157 (637, 217, 103)

4 Pulse 1 (0) n/a n/a n/a n/a n/a

2 (6) 14.7 (66.8, 21.2, 4.5) 128 (131, 121, 132, 119) 120 (123, 113, 123, 110) 0.43 (60.08, 0.55, 0.35) 198 (52, 251, 117)

5 Pulse 1 (3) 4.5 (60.9, 5.4, 3.6) 127 (127, 126, 127, 126) 109 (111, 106, 111, 107) 0.54 (60.35, 0.79, 0.14) 148 (648, 199, 103)

2 (6) 7.8 (62.7, 12.6, 4.7) 120 (123, 113, 125, 113) 114 (116, 110, 116, 110) 0.57 (60.17, 0.93, 0.46) 134 (622, 166, 107)

6 Pulse 1 (0) 3.1 123 115 0.79 156

2 (6) 10.4 (64.8, 14.6, 4.8) 124 (128, 116, 130, 116) 118 (122, 112, 123, 111) 0.65 (60.13, 0.81, 0.51) 159 (641, 205, 127)

7 Pulse 1 (1) 2.5 122 108 0.85 141

2 (0) n/a n/a n/a n/a n/a

8 Pulse 1 (0) n/a n/a n/a n/a n/a

2 (0) 20.6 126 123 0.75 237

9 Pulse 1 (0) n/a n/a n/a n/a n/a

2 (0) 10 120 118 1.3 82

14 Pulse 1 (0) n/a n/a n/a n/a n/a

2 (0) 11.2 117 111 2.6 102
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respectively, and 9 and 10 dB re 1 lPa2 s for the SEL confi-

dence limits, respectively (Fig. 3). The ranges between maxi-

mum and minimum rms SL estimates were 11 and 24 dB re

1 lPa for the first and second fish, respectively, and the same

values for SELs were 20 and 18 dB re 1 lPa2 s, respectively

(Table I, Fig. 4). If these extreme ranges in SLs were due to

maximum differences in distance between fish and hydro-

phone (i.e., recordings of highest estimated SL were actually

taken at 0.5 m and those of the lowest taken at 1.5 m), the

range in rms SL for each fish could have been as low as 2

and 15 dB re 1 lPa and in SELs, 11 and 9 dB re 1 lPa2 s

(Table I, Fig. 3).

Similar to the estimated SLs, the distribution of spectral

peak frequencies were also broad (Fig. 4) and while the call

SLs of the larger, first fish, were higher than that of the sec-

ond fish overall, the spectral peak frequencies were lower.

The mean spectral peak frequency over all calls was 154 Hz

(643.5, max¼ 251, min¼ 82) with a mean 3 dB bandwidth

of 110 Hz (see Fig. 5 for spectrograms and waveforms of

example calls). For the 45 and 32 cm fish, this frequency was

144 and 157 Hz, respectively. In each call, bands of energy

were also observed at frequencies above the spectral peak,

similar to those in Figs. 5 and 6, at approximately 350 and

450 Hz.

The duration of cycles in the waveforms of 44 pulses

from 15 calls of the second fish were compared to the spec-

tral peak frequency of the respective pulse. In each case, the

frequency of the first cycle was similar to that of the second

cycle with an average difference of 13 Hz (approximately

6% of the cycle frequency). The frequency of both first and

second cycles related closely to the spectral peak frequency

of the respective pulse (Fig. 7).

Although calls contained between 1 and 14 pulses, 2

pulses were most common (Table I). For calls from both

fish, the mean of maximum rms SLs and SELs decreased

with calls of an increasing number of pulses (Fig. 8). This

decrease was similar for both fish and appeared to be more

prominent in the rms SL than the SEL (compare Fig. 8, left

with Fig. 8, right).

IV. DISCUSSION

This study has investigated the capability of G. hebraicum
to produce sound, by determining the biological mechanisms

and the recording of sounds produced by individuals during

capture. Dissections identified the presence of sonic muscles in

adults of both sexes and in juveniles. The majority of sonifer-

ous fish species produce sound associated with spawning

behavior, which may also be the case for G. hebriacum.

