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Abstract. This paper presents a genetic algorithm (GA) that solves the problem 
of routing a multiplexer network into a MUXTREE embryonic array. The 
procedure to translate the multiplexer network into a form suitable for the GA-
based router is explained. The genetic algorithm works on a population of 
configuration registers (genome) that define the functionality and connectivity of 
the array. Fitness of each individual is evaluated and those closer to solving the 
required routing are selected for the next generation. A matrix-based method to 
evaluate the routing defined by each individual is also explained. The output of 
the genetic router is a VHDL program describing a look-up table that receives 
the cell co-ordinates as inputs and returns the value of the corresponding 
configuration register. The routing of a module-10 counter is presented as an 
example of the capabilities of the genetic router. The genetic algorithm approach 
provides not one, but  multiple solutions to the routing problem, opening the 
road to a new level of redundancy where a new “genome” can be downloaded to 
the array when the conventional reconfiguration strategy runs out of spare cells. 

1 Introduction 

The Embryonics project was originally proposed by Mange et al [1] from the Êcole 
Polytechnique Fédérale de Laussane in Switzerland, and soon after the University of 
York, UK, joined the efforts under the lead of Tyrrell [2]. During the past few years 
research on Embryonics has gained momentum and the first practical demonstrations 
of the technology have already been shown [3, 4]. Embryonics proposes the 
incorporation of biological concepts like growth, reproduction and healing into the 
realm of silicon processor-arrays [5]. One of the possible Embryonics implementations 
is the MUXTREE architecture [6, 7]. In MUXTREE implementations, a logic function 
is translated from truth tables into multiplexer networks via ordered binary decision 
diagrams (OBDDs). The multiplexer network has to be mapped into the structure of an 
embryonic array, which is a 2-D array of processing cells. Every cell performs the 



 

 

function of a two-input, one-output multiplexer. Connectivity between cells is limited 
to the nearest neighbours, and the number of data lines connecting cells to each other 
are scarce. Inputs to the multiplexer and routing of signals within each cell are set by a 
configuration register. In the MUXTREE architecture, each cell of the array contains a 
copy of the configuration registers of all the cells in the array [8].  

The set of all configuration registers in an array is called “the genome” of the 
application. In each cell, a configuration register is selected by a unique pair of co-
ordinates. When a cell fails, it is possible to reconfigure the array by changing the co-
ordinates of cells so that the failing cell is logically eliminated and substituted by a 
healthy one. By these means embryonic arrays achieve fault-tolerance [9].  

Connectivity limitations make mapping the multiplexer network into the embryonic 
array a task that grows in difficulty as the complexity (size) of the application grows. 
For small functions, it is possible, although time-consuming, to manually route the 
multiplexer network into the embryonic array. However, the time (and patience!) 
required to route medium-size applications is unacceptable for all practical purposes.  

 Given that Embryonics is a relatively new field, it lacks the CAD tools available 
for other, more mature bio-inspired technologies (artificial neural nets and genetic 
algorithms, for example). In its present state, MUXTREE applications can be 
synthesised and simulated using FPGA design software, like Xilinx’s Foundation. 
However, the early stages of a design have to be developed by hand.  

This paper presents a recently developed design tool that helps the designer in what 
is considered the most challenging and time-consuming task during the development 
of a MUXTREE application: the mapping of a multiplexer network into the fixed 
structure of an embryonic array. At the core of the router is a genetic algorithm (GA) 
that selects from a multitude of possible routings those that satisfy the connectivity of 
the multiplexer network given as input. 

The paper is organised as follows: Section 2 introduces the MUXTREE architecture 
and the typical design flow of an application. Section 3 describes the genetic algorithm 
that solves the routing. In Section 4, a module-10 counter is presented as an example 
of the capabilities of the genetic algorithm employed as router. Results obtained with 
other examples are also presented. Section 5 resumes the conclusions and future work 
of this research. 

2 Design Flow of a MUXTREE Application 

Although the processing power of an individual MUXTREE cell is that of a 
multiplexer, an array of such cells can contain a multiplexer network representing any 
combinational or sequential logic function. The size of the network would be limited 
only by the physical dimensions of the array (allowing, of course, spare elements 
necessary for the embryonic reconfiguration). 

