
Thermodynamics of pyrope - majorite, Mg Al Si O3 2 3 12 - 

Mg Si4 4O12, solid solution from atomistic model calculations 

 

V. L. VINOGRADa,*, B. WINKLERa, A. PUTNISb, H. KROLLb, V. MILMANc,  

d eJ. D. GALE  and O. B. FABRICHNAYA

 

a University of Frankfurt, Institute of Mineralogy, 

Senckenberanlage 30, 60054 Frankfurt a.M., Germany 

 

b University of Münster, Institute of Mineralogy, 

Correnssrasse 24, 48149, Münster, Germany 

 

c Accelrys, 334 Cambridge Science Park,  

Cambridge CB4 0WN, United Kingdom 

 

d Nanochemistry Research Institute, Curtin University of Technology,  

PO Box U1987, Perth 6845, Western Australia. 

 

e Max-Planck-Institute for Metal Research, 

Heisenbergstr 3, 70569 Stuttgart, Germany

 

 

 1



 

Abstract 

 

Static lattice energy calculations, based on empirical pair potentials have been performed 

for a large set of different structures with compositions between pyrope and majorite, and 

with different states of order of octahedral cations. The energies have been cluster 

expanded using pair and quaternary terms. The derived ordering constants have been 

used to constrain Monte Carlo simulations of temperature-dependent properties in the 

ranges of 1073 – 3673 K and 0 – 20 GPa. The free energies of mixing have been 

calculated using the method of thermodynamic integration. At zero pressure the 

cubic/tetragonal transition is predicted for pure majorite at 3300 K. The transition 

temperature decreases with the increase of the pyrope mole fraction. A miscibility gap 

associated with the transition starts to develop at about 2000 K and xmaj=0.8, and widens 

with the decrease in temperature and the increase in pressure. Activity-composition 

relations in the range of 0-20 GPa and 1073- 2673 K are described with the help of a 

high-order Redlich-Kister polynomial. 

 

Keywords: Pyrope-majorite s.s., Monte Carlo simulations, cubic/tetragonal transition, 

activity-composition relations. 
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1. Introduction 

 

Recent progress in the understanding of the chemical composition and thermo-physical 

properties of the Earth’s mantle has been achieved by comparing geophysical data on 

seismic velocities with the corresponding properties of theoretically calculated 

equilibrium mineral assemblages subjected to high pressures and temperatures, e.g. [1]. 

Pyrope- and majorite-rich garnet is thought to be an important phase of variable 

composition in the transition zone of the Earth’s mantle (410-650 km). Theoretical 

calculations show [2, 3] that the mole fraction of majorite, Mg Si O4 4 12, component in the 

aluminosilicate garnet increases gradually with depth. This corresponds to an increase of 

the site fractions of Mg and Si in the octahedral position of the garnet structure, which 

occurs via the coupled substitution 2Al3+ = Mg2+ 4+ + Si .  Any realistic model of mineral 

transformations in the transition zone requires knowledge of the thermodynamic activities 

of pyrope and majorite in the garnet solid solution. This study is concerned with atomistic 

modelling of thermodynamic mixing effects associated with this substitution. 

Due to practical challenges, few experimental data is available to constrain the 

thermodynamics of mixing in the pyrope-majorite binary system. Akaogi et al. [4] have 

determined heats of dissolution in molten 2PbO*B O2 3 of several cubic garnets with 

compositions in the range of 0 < xmaj <0.58. They have observed an approximately linear 

variation of the heat of dissolution in this compositional range. The dissolution enthalpy 

of the majorite end-member with the tetragonal structure has been measured by Yusa et 

al. [5]. Using a linear extrapolation of the data of Akaogi et al. [4], Yusa et al. [5] have 

estimated the enthalpy of the cubic/tetragonal transition in majorite to be 20.4 ± 5.0 

kJ/mol per 12 oxygen atoms. The combination of the data of Akaogi et al. [4] and Yusa et 

 3



al. [5] suggests a positive enthalpy of mixing at intermediate compositions with a value 

of about 12 ± 3.0 kJ/mol at xmaj=0.6. Phase equilibrium studies cannot be used to tightly 

constrain mixing properties due to large uncertainties in the pressure calibration and in 

the equilibrium composition of the garnet phase. The reported maximal solubility of 

majorite in garnet in an assemblage with wadsleyite and stishovite varies between 

different studies by up to 20 mole %. [6, 7]. However, the lack of thermodynamic data is 

partially compensated by an abundance of structural information. It is known that pure 

majorite at low temperatures crystallizes in the tetragonal space group I 41/a [8]. Pyrope-

rich compositions have a cubic structure with space group d3Ia . The cubic/tetragonal 

transition is caused by long-range ordering of Mg and Si in the octahedral site. Majorite 

samples synthesized at 1800 °C, 17 GPa [9] and at 2000 °C, 17.7 GPa [10] show nearly 

complete Mg/Si order. Heinemann et al. [11] have located the cubic/tetragonal transition 

at xmaj=0.8 in samples synthesized at 2000 °C and 19 GPa. However, Heinemann et al. 

[11] and Hatch and Ghose [12] noted that the true temperature of the order/disorder 

transition cannot be judged based on the synthesis temperatures. The tetragonal majorites 

are twinned, thereby suggesting that they have a higher symmetry precursor. Heinemann 

et al. [11] and Hatch and Ghose [12] argued, therefore, that the cubic/tetragonal transition 

occurs during the quench and thus the transition boundary lies somewhere below 1800 

°C. This assumption has been questioned by Wang et al. [13] who have observed tweed 

microstructure in majorite-rich samples synthesized at 2300 °C, just below the melting 

temperature, which is about 2600 °C for pure majorite [14]. Wang et al. [13] concluded 

that the transition occurs at about 2300 °C. The location of the transition boundary is a 

matter of an ongoing debate, e.g. [15], which has important implications for models of 

the rheological properties of the transition zone. If the stability field of tetragonal 
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majorite-rich garnets is intersected by the mantle geotherm, it is most likely that the 

elastic properties of majorite are altered due to the presence of mobile domain walls. For 

example, a drastic change in the viscoelasticity due to the cubic/tetragonal transition has 

recently been observed experimentally in Ca1-xSrxTiO3 perovskite [16]. Heinemann et al. 