However, the fact that adults produced sound during capture

also indicates that individuals may make sound when dis-

tressed. Furthermore, similar sounds to those reported here

have been heard by the authors while observing juveniles

underwater, which may also indicate their use as a warning

signal.

The reported SLs of 126 dB re 1 lPa at 1 m for

G. hebraicum are lower than that of silver perch (Bairdiella
chrysoura; 135 dB re 1 lPa at 1 m; Sprague and Luczkovich,

2004) and Oyster toadfish (Opsanus tau; 132 dB re 1 lPa at

1 m; Barimo and Fine, 1998). Therefore, despite the large

FIG. 3. Residual SPLs around the rela-

tionship between SL and pulse number

plotted against the number of pulses in

each call for the 45 (filled circles) and

32 (empty circles) cm G. hebraicum.

Error bars show the maximum and

minimum possible SLs assuming 0. m

as three standard deviations in the

range between fish and hydrophone for

each call. The mean SL for each fish is

shown by the dashed line and the 95%

confidence limits shown by the dotted

lines (calculated in the linear domain).

FIG. 4. Distribution of maximum SLs

(left) and spectral peak frequencies (right)

of all calls from the 45 (black bars) and

32 (gray bars) cm G. hebraicum.
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body size of G. hebraicum, their calls are of comparatively

low level and are of similar intensity to those of the above

smaller species. This is most likely due to the different

method of sound production which appears to be specific to

the Glaucosomatid family (Mok et al., 2011). Large sciae-

nids, such as mulloway (Argyrosomus japonicus) or black

jewfish (Protonibea diacanthus), whose reported maximum

lengths are 1.81 and 1.50 m, respectively (Sasaki, 2001;

Silberschneider et al., 2009), can produce calls of mean SL

over 150 and up to 172 dB re 1 lPa at 1 m (Cato, 1980;

McCauley, 2001; Parsons, 2010; Locascio and Mann, 2011;

Parsons et al., 2012) which can propagate several hundred

meters (Parsons et al., 2009, 2012). Individual G. hebraicum
calls are more likely to be effective at ranges of up to around

100 m (assuming typical ambient noise levels of 80–90 dB re

1 lPa over the same bandwidth and spherical spreading as

the maximum transmission loss). Given the likely number

of calling fish, it is less probable that the calls are used as a

long-range advertisement and more likely that they are

involved in close-range mating behavior.

Calls from both fish displayed a broad range in SLs

(11 and 24 dB re 1 lPa range for rms SL for the two fish,

respectively) and peak frequencies (104 and169 Hz range,

respectively). A possible source of variation in the SLs is the

variation in range between fish and hydrophone. An estimate

of 60.5 m was made for three standard deviations in the dis-

tribution of distances at which measurements were taken.

This difference in source range would have a greatest

impact, contributing approximately 9.5 dB to variation in

SL, assuming spherical spreading as the only transmission

loss. The remaining SL variation is not unusual in the wild.

Parsons et al. (2012) determined 17 dB re 1 lPa confidence

FIG. 5. (Color online) Spectrogram of

a recording taken off Rottnest Island,

including two example G. hebraicum
calls, comprising two (left magnified

call) and seven (right magnified call)

swimbladder pulses. Frequency resolu-

tion in each spectrogram is 15 Hz.

Waveforms of each call are shown

with the waveform from individual

pulses from each call shown.

FIG. 6. Power spectral density for the seven pulse G. hebraicum call shown

in Fig. 5. Frequency resolution of 2 Hz (blue line) and 20 Hz (red line) are

shown, highlighting the main band of energy between approximately 125

and 300 Hz, with energy bands at around 350 and 450 Hz.
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limits in SLs of a single A. japonicus at various ranges, while

Lagardere and Mariani (2006) noted considerable differen-

ces in pressure amplitudes of consecutive pulses within sin-

gle calls of Argyrosomus regius. Such variation has been

noted in calls of other species as well (Nilsson, 2004). As

call SLs are related not only to fish size, but also muscle ten-

sion among other factors (Sprague, 2000), it is conceivable

that the fish is responsible for some of this variation in SL.

