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Abstract 

We extend the discrete data latent class literature by explicitly defining a latent variable 

for class membership as a function of both observables and unobservables, thereby 

allowing the equations defining class membership and observed outcomes to be 

correlated. The procedure is then applied to modelling observed obesity outcomes, 

based upon an underlying ordered probit equation. 
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1. Introduction and Background 

Latent class models are increasingly popular across both the physical and social 

sciences. With regard to economics, their use is particularly widespread in the health 

economics literature (for example see (Deb and Trivedi 2002), (Bago D'Uva 2005a), 

(Bago D'Uva 2005b)). The approach involves probabilistically splitting the population 

into a set of unobserved homogeneous segments; within each class an appropriate 

econometric model applies. This yields a parsimonious way of introducing 

heterogeneity into a model. Ex post, it is then possible to assign individuals into their 

most likely class, typically defined by the outcome variable in each class. 

In the latent class literature however, there is an explicit assumption that 

processes driving class membership and the subsequent econometric model are 

independent. The refinement here is to explicitly specify a latent variable for class 

membership, as a function of both observables and unobservables, and via the latter 

allow the equations defining class membership and observed outcomes to be correlated. 

This framework bears some resemblance to the switching regressions model and the 

mover/stayer model (Greene 2008). However, here, the individual is not observed to be 

in either particular state (the true type of the individual is unobserved); this has to be 

identified using data.  We illustrate this by modelling discrete observations of female 

obesity levels.  

 

2. Econometric Framework 

Given our dependent variable, a useful starting point is the ordered probit (OP) model 

for the 1, ,j J  outcomes 

*

*

1 0 if , 1, , , ,j j J

y z u

y j y j J



   

 

       
 

With normally distributed disturbances (u), this implies 
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(1) 

where  is the standard normal cumulative distribution function (cdf);  are cut-off 

points; and z are covariates with unknown weights ; and where y is the observed BMI 

range. 

Herbert, Gerry et al. (2006) find evidence that that an obesity predisposing geno-

type is present in 10% of individuals. Given that about 25% of our sample are 

categorised as obese, this supports a hypothesis that factors other than genetics impact 

upon the probability of being obese. Individuals in the population are broadly 

segmented into two classes: consider two individuals in the same observed obesity 

range; one may be there due to time-invariant, or fixed, characteristics (such as 

genetics) while the other because of lifestyle or behavioural choices.  

Indeed, these two distinct sets of individuals are likely to have completely 

different reaction curves to alternative policy measures and therefore not taking this 

latent decomposition into account could result in biased estimates and erroneous policy 

conclusions. Let the latent variable  determine class membership, based on a function 

of a vector of observed characteristics x, with unknown weights  and a random 

disturbance term  such that 

  * .c x       

 

(2) 

Under normality, the probability of an individual belonging to class 1 (and one minus 

this for class 0) is given by 

       *Pr 1| Pr 0 | .c c x    x x   

*c
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Note that neither c
*
 nor , are observed. The latent class framework implies that 

conditional on being in class 0 or 1, outcomes are determined by the relevant OP model: 

that is, we have a different OP equation for each class. The overall probability of an 

outcome is simply the sum of those from the two latent classes, such that 
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(3) 

The assumption of independence of the unobservables driving the class membership and 

outcome equations in our model is clearly not justified in many applications. We 

therefore allow ε and u to be freely correlated, with respective correlation coefficients 

 and . The respective probabilities are now defined by a bivariate standard normal 

distribution. Therefore, for membership in class 1 , for example, the joint 

probabilities for the class membership and the obesity outcome are given by 
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(4) 

where  denotes the cumulative distribution function of the standardized 

bivariate normal distribution. We note, the specification of the correlation between the 
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unobservables in the equations adds a dimension to the familiar latent class model.  The 

class memberships and the observed outcomes are jointly determined by both the 

observables and the unobservables now added to the model. 

The log-likelihood function for the observed data for a random sample of  

individuals is constructed under the constraint that c is unobserved. Thus, the 

contribution to the log-likelihood for individual  is 
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The resulting contribution to the log likelihood is the sum of the logs of the joint 

probabilities: 
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 (6) 

The log-likelihood for the sample is obtained by summing the terms in (6) over the 

individuals in the sample. Combining terms for the OP model 
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(7) 

where  is the usual indicator function. Tests of 0c   are tests of independence of 

the respective error terms. 

As a further refinement to the basic OP specification, we also allow for the fact 

that (in our obesity example) strict adherence to the World Health Organisation (WHO) 

defined boundaries may be too strict: athletes may have relatively high BMI levels due 

to a high percentage of muscle mass, rather than fat, for example.  To account for this 

we adopt a generalized OP variant (Pudney and Shields 2000), where the boundary 
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parameters are functions of observed personal characteristics. To aid in identification, 

and to ensure proper ordering of the boundary parameters, they are specified as 
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where the w are variables (excluding a constant term) that affect the position of the 

boundary parameters with unknown weights . 