[11] have noted that the increase of the pyrope mole fraction should enhance disorder on 

octahedral sites and move the transition to even lower temperatures, thus decreasing the 

likelihood for an intersection of the I 41/a stability field by the geotherm. In this sense, the 

pyrope-majorite system behaves then analogously to the plagioclase solid solution where 

an increase in the albite mole fraction leads to a rapid decrease of the 1/1 IC transition 

temperature [17]. Referring to the same analogy, one can expect that the mixing enthalpy 

has a kink at the transition line and that a miscibility gap, associated with the boundary, 

develops at some low temperature. Such a gap should be reflected in the thermodynamic 

activities of pyrope and majorite. The commonly used ‘two sublattice’ model [4, 5, and 

14] ignores this complication. In this model, the configurational entropy related to the 

octahedral atoms is assumed to be ideal for the Mg-rich and Si-rich sublattices, i.e. Al is 

allowed to mix randomly either with Mg in the Mg-rich sublattice or with Si in the Si-

rich sublattice. Being consistent with the complete long-range order in pure majorite, the 

‘two sublattice’ model offers a reasonable approximation for the configurational entropy 

of well ordered tetragonal samples. However, the application of this model to pyrope-rich 

cubic garnets cannot be easily justified: In the cubic phase Mg, Si and Al should be 

allowed to mix within the same sublattice. Since the composition of the majoritic garnet 

widely varies in different Mg-Al-Si-O mineral assemblages [3, 4], it is desirable to 

develop a model which is applicable to the whole compositional range and to both cubic 

and tetragonal garnets. Based on empirical static lattice energy and quantum mechanical 
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total energy calculations, as well as Monte Carlo modelling, this study aims to constrain 

the cubic/tetragonal transition and mixing properties along the pyrope – majorite binary 

in the pressure and temperature range relevant for the transition zone. 
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2. Simulation methodology 

 

The methodology we adopt in this study has been established in a series of recent 

simulation studies [18-24]. It consists of the following steps: 

 

– Development and testing of a set of empirical interatomic potentials.  

– Static lattice energy calculations (SLEC) on a set of structures with randomly varied 

cation configurations. 

– Finding a simple equation that describes the energies of the simulated structures. This 

procedure is known as the ‘cluster expansion’. 

– Using the cluster expansion model to obtain temperature-dependent properties by 

Monte Carlo simulation. 

– Calculation of the free energies of mixing and ordering by thermodynamic integration 

of the Monte Carlo results. 

– Refitting the free energies to simple polynomial equations useful for phase equilibrium 

calculations. 

 

2.1. The empirical potentials 

 

A set of empirical interatomic potentials has been developed in this study using the relax-

fitting procedure [25] as implemented in the GULP program [26]. The set involves two-

parameter Metal-Oxygen (M-O) Buckingham potentials, three-body O-M-O angle-

bending terms and the shell model for the oxygen polarisability [27-29]. Following 

Vinograd et al. [30] we have multiplied formal cation and anion charges by the common 

 7



factor 0.85, so that the charges of Mg, Al, Si and O have been reduced to the values of 

1.7, 2.55, 3.4 and -1.7, respectively. Such a reduction leads to a much better 

transferability of the potentials within mono- and complex oxides. The possible reason 

for this improvement is that in dense structures the formal charges on cations cause too 

strong a cation-cation repulsion. Vinograd et al. [30] noted that the cation-cation 

distances tend to be too long in the formal-charge models. The reduction of the charges 

by a small common factor removes this problem, but conveniently preserves the charge 

balance. The Buckingham Si(core)-O(shell) and O(core) – O(shell) potentials have been 

fitted to structural and elastic constants of stishovite, coesite and α-quartz. The Al – O 

potential has been fitted to the data on corundum and the three Al2SiO5 polymorphs. The 

Mg – O potential has been fitted to the data on periclase, spinel (MgAl2O4), forsterite, 

wadsleyite, ringwoodite, ilmenite, perovskite, pyrope and cordierite. The three-body 

terms have then been refitted to relevant subsets of the above-mentioned minerals. The 

elastic constants have been adopted from the compilation of Bass [31]. The structural 

constants have been taken from the online American Mineralogist Crystal Structures 

Database [32]. The potential set is reproduced in Table 1. Table 2 compares the predicted 

and observed structural and elastic parameters of majorite. The data for majorite have not 

been included in the fit, and therefore can be used as a test of the transferability and 

accuracy of the potentials. 

 

‘[Insert table 1 about here]’ 

‘[Insert table 2 about here]’ 

‘[Insert fig. 1 about here]’ 
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2.2. Quantum mechanical calculations as a test for the accuracy of the potentials 

 

While calculations based on empirical potentials are computationally very efficient, the 

predictive power of this approach requires an independent test. Here we compare selected 

SLEC results with parameter-free quantum mechanical calculations. For crystals, most 

quantum mechanical calculations are currently based on the density functional theory 

(DFT) [35-39]. While DFT itself is exact [35], practical calculations require an 

approximation for the treatment of the exchange and correlation energies.  Here we use 

the generalized gradient approximation (GGA), in the form suggested by Perdew, Burke 

and Ernzerhof [40]. Results based on GGA calculations are generally in better agreement 

with experiment than those obtained with the local density approximation, LDA [41-43]. 