As muscle tension also relates to peak frequency (Sprague,

2000; Rome, 2005), it follows that some of the variation in

call frequency may also be attributed to differences in sonic

muscle tension applied by the fish. Other factors likely to

contribute to variations in estimated SL were the environ-

ment, changing fish depth, and surface reflections, not to

mention the changes in fish behavior during capture, re-

trieval, and release. Connaughton et al. (2000) noted the

relationship between the frequency of the second cycle in

the pulse pressure wave and the peak frequency of the call.

A similar relationship was observed in this study; however,

both the first and second cycle in the G. hebraicum calls

here were similar to the spectral peak frequency of the pulse

indicating a lack of damping compared with that of the

weakfish.

While this study only had a sample of two fish, there

were points of note with the difference in size between the

fish. Here, the rms SLs of calls from the larger fish were

greater than those of the smaller fish, while the spectral peak

frequencies were lower. In other species, it has been shown

that SL increases with size while peak frequency decreases

(Connaughton et al., 2000), thus the observed differences

were expected. In contrast, the maximum SELs in the larger

fish were lower than the smaller fish suggesting that the pulse

duration was longer (Parsons et al., 2012). This is in line with

the lower peak frequencies in calls of the larger fish.

As the number of pulses in G. hebraicum calls

increased, the maximum recorded SL decreased for calls of

FIG. 7. Relationship between calculated frequency (left) and ratio between calculated and spectral peak frequency (right) and the spectral peak frequency of

the first cycle (circles), second cycle (squares), and total duration (triangles) of individual pulses of calls where the peaks of cycles were free of surface

reflections.

FIG. 8. Distribution of maximum SLs (left) and SELs (right) against the number of pulses within the calls recorded from the 45 (filled circles) and 32 (empty

circles) cm G. hebraicum. Continuous and dashed lines illustrate the trend in SL with increasing numbers of pulses within a call for fish 1 and fish 2,

respectively.
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both fish. Therefore, calls became quieter as more swimblad-

der pulses were used. This suggests that an increase in call du-

ration causes muscle fatigue, therefore limiting the production

of sounds of multiple pulses, as suggested for other species

(Nilsson, 2004; Parsons, 2010; Mitchell et al., 2008). Amorim

et al. (2002) reported that sound production does not appear

to be a costly activity for O. tau at the whole body level, thus

it is likely that in the two G. hebraicum recorded, their

muscles did not possess the fitness to produce calls of many

pulses. Whether this is similar for other G. hebraicum and if

not, whether the differences provide information to the call re-

cipient about the caller requires testing.

Many fish species, despite low call SLs, increase their

call catchment area by calling en masse, numbering in the

thousands of fish (McCauley, 2001). However, the small

numbers of G. hebraicum groups observed by Mackie et al.
(2009) suggest that today a chorus of G. hebraicum involv-

ing groups of hundreds to thousands of fish, similar to those

of lekking species, where males group together first to attract

females (H€oglund and Alatalo, 1995), is unlikely. However,

between December and March each year, G. hebraicum
spawn along the Western Australian coast, most notably in

waters off Cape Naturaliste, southwestern Australia (Mackie

et al., 2009). Although exact locations of spawning may not

be known, commercial fishers report significant catches in

this area of spawning G. hebraicum (Mackie et al., 2009). It

is possible that the numbers of G. hebraicum aggregating in

this area are sufficient to produce a detectable chorus and

studies are underway to locate and record such an event.

V. CONCLUSIONS AND FUTURE WORK

The ability of G. hebraicum to produce sound has been

confirmed through an examination of physical characteristics

and recording of sound directly from individual fish. It is

necessary to determine the associated functions of calls to

gain an understanding of whether they are made in relation

to spawning or other behavior. There is the potential to use

these identified calls to locate vocalizing G. hebraicum in

the future, possibly to delimit sites where the fish aggregate

and/or spawn. To investigate sound-related behavior further,

an array of sea-noise loggers have been deployed at sites

around southwestern Australia, where commercial fishers

reportedly catch significant numbers of G. hebraicum, and

also at sites near Augusta where juvenile G. hebraicum have

been observed and sounds heard by researchers.
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