3. Data and Variable Selection 

Using the US National Health Interview Survey (2007), and focussing on females due to 

space constraints,
1
 we have a sample size of 11,244. Four WHO BMI categories are 

considered
2
: 43% are normal weight ; 30% are overweight 

; 22% are obese ; and 5% are morbidly obese 

. While using this kind of ordinal measure of BMI does not use all 

available information, it has two distinct advantages. First, height and weight of 

individuals are potentially sensitive personal issues such that there is likely to be mis-

reporting (in addition to recall bias and/or imperfect knowledge) of true height and 

weight levels resulting in measurement error in the (self-reported) BMI numerical 

values (see, for example, Gorber, Tremblay et al., 2007). It is not clear what the 

direction of this measurement error is. However, one can assume without significant 

loss of generality, that while the true BMI may not always be correctly “measured” 

(when self-reported, as is typically the case), the BMI category is likely to be correct. 

While this is more likely to be true within each category, the potential problem arising 

                                                             
1 Full results, including those for simpler nested sub-models, can be found in the Working Paper version 

at http://ideas.repec.org/p/ste/nystbu/08-18.html. 
2We drop underweight women (BMI < 18.5). 

  18.5,25BMI 

  25,30BMI    30,40BMI 

 40BMI

http://ideas.repec.org/p/ste/nystbu/08-18.html
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at the extremes in the form of mis-categorization is also taken into account in our 

analysis, since we allow the boundary parameters to vary with observed characteristics. 

The second advantage of using ordinal BMI levels is that policy makers are arguably 

more interested in movement across these categories, rather than marginal changes 

within them. For the purposes of this paper we have four categories: normal weight; 

overweight; obese; and morbidly obese. 

 

Table 1 presents the sample averages. The average woman in the sample is 

around 47 years old, likely to be White (58%), born in the US (81%), born between 

1954 and 1980 (50%), unmarried (54%), likely to own a house (61%) and having some 

college education.  

Here we choose latent class covariates akin to proxies for an individual's ‘fixed 

effect’ (Greene, 2008): where the individual was born; whether White, Black, Hispanic, 

or ’other’; and a set of broad time cohort dummies.
3
 Following the literature, the set of 

explanatory variables included in z are time-varying variables, which typically represent 

lifestyle choices of the individual. Finally, variables included in the boundary 

parameters w include variables that can potentially cause the boundaries to shift at the 

margin (here taken to be the number of times the respondent weight/strength trains per 

week, and a quadratic in age). The list of variables included in x, z and w are 

summarized in Table 1 as well.  

 

4. Results 

In such a bivariate latent class model, it is not obvious how to compute the posterior 

class probabilities independently from the choice probabilities. Indeed, it is in this way 

                                                             
3 Our approach is flexible enough to accommodate various forms of this, including null vectors in x for 

example. 
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that classes are usually labelled (Bago d'Uva, Jones et al. 2009). However, it is possible 

to compute (post-estimation), for each individual, the probabilities of them being in 

each BMI-category by class, using the expressions in equations (4) and (8). Averaging 

these over individuals’ yields the average outcome probabilities. We find in class 0 the 

probabilities are skewed away from being in either the overweight, obese, or morbidly 

obese categories; respective probabilities are 0.2295, 0.1522 and 0.0042. Thus we label 

this the inherently non-obese class). Compare this to 0.3516, 0.2871 and 0.0520 

respectively, the probabilities we find in class 1 (consequently, the inherently obese 

class). Additionally both 0 and 1 are highly statistically significant, indicating 

significant correlations between the unobservables in the two equations driving both 

class and observed BMI outcome. 

 The regression results are presented in Table 2. With regard to the latent class 

equation (Panel A), it is primarily determined by country of birth, race and a set of birth 

cohort variables. The OP estimates (Panel B) show that irrespective of class, given the 

other factors, age, income and wealth do not appear to affect BMI levels. In the 

inherently non-obese category, increased educational attainment is negatively associated 

with the probability of being morbidly obese – the partial effects (available upon 

request) indicate that for an inherently non-obese female an additional year of schooling 

is associated with a 0.9 percentage point increase in the probability of being of normal 

weight, and a 0.4 and 0.5 percentage point reduction in the probability of being 

overweight or obese. The results are qualitatively similar for females in the inherently 

obese category (the magnitude is smaller). An increase in the duration of exercise 

significantly increases the probability (by 4.9 percentage points) that a woman is of 

normal weight for inherently obese females; matched by a 5.2 percentage point 

reduction in the probability that an inherently obese woman is in the obese or morbidly 

obese category.  
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Finally, turning to the boundary equations, (Panel C), only the frequency of 

weight training seems to have a statistically significant effect. But this suggests that for 

females in the inherently non-obese category, strict interpretation of the WHO 

boundaries may be inappropriate for some individuals.  