The study of structures with large unit cells requires a computationally efficient 

approach. Here we use the computational scheme in which the charge density and 

electronic wavefunctions are expanded in a basis set of plane waves.  To avoid explicit 

description of tightly bound core electrons, the approach employs ‘ultrasoft’ 

pseudopotentials [44,45] which mimic the screening of the Coulomb potential of the 

nucleus by the core electrons.  

Both the academic and commercial versions of CASTEP were used in the present 

study for the DFT-GGA calculations. The cut-off energy for the plane wave expansion 

was 380 eV.   Calculations were performed for ordered tetragonal I 41/a majorite, using 

the primitive cell and a k-point sampling of 4x4x4. In all calculations, all symmetry 

independent structural parameters were varied simultaneously in the search for the 

ground state geometry. The parameters of the ‘relaxed’ (optimized) structure are given in 
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Table 2 and in Fig. 1 where they are compared to experimental values and to the results 

of the calculations based on empirical potentials. We also computed the ground state 

structures of cubic, P 4  32 majorite, d3Ia1  pyrope and the intermediate, Maj50, structure 

with 3Ia  symmetry in order to compare the differences of their total energies to those of 

the static lattice empirical-potential based calculations. Table 3 shows the differences in 

the lattice energy between the configurations of the same composition. The difference in 

energies of the cubic P 4  32 and tetragonal I 41 1/a majorites constitutes 0.105 eV (10.2 

kJ/mol) and 0.156 eV (15.0 kJ/mol) for the SLEC and ab initio calculations, respectively. 

The energy of the intermediate structure 3Ia  is larger than the energy of the equal 

mixture of pyrope and tetragonal, I 41/a, majorites by 4.9 kJ/mol (SLEC) and by 7.2 

kJ/mol (DFT GGA). These results show that the ab initio and SLEC results are consistent 

with each other, but also point to the limitations of these methods. The differences in the 

results could be due to limited transferability of the empirical potentials and due to the 

“underbonding” usually observed in DFT GGA calculations. DFT GGA calculations 

slightly overestimate lattice parameters, which is also seen in the present results for I 41/a 

majorite (a = 11.67 Å, c = 11.56 Å). Fig. 1 shows that the distances of short Si-O and Mg-

O bonds, predicted ab initio, are in a very good agreement with the experiment, while the 

length of Mg-O bonds with distances larger that 2.3 Å is exaggerated. In view of these 

limitations, the 30% difference between the SLEC and DFT GGA could be considered 

reasonable. The atomic coordinates and bond distances calculated with the SLEC agree 

well with the data of Angel et al. [9]. However, the a/c ratios calculated with the SLEC 

and DFT GGA disagree with the very small ratio reported by Angel et al. [9]. On the 

contrary, our results compare well with the ratios reported by Kato & Kumazawa [8], 

Heinemann et al. [11] and McCommon and Ross [46]. In summary, we conclude that the 
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new potentials predict reasonable structural parameters and reasonable energy differences 

between the structures selected for the ab initio test. These potentials will be used below 

to predict the energies of a larger set of structures different in the composition and the 

state of order.   

 

‘[Insert table 3 about here]’ 

 

2.3. Supercell calculations  

 

The SLEC calculations have been performed in the athermal limit with GULP in a 2x2x2 

supercell (128 octahedral sites) on set of specially constructed structures (configurations) 

with different compositions and ordering states. In the first set of calculations, the 

pressure was fixed at 0 GPa. We have started with the ordered octahedral arrangement of 

Mg and Si consistent with the I 41/a structure determined by Angel et al. [9] and 

calculated its relaxed energy. The relaxed coordinates have been used as starting values 

for a new structure in which one randomly chosen pair of Mg and Si was swapped. The 

swapping has been repeated 60 times. During this exercise, the static energy increased 

sharply during the initial steps. Then the rate of increase slowed down indicating the 

approach to a set of random distributions. The 60 generated structures with variable 

degrees of disorder have been added to the data base. The same procedure has been 

repeated for structures with the compositions x =0.75, x =0.50 and xmaj maj maj=0.25, which 

have been prepared from I 41/a majorite by replacing appropriate numbers of Mg and Si 

with Al atoms. The whole set of configurations was used again in a further set of force 

field calculations at 20 GPa.  
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2.4. Cluster expansion 

 

The aim of the cluster expansion is to find a simple equation, which fits the energies (or 

enthalpies in the case of a nonzero pressure) of all simulated configurations and, 

hopefully, predicts the energy of any other possible configuration. One popular form for 

such an expansion is known as the Js formalism, e.g. [19,47], 

 

       (1) 0AB
2/1 E+JPzE

n
n(n)

(n)
i ∑≈

where are the coordination numbers, frequencies of AB-type pairs and 

ordering constants for pairs of the order n.  J

n(n)
(n) JP,z and

AB

n corresponds to the energy (or enthalpy) of 

the exchange reaction  

    AA+BB=2AB     (2) 

 

between atoms A ∈  {Al, Mg, Si} and B ∈  {Al, Mg, Si} located at the n-th distance. 

When this equation is applied to the excess energies, E0 is either assumed to be equal to 

zero, e.g. [23], or fitted together with the Js, e.g. [24]. In order to determine the set of the 

Js for each of the 240 structures prepared in the way described above we have calculated 

the frequencies of occurrence of pairs of dissimilar atoms at 8 distances, as specified in 

Table 4. Since there are 3 types of dissimilar pairs, Mg-Si, Mg-Al, and Al-Mg, each 

configuration i is characterized by 24 frequencies, Pn  (the factor 1/2z(n) is included in the 

frequency value), and by a value of the relaxed excess energy Ei, where the excess value 

is defined relative to the weighted sum of the relaxed energies of pyrope and I 41/a 

majorite. The whole set of configurations has been thus characterized by the 240x24 
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frequency matrix P and with the 240-element vector E. With each dissimilar pair we 

associate a constant Jn . The vector J is traditionally found by solving the matrix equation 

J=PP

-1E using a least squares method. We adopt here a slightly different technique. 

Vinograd et al. [24] in the study of pyrope-grossular system have observed that when the 

fit is applied separately to configurations of the same composition, the E  value varies 

with the composition non-linearly. It was shown that this variation can be well 

approximated with a Margules two-parameter equation 

0

 

)( 21121210 Ax+Axxx=E 2    (3) 

 

 are the mole fractions of the end-members. Physically, Ewhere xi 0 describes the energy, 

which is required to prepare a virtual crystal from the two end-members. In the virtual 

crystal the exchangeable atoms, Mg, Al, and Si are “homogenized” forming a virtual 

atom with the average size and charge. The state of the virtual crystal is the reference 

state of the Js expansion. The Js describe the energetic advantage of separating pairs of 

virtual atoms into the pairs of dissimilar atoms and thus include bond relaxation effects 

and the Coulomb interaction. In the case of the pyrope-majorite solid solution the mixing 

of the cations occurs not only in the solution, but also at the end-member (majorite) 

composition. Therefore, E  does not vanish at x0 2=1, but includes the energy of 

homogenization of Mg2+ 4+. To take into account the non-zero value of E and Si 0 for 

majorite, we modify Equation 3 as follows 

       (4) E0 = y1y2 (y1A12 + y2A21)

 

where y = x2 2/2=X /2 and ymaj 1=1- y2. Since E  is a configuration-independent term, its 0
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value must not be mapped onto the Js expansion. Therefore, the J vector is found from 

J=PP

-1E', where the vector E' is obtained from the vector E by subtracting the value of E

from each element. Within this procedure we calculate the vector E'', which represents 

the approximation to E' predicted with the Js expansion. Finally, we search for the values 

of A  and A , which result in the best fit. The set of the J  and A  parameters is then 

used to calculate energies of configurations within a Monte Carlo algorithm. However, 

experience shows that the Js calculated in the described way often predict wrong ground 

states. In order to avoid this problem we have designed a feedback algorithm (Fig.2) in 

which the Js self-educate to predict the correct ground state. The algorithm involves a 

Monte Carlo annealing step, which is applied to the small 2x2x2 supercell. The idea of 

using the small cell is that the Monte Carlo simulated configuration can be used as an 

input for a new SLEC run. We start with a configuration, which is assumed to be a 

candidate for the ground state and gradually increase its Monte Carlo temperature up to a 

certain value and then gradually decrease it until the configuration freezes in the lowest 

energy state. This new configuration is energy-minimized, and its energy and the 

frequency numbers are added to the set of previously simulated structures. The new least 

squares solution is then obtained and the Monte Carlo annealing is repeated with the new 

values of the Js, A  and A parameters. Typically, a few iterations are needed for the Js 

to converge to values consistent with the correct ground state. This procedure relies on 

the assumption that the empirical model (GULP) predicts the correct ground state. 

0 

n ij12 21

12 21 

 

‘[Insert fig. 2 about here]’ 

‘[Insert fig. 3,a,b about here]’ 

‘[Insert fig. 4 about here]’ 
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However, this did not happen in the majorite case: the Js converged, but the low-energy 

Monte Carlo configuration fluctuated between two structures with identical pair 

expansions, but very different GULP energies. One of these configurations corresponded 

to the correct I 41/a ground state, while the other one to an unknown triclinic, C 2/c, 

structure with a much higher lattice energy. Since these structures had identical pair 

expansions, the Js fit was not able to predict the energies of both of them accurately, but 

resulted in the same compromise value. The C 2/c configuration was subjected to the 

randomization procedure and 60 new randomized configurations were added to the 

original set of configurations. Figure 3 shows the Js fit to the whole set of configurations. 

The low accuracy of the fit suggests that the pair expansion misses some important 

physics. One can easily recognize that I 41/a and C 2/c structures are identical only in 

terms of the octahedral distribution. In fact, the C 2/c structure can be obtained from the I 

41/a structure with a parallel shift of all octahedral atoms while leaving all other atoms 

fixed (Fig. 4). One can also observe that this shift destroys the tetragonal symmetry of the 

whole lattice: the four-fold axes in the I 41/a phase pass through the centers of the 

tetrahedral clusters of octahedral atoms, where all octahedral atoms are the same, and 

through the Si[4] sites, that center these clusters. In C 2/c, the tetragonal symmetry is lost 

because the “all-same” tetrahedral clusters are swapped with the clusters that do not 

possess four-fold symmetry. Since the C 2/c structure has a higher lattice energy than I 

4 /a, one can assume that the “all-same” arrangement with the Si[4]
1   in the center has a 

lower energy than the all-same arrangement around an empty site. In fact, the octahedral 

atoms in garnet form a perfect BCC lattice, which can be built by close packing of 

tetrahedral clusters. There are 6 such tetrahedra per one octahedral site. In garnets only ¼ 
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of these tetrahedra are filled with Si[4] atoms, the other ¾ of the clusters are empty. This 

means that the octahedral distribution in garnets is made of two different types of 

tetrahedral clusters, filled and empty. This observation immediately suggests a new form 

of the cluster expansion, which is able to reflect the energetic difference of these cluster 

types: 

 

Ei ≈ 1 / 2 z(n)P
AB(n) Jn

n
∑ + aijkl Pijkl

Va − 3Pijkl
Si( )Qijkl + E0

i, j,k,l
∑   (5) 

The first term in this equation describes the interactions within the pairs, while the second 

term reflects the tendency of a tetrahedral group to locate itself either around Si[4] or an 

empty site. The Pijkl and aijkl denote the probability (frequency) and the multiplicity of the 

tetrahedral group ijkl, where i,j,k,l ∈  {Al, Si, Mg}. The factor of 3 is needed to equalize 

the numbers of the filled and vacant sites. With each ijkl group we associate an energetic 