 

5. Conclusions  

This paper extends the finite mixture/latent class model literature by explicitly defining 

a latent variable for class membership as a function of both observables and 

unobservables, thereby allowing the equations defining class membership and observed 

outcomes to be correlated. The procedure was illustrated with an application to an OP 

model with two classes. Indeed, the results show that there are significant correlations 

between these equations. With obvious generalisations, the model can easily be applied 

to more classes and/or to models other than OP. 
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Table 1: Descriptive Statistics. Female Sample 

 

  Variable Inclusion 

Description Mean Splitting 

Equation (x) 

OP Equations 

(z) 

Boundary 

Equations (w) 

Age/10 (scaled for convergence) 4.7354  × × 

 (1.8085)    

Age10 squared 25.6946  × × 

 (18.5138)    

Duration of strength (weight training) exercise 0.7131   × 

 (2.1068)    

Born in the US 0.8086 ×   

 (0.3934)    

Born in South America 0.1210 ×   

 (0.3262)    

Born in Europe or Russia 0.0195 ×   

 (0.1382)    

Hispanic 0.1845 ×   

 (0.3879)    

White 0.5789 ×   

 (0.4938)    

Black 0.1780 ×   

 (0.3825)    

Born between 1925 and 1942 0.1657 ×   

 (0.3718)    

Born between 1943 and 1953 0.1572 ×   

 (0.3640)    

Born between 1954 and 1965 0.2225 ×   

 (0.4160)    

Born between 1966 and 1980 0.2779 ×   

 (0.4480)    

Born between 1981 and 1995 0.1425 ×   

 (0.3496)    

Married 0.4662  ×  

 (0.4989)    

Income Category 0.9682  ×  

 (0.6465)    

Square of Income Category 1.3554  ×  

 (1.5155)    

Years of Schooling 14.5292  ×  

 (3.4713)    

Own house 0.6121  ×  

 (0.4873)    

Conducted moderate exercise in the last week 0.3171  ×  

 (0.4654)    
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Number of times vigorous exercise undertaken 

in the last week 

1.2445  ×  

(2.8057)    

Normal Weight 0.4294    

Overweight 0.3001    

Obese 0.2212    

Morbidly Obese 0.0494    

Sample Size 11244    
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Table 1: Parameter Estimates 

Panel A: Splitting Function Parameters  

Constant -0.72* 

 (0.37) 

Born in US 0.59*** 

 (0.18) 

Born in South America 0.21 

 (0.16) 

Born in Europe 0.34* 

 (0.20) 
Hispanic 0.56*** 

 (0.18) 

White 0.29** 

 (0.13) 

Black 0.83*** 

 (0.21) 

Born Between 1925 and 1942 0.41*** 

 (0.13) 

Born Between 1943 and 1953 0.56*** 

 (0.20) 

Born Between 1954 and 1965 0.22 

 (0.20) 

Born Between 1966 and 1980 0.05 

 (0.22) 

Born Between 1981 and 1995 -0.46* 

 (0.25) 

Panel B: OP Parameters Class 0 

(Inherently 

Non-obese) 

Class 1 

(Inherently 

Obese) 

AGE/10 1.05 0.85 

 (4.59) (2.82) 

(AGE/10)2
 -0.02 -0.44 

 (4.50) (2.48) 

Married 0.39*** -0.07 

 (0.13) (0.06) 
Income Category 0.30 0.05 

 (0.32) (0.15) 

(Income Category)2
 -0.20 -0.06 

 (0.14) (0.07) 

Years of Schooling -0.05*** -0.01* 

 (0.02) (0.01) 

Own Home -0.11 -0.08 

 (0.11) (0.05) 

Conducted Moderate Exercise in the Last Week 0.17 -0.19*** 

 (0.15) (0.07) 

Number of Times Vigorous Exercise Undertaken in the Last Week -0.04 -0.01 

 (0.03) (0.01) 

Panel C: Boundary Parameters Class 0 

(Inherently 

Non-obese) 

Class 1 

(Inherently 

Obese) 

 -0.64 -1.84*** 

 (0.62) (0.62) 

 -0.69 -0.19 

 (0.46) (0.35) 

 0.29 0.08 

 (0.43) (0.36) 

AGE/10 -0.01 -0.58 

 (2.21) (1.14) 

(AGE/10)2
 1.13 1.01 

 (2.39) (1.04) 

Duration of  Strength (Weight Training) Exercise 0.76** 0.03 
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 (0.32) (0.05) 

Correlation -0.72** -0.66*** 

 (0.29) (0.14) 

Average Outcome Probabilities   

Normal Weight 0.6141 0.3093 

Overweight 0.2295 0.3516 

Obese 0.1522 0.2871 

Morbidly Obese 0.0042 0.0520 

Log Likelihood -8370.3054 

Standard Errors in Parentheses 

Significance: ***: 1%; **: 5% *: 10% 
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