Qijkl constant. There are 21 symmetrically and chemically distinct groups. However, we 

have observed that when all 21 Qijkl constants are allowed to vary in the fit, their 

magnitudes become unreasonably large and some values correlate strongly with each 

other. We then arbitrarily fixed six of the constants at a value of zero and varied only the 

remaining 15 constants. The reduction to the 15-term expansion resulted in reasonable 

(small) values of the Q constants (Table 4) and didn't lead to any noticeable decrease in 

the fit accuracy compared to the 21-term expansion. Figure 5 illustrates the fit accuracy 

of the 15-term expansion. Apparently, the accuracy of J-Q expansion is sufficient for the 

energies of I 41/a and C 2/c structures to be correctly distinguished. The J-Q expansion 

thus provides the possibility to greatly increase the speed of energy calculation without a 

significant loss in the accuracy. This in turn makes it feasible to efficiently simulate a 

Boltzmann probability distribution of the octahedral atoms with the Monte Carlo method. 
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‘[Insert table 4 about here]’ 

‘[Insert fig. 5 about here]’ 

‘[Insert fig. 6 about here]’ 

 

2.5. Monte Carlo simulations 

 

Monte Carlo simulations have been performed using a 4x4x4 supercell with periodic 

boundary conditions (1024 octahedral sites) with our own code. The swapping of sites 

has been performed according to the Metropolis algorithm. The energy differences 

between the subsequent steps have been calculated using equation (5). The temperature 

dependent properties have been calculated on a grid of 32 different compositions across 

the pyrope – majorite binary in the interval of 1073 to 3673 K with a step of 200 K. Each 

point in the T-X space was annealed for 500,000 Monte Carlo steps and additional 

500,000 steps were used for the calculation of the averages. The whole procedure was 

repeated twice, with the J-Q sets corresponding to 0 and to 20 GPa. The results of both 

calculation runs are qualitatively similar and therefore we plot only the 20-GPa set. 

Figure 6 shows the isotherms of the excess configurational enthalpy together with the 

original set of energies calculated via the use of explicit interatomic potentials. It is clear 

that even at 3673 K the octahedral distribution significantly deviates from a random one. 

The breaks in the isotherms reflect the cubic/tetragonal transition. The long-range order 

(LRO) parameter variation across the transition was specially investigated at the majorite 

composition (Fig. 7). The LRO parameter has been defined as follows 
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AβAα

AβAα
od P+P

PP
=Q

−
,    (6) 

where PAα and PAβ are the probabilities of finding A atom (e.g. Mg) in two dissimilar 

octahedral sites. These two sites become structurally distinct in the tetragonal majorite 

[9]. However, these probabilities (frequencies) cannot be directly determined from the 

site occupancies derived from the Monte Carlo simulations because the LRO fluctuates 

between the three equally possible orientations. Therefore, we have calculated the LRO 

parameter indirectly from the probabilities of AA pairs. The pair probabilities are much 

less affected by the spontaneous changes in the LRO orientation. Statistical theories of 

LRO suggest, e.g. [49], that at short distances the pair probabilities are functions of both 

short-range order (SRO) and LRO parameters. However, the SRO correlations rapidly 

vanish with distance and by measuring the AA probability at the maximum separation in 

the Monte Carlo supercell one can be fairly sure that the SRO contribution is 

insignificant. (This distance was equal to 22.89 Å in our simulations.) Therefore 

 

4/)1()1)(1( 2
ododod

2
AAβAαAA QQQP=PP=P −=−+   (7) 

 

From Equation 7 one can easily recalculate Qod (Fig. 7). One observes that the predicted 

degree of LRO at 2000 °C is in good agreement with the experimental result of Phillips et 

al. [10] subject to the assumption that the measured quantity corresponds to the synthesis 

temperature. LRO completely disappears at about 3300 K at 0 GPa and at 3450 K at 20 

GPa. The transition can be also visualized by monitoring the probabilities of the two 

types of tetrahedral clusters of octahedral sites; those with the Si[4] in the middle and the 

vacant ones. The difference of these probabilities exhibits a striking change at the 
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transition temperature (Fig.8). 

  

‘[Insert fig. 7 about here]’ 

‘[Insert fig. 8 about here]’ 

   

2.6. Thermodynamic integration 

 

It has been shown [18,19,50] that the configurational free energy can be calculated from 

Monte Carlo averaged excess energies using the method of λ-integration: 

 

λdEF=F
λ

λ∫+
0

0      (8) 

 

In this equation F0 corresponds to the free energy of mixing of the solid solution with 

zero ordering energy, which can be calculated theoretically: 

 

)lnlnln( AlAlSiSiMgMg0 xxxxxxTRF ++=    (9)                      

 

The integral describes the contribution to the free energy from the energy (or the enthalpy 

in the case of a nonzero pressure), E , when it changes from the state of complete 

disorder to the state of equilibrium order. To calculate 
λ

E  for a state with an 

intermediate degree of order defined by certain value of λ, 0< λ <1, one scales the Js and 

Qs 
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ijkl
λ
ijkln

λ
n QQJJ λλ == ,     (10) 

 

and simulates Boltzmann’s distribution constrained with and .  Effectively, the 

scaling means that the probabilities of microstates become more random than in the non-

scaled case. 

λ
nJ λ

ijklQ

λ
E  is then calculated using equation 5 with nominal (not scaled) values of 

Js and Qs by taking a simple average over a sufficient number of the equilibrated 

configurations. The aim of the scaling is to make the distribution more random without 

decreasing the strength of the interactions. In our simulations, λ was gradually increased 

from 0 to 1 with a step of 0.025. The integral was calculated using Simpson’s method. 

The configurational entropy was calculated with the equation 

TEFS /)( −=        (11) 

Ewhere is the average excess energy (or enthalpy) calculated with λ =1. Figure 9 

shows the configurational entropy in the interval of 1073 – 3673 K. This function is 

severely affected by SRO and LRO. Evidently, the cationic distribution tends to the one-

sublattice regime at low concentrations of majorite and at high temperatures. The two-

sublattice regime is observed only at very low temperatures and at very majorite-rich 

compositions. The behaviour of the entropy at intermediate compositions cannot easily be 

predicted from simple model assumptions. Figure 10 shows the free energy of mixing at 

20 GPa in the same interval of temperature. The excess values are calculated with respect 

to the mixture of pyrope and fully ordered majorite. One observes that the excess free 

energy of mixing of majorite deviates significantly from zero only at temperatures above 

2673 K. This is the effect of disorder in majorite. One can also see that the miscibility 

gap starts to develop along the cubic-tetragonal boundary at about 2500 K and x =0.8. maj
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At zero pressure this temperature is about 500 K lower. Curvature analysis of the free 

energies, combined with the order-disorder analysis, permits the drawing of the T-X 

phase diagram (Fig. 11) 

 

‘[Insert fig. 9 about here]’ 

‘[Insert fig. 10 about here]’ 

‘[Insert fig. 11 about here]’ 

‘[Insert fig. 12 about here]’ 

 

2.7. Activity-composition relations 

 

The free energy calculations suggest that the effect of disorder in majorite becomes 

significant only above 2673 K, i.e. at temperatures significantly exceeding the 

hypothetical mantle geotherm [3]. Therefore, we limit our activity-composition model to 

the 1073 – 2673 K interval. We have extracted the excess free energies of mixing from 

the Monte Carlo energies and fitted them with a Redlich-Kister polynomial of the 6th 

order. Polynomials of lower order were not able to describe the curvature of the free 

energy isotherms in the vicinity of the order/disorder transition. 

  

‘[Insert table 5 about here]’ 

 

The fitting was performed separately with the data for 0 GPa and 20 GPa. The excess free 

energies were calculated with respect to the ideal one-site molecular solid solution. Our 

activities thus describe the mixing effect scaled to a single octahedral site. Table 5 plots 
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the coefficients of the Redlich-Kister polynomial for the calculation of the excess free 

energy of the solid solution in the ranges of 1073-2673 K and  0 - 20 GPa. The Akn set 

gives the coefficients corresponding to 0 GPa and the BBkn set gives the difference between 

the Redlich-Kister fit at 20 GPa and 0 GPa. The free energies of mixing corresponding to 

any pressure of interest in the range of 0-20 GPa can be interpolated using the A  and Bknkn B

)

  

coefficients with the equation 

      (13) ∑ −−=
7

1

1
1221excess

=n

n
n )x(xCxxG
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      (14) (∑ −
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1

120/
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k
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and where T is measured in K and P in GPa. Equations 13, 14 will probably be 

reasonably accurate at pressures slightly above 20 GPa. Figure 12 plots the activity-

composition relations at 20 GPa. The activities of pyrope and majorite are very much 

perturbed by the cubic/tetragonal transition and by the miscibility gap, which develops 

along the transition line. Comparing the Figures 10 and 11, one observes that the simple 

polynomial equation is not enough robust for the description of the narrow gap at the 

high temperatures. This drawback of the model would not be significant in the majority 

of petrological applications though.     

 

2.8. Equilibrium volume 

 

The relaxed volumes of the 260 configurations have been calculated using GULP through 

 22



energy minimization calculations. The excess volumes have been cluster expanded with 

an equation analogous to Equation 5. This has made it possible to find a set of pair and 

quaternary volumetric constants, which approximates the volume of any configuration. 

These constants have been used to monitor the equilibrium volume during the course of 

the Monte Carlo simulations and to calculate the average volumes along the binary at 

different pressures and temperatures. Fig. 13 shows the result for 20 GPa and 2273 K. 

The shape of the volume isotherm compares well with the measurements of Heinemann 

et al. [11] performed on a series of samples synthesized at 19 GPa and 2273 K. The 

predicted and experimental curves both show that the cubic/tetragonal transition leads to 

a slight, but noticeable, increase in the volume. Heinemann et al. [11] observed the break 

at x =0.8, which is in very good agreement with the calculated value of x =0.75. maj maj

 

‘[Insert fig. 13 about here]’ 

‘[Insert fig. 14 about here]’ 

 

3. Discussion 

 

The developed statistical-thermodynamic model helps in understanding the driving forces 

which make the tetragonal majorite more stable than other possible ordered structures 

with the same composition. Table 4 shows that the strongest ordering pair interactions 

occur at the 1st, 2nd and 3rd neighbor distances. The electrostatic origin of these forces 

becomes clear when comparing the values of the Js corresponding to Al-Si, Al-Mg and 

Mg-Si interactions. Obviously, the strength of the interaction correlates with the charge 

difference within the pairs of cations: the Mg-Si interaction is always stronger than those 
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of Al-Si and Al-Mg. The arrangement of the octahedral cations can be easily visualized 

as a BCC lattice, with two dissimilar cubic clusters centred on Si and Mg, respectively 

(Fig. 14a). Although it is possible to design a structure (Fig.14b) with an even larger 

number of the 2nd Mg-Si pairs than in I41/a majorite, it will have a too low number of the 

3rd-neighbor Mg-Si pairs. Our calculations show that this structure, with a symmetry of P 

41 32, is significantly less stable than the tetragonal majorite. The tetragonal majorite is 

certainly the best choice considering the advantage of having the maximum number of 

the third-neighbor Mg-Si pairs and a not too low a number of the second-neighbor pairs. 

However, as it was noted above, the optimum configuration of the octahedral cations can 

have a different relationship with regard to the underlying sublattice of the Si[4] atoms. 

The stabilization of the tetragonal majorite relative to the alternative C/2c phase probably 

occurs due to the interactions of the octahedral cations with the Si[4] atoms. In order to 

understand these interactions, it is convenient to visualize the BCC lattice as a 

superposition of the near-neighbor four-atom clusters of octahedral cations. One quarter 

of these clusters contain a Si[4] atom in the middle and the other three quarters are vacant. 

Our simulations suggest (Fig. 8) that the MgMgMgMg, SiSiSiSi and MgMgSiSi have a 

greater affinity to the Si[4] atoms than MgMgMgSi, SiSiSiMg and MgSiMgSi clusters. 

Since the centering of the first three clusters with a Si[4] atom is consistent with the four-

fold symmetry, the I41/a majorite is more stable than the C2/c majorite. 

The present calculations constrain the phase diagram and the activity-composition 

relations in the pyrope - majorite system at the conditions which cover the probable 

stability range of majorite in the transition zone. The main question is how accurate these 

calculations are. The predicted degree of LRO in tetragonal majorite (Fig. 7) is in good 

agreement with the data of Phillips et al. [10] obtained on a sample prepared at 2000 °C 
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and 17.7 GPa. The sample of Angel et al. [9] synthesized at 1800 °C and 17 GPa falls 

slightly outside the trend. However, the authors concede that the result of their X-ray site 

occupancy refinement “must be treated with extreme caution because the scattering 

factors of Mg and Si are very similar.” From bond lengths considerations they conclude 

that the degree of Mg, Si order is probably larger than that obtained from site refinement. 

The comparison of our results with those of Phillips et al. [10] and Angel et al. [9] is 

valid only if the experimental data essentially represent equilibrium properties, i.e. if the 

majorites were synthesized within the stability field of the tetragonal phase. However, 

Hatch and Ghose [12], Heinemann et al. [11] and Tomioka et al. [15] argue that the 

ordering to the tetragonal phase occurs during quenching such that the cubic/tetragonal 

boundary would lie significantly lower than the temperature of synthesis, and certainly 

significantly lower than our transition temperature (~3000 °C). The authors have based 

their arguments on the observation of merohedral and pseudomerohedral twins generated 

by the loss of symmetry elements due to the ordering transition. Such transformation 

twins suggest that the majorites first crystallized with cubic symmetry. However, we will 

argue that the mere occurrence of transformation twins may not necessarily imply that the 

crystals have passed a transformation boundary during quenching. In fact, the metastable 

formation of a higher symmetry disordered structure within the stability field of the low 

temperature ordered form is not an unusual occurrence; it is to be expected if the starting 

materials are reactive [51]. 

Two examples may be given. The first one concerns the 1/1 IC  transition in Ca-rich 

plagioclases. The ordering transition leads to an alternation of the Al and Si atoms and 

thus produces superstructure reflections (so-called b-reflections) which may be used to 

image type b anti-phase domains in the TEM. Note that in contrast to the ordering 
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transition in majorite which is translationengleich, but klassenungleich and as such is 

associated with the development of twins, the anorthite transition is klassengleich, but 

translationenungleich so that anti-phase domains are generated. In natural anorthites (An 

> 95%), although b-reflections are observed, no type b anti-phase domains can be 

imaged. Obviously, these anorthites directly crystallized with the ordered stable 1I  

structure. In contrast, anorthite samples synthesized below the melting temperature do 

show type b domains although they crystallized in the stability field of the 1I phase [52, 

53]. In the experiments of Kroll and Müller [53], the domains strongly increased in size 

with annealing time. Therefore, they certainly did not develop during the quench lasting 

only for seconds. This suggests that the synthetic anorthites first crystallized in a higher 

symmetry phase ( 1C ) and only then developed the 1I -type ordering at the annealing 

temperature. It is now agreed that also in natural anorthites with An-contents less than 

95% showing type b domains nucleation of the domains occurred in a metastable 1C  

albite matrix leading to the stable 1I  structure without crossing a transformation 

boundary (Smith and Brown [54], p.89).  

Another well-documented example is the case of Mg-cordierite which when 

synthesized from glass always forms the hexagonal high form (no long range order) 

within the stability field of the orthorhombic ordered structure [55-58]. The first-formed 

hexagonal phase has no domain structures. Continued annealing within the orthorhombic 

stability field produces a modulated structure and ultimately a twinned orthorhombic 

fully Al,Si ordered cordierite.  

The discussion suggests that it is worth reconsidering the arguments of Hatch and 

Ghose [12] and Heinemann et al. [11]. Although the occurrence of twins suggests the 

existence of a cubic precursor, it is clear that the presence of twinning is not an indication 
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that the material had ever been within the stability field of the high symmetry phase. We 

suggest that the cubic phase orders to the stable tetragonal phase immediately after 

crystallization. The tetragonal phase is characterized by the prevalence of MgMgMgMg,  

SiSiSiSi and MgMgSiSi tetrahedral clusters centred on Si[4] atoms. Presumably, during 

the initial stages of growth the clusters form with equal probability around both the Si[4] 

sites and the vacant sites leading to cubic symmetry and only then their proportion 

changes in favour of the Si sites leading to tetragonal symmetry.   

One can argue that the empirical potential calculations might not be sufficiently 

accurate for predicting energy differences between configurations with different states of 

order, and thus the calculated transition temperatures could be significantly off. The 

comparison of our SLEC and ab initio calculations shows that the ab initio results suggest 

a larger difference in the energies of cubic and tetragonal majorites. If we assume that the 

ab initio values represent the correct answer, then the real energetic difference between 

ordered and disordered majorites should be even larger than that predicted by the SLEC 

and thus the cubic/tetragonal transition would occur at an even higher temperature than 

we have here predicted. However, we observe that the present SLEC results are in very 

good agreement with the data of Heinemann et al. [11], assuming that these data 

constrain true equilibrium. The predicted enthalpies of mixing are in good agreement 

with the available calorimetric data of Akaogi et al. [4] and Yusa et al. [5]: Fig. 6 predicts 

that the enthalpy of mixing of a Maj60 sample synthesized at 1273 K is about 11 kJ 

kJ/mol per 12-oxygen formula unit, which compares well with the value of 12 ± 3.0 

kJ/mol, estimated for this composition by Yusa et al. [5]. This agreement suggests that 

the present model is reasonably correct.   

The present results might be questioned based on the lack of the evidence for a 
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miscibility gap in phase equilibrium studies. However, the miscibility gap could be 

detected in a phase equilibrium study only if the both exsolved phases are stable at the 

experimental conditions. Our phase equilibrium calculations for the pyrope-majorite 

binary system (Fig. 15) suggest that the miscibility gap does not affect the topology of the 

pressure-composition diagram at temperatures lower than 1600 °C. In these calculations, 

aided with the Thermo-Calc program [59], we have used the thermodynamic database of 

Fabrichnaya et al. [3] and the presently developed activity-composition model for the 

garnet phase. The gap is absent in the 1773 K diagram because it occurs at compositions 

that are not stable with respect to the other high-pressure mineral assemblages, such as 

pyrope-rich garnet + clinopyroxene, garnet + wadsleyite + stishovite and garnet + 

ilmenite. In the 2073 K set the gap is not revealed because at temperatures above 1873 K 

our Redlich-Kister model does not reproduce the small inflection in the free energy of the 

solid solution associated with the transition, although this inflection is present in the 

Monte Carlo results. A narrow gap separating the cubic and tetragonal phases could be 

possibly observed experimentally at about 1800 °C, where the majoritic garnet becomes 

stable over a wide range of compositions. However, the experiments at such conditions 

are extremely challenging.  

 

‘[Insert fig. 15 about here]’ 

 

4. Conclusions 

 

Atomistic simulations have allowed the investigation of the behaviour of mixing 

functions in the pyrope-majorite system in great detail and thus to calculate the activity-
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composition relations consistently with the cubic/tetragonal transition. The model 

predicts that the transition occurs through a miscibility gap, which widens with the 

decrease in the temperature. The calculations suggest that the gap does not affect the 

topology of phase relations below 1600 °C, where the majorite-rich phase is not stable 

with respect to other high-pressure mineral assemblages. However, if the mantle 

geotherm rises above 1800 °C in the transition zone, it can cross the cubic/tetragonal 

transformation boundary and the associated with the transformation narrow miscibility 

gap. The heterogeneity of the garnet phase related to the miscibility gap and the twins 

related to the cubic/tetragonal transformation might significantly alter rheological 

properties of the lowest interval of the transition zone. These conclusions should be tested 

for systems containing Fe and Ca. 
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Figure captions 

 

Fig. 1. A plot of the predicted interatomic distances against the experimental data of 

Angel et al. [9]. 

 

Figure 2. The feed-back algorithm which improves the accuracy of the cluster expansion 

in predicting ground state configurations. 

 

Figure 3. Correlation between the energies (a) and enthalpies (b) calculated with GULP 

and predicted with the pair cluster expansion. The enthalpies were calculated at 20 GPa.  

 

Figure 4. The I 41/a (a) and C 2/c (b) majorites viewed along the 4-fold axis of the 

tetragonal phase. The tetragonal symmetry is lost when MgMgMgMg and SiSiSiSi 

tetrahedral clusters move away from the centering Si[4] atoms. The image is prepared 

using the GDIS software [48]. 
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Figure 5. Correlation between the excess enthalpies calculated with GULP at 20 GPa and 

predicted with the J-Q expansion. A similarly good correlation is observed for the 

energies calculated at zero pressure.   

 

Figure 6. Enthalpy of disorder predicted with Monte Carlo simulation (solid lines). The 

dashed line shows the enthalpy at the complete disorder or infinitely high temperature. 

Circles correspond to the excess energies of randomized configurations calculated with 

GULP. All values are per formula unit with one octahedral atom (6 oxygens). 

 

Figure 7. The temperature dependence of the long-range order parameter at 0 pressure 

and 20 GPa as calculated from Monte Carlo simulations (circles). The cross and star 

denote the experimental data.  

 

Figure 8. The probability difference between two different four-atom clusters predicted 

with the Monte Carlo simulations. Below the transition temperature the proportion shifts 

in favour of the clusters consistent with the 4-fold symmetry. 

 

Figure 9. The configurational entropy of the octahedral site (per 1 mole of octahedral 

atoms) calculated using the method of thermodynamic integration. Dashed line shows the 

ideal entropy. 

 

Figure 10. The free energy of mixing and calculated using the method of thermodynamic 

integration. 
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Figure 11. The temperature – composition phase diagram calculated based on the results 

of the Monte Carlo simulations. (All other non-garnet phases are suppressed). The solid 

black curve shows the result for 20 GPa, while the dashed line shows the phase 

boundaries at zero pressure. The squares represent the experimental results of Heinemann 

et al. [11]: open and filled squares correspond to the samples, which after the quench 

showed cubic and tetragonal symmetries, respectively.   

 

Figure 12. The activity – composition relations in the pyrope – majorite system consistent 

with the excess free energies described by Equations 13, 14. 

 

Figure 13. The variation of equilibrium volume along the binary at 2273 K and 20 GPa 

predicted with the volumetric cluster expansion. 

 

Figure 14. The arrangement of octahedral cations in I4 /a (a) and P 4  32 (b) majorites. 1 1

 

Figure 15. The phase relations in the pyrope-majorite system at (a) 1773 K and (b) 2073 

K. 
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