Figure 1 shows a simplified diagram of the MUXTREE embryonic cell. A detailed 
description of the architecture can be found elsewhere [8].  
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Fig. 1. Simplified diagram of a MUXTREE embryonic cell 

In a typical application, the following steps are necessary to implement a 
combinational or sequential logic function using a MUXTREE embryonic array: 

1. Describe the application as a set of logic functions or as a truth table. 
2. From the description, construct an Ordered Binary Decision Diagram (OBDD). 
3. Represent the OBDD as a multiplexer network. 
4. Route the multiplexer network in an array of MUXTREE cells. 
5. Obtain the configuration register of all the cells in the array. 
6. Generate the “genome” of the application by grouping the configuration 

registers of all the cells in the array. 
7. Use the genome as input for the software that is used to synthesise and simulate 

the design. 
In a typical implementation, steps 1 to 6 are carried out by hand. Step 4 is the most 
difficult and time-consuming due to the limited interconnection between cells. A 
genetic algorithm-based, automatic router that implements steps 4 to 6 has been 
developed. The following section describes this tool in detail. 

3 Routing Multiplexer Networks Using a Genetic Algorithm 

During the past few years, genetic algorithms have been intensively used to solve 
problems whose solution either cannot be found analytically, or numeric methods take 
too long to find [10]. GAs are very good at finding solutions in vast search-spaces 
because they are inspired in the process of natural selection, where individuals who are 
fitter than others have more chances of passing their genes to the next generation [11]. 

 
The following elements are needed to solve a problem using GAs: 
•  A suitable representation of the problem so that an individual from a population 

can represent a possible solution.  
•  A randomly generated population of possible solutions.  



 

 

•  A fitness function that evaluates how close to solving the problem is every 
individual in the population. 

•  A selection criterion that discriminates individuals according to their fitness. 
•  Some genetic operators (typically mutation and crossover) to generate diversity  

within the population and to prevent the solutions from being stuck around 
local minima. 

•  A stop criterion that allows the system to decide when to finish the search. It 
can be either because a solution has been found, or because a specified number 
of generations have been tested. 

Figure 2 shows a flow diagram representing the logical flow of a GA. 
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Fig. 2. Flow diagram of a typical genetic algorithm. 

To solve the routing of multiplexer networks into MUXTREE arrays, the diagram 
in figure 2 was implemented in a C program. Three text input files indicate the 
topology of the target multiplexer network. Their content is presented next. 

3.1 Input Files 

For all practical purposes, a multiplexer network can be completely described by 
stating: the number of levels it contains, the number of multiplexers in each level and 
the inputs that arrive to each multiplexer (data and control). Additionally, in the 
MUXTREE architecture, it is necessary to distinguish the multiplexers that work in 
synchronous mode, i.e. with their outputs latched by a clock; from those that work 
asynchronously. The following example shows a simple multiplexer network and the 
input files associated to it. 

In file number one, parameters pertaining to the GA are provided along with the 
size of the MUXTREE array that should contain the multiplexer network. Also the 
features that characterise the target network are given. Figure 3 shows the multiplexer 
network of a 3-input voter, along with the text of input file 1. 



Publicado en Evolvable Systems: From Biology to Hardware (ICES 2003) 
Tyrrell, Haddow y Torrensen (Eds.), Lecture Notes in Computer Science 2606 

 Springer-Verlag, 2003, pp.249-261 

 

 

0  B               A             B  1 

C 

y 

0   s   1 0   s   1 

0   s   1 

0 1 

2 

a b 

 

0.8 ;Crossover probability
0.15 ;Mutation probability

2 3 3 ;Size of destination array 2×3.
3 multiplexers in the network.

2 2 1 ;Two levels with two multiplexers in
the first level and one in the
second level
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1 2 ;Number of outputs and tags of the
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output lines. 

Fig. 3. 3-input voter multiplexer network and its input file 1 for the genetic router 

The inputs for each multiplexer are indicated in a second input file. The file 
corresponding to the example in figure 3 is presented next. The order of inputs for 
each multiplexer is: Selection, Right input (1), Left input (0). In a MUXTREE array, 
multiplexers are numbered from left to right and from bottom to top. 

Inputs for multiplexer 2

Inputs for multiplexer 1

Inputs for multiplexer 0

‘BA0B1ACba’

 
A third input file indicates the multiplexers that receive input variables, if any. In 

the MUXTREE architecture, variables can be fed to the array only through row 0, i.e. 
the bottom row of the array. Each multiplexer can receive up to two variables. In some 
difficult designs, the same variable can be fed in more than one input in order to 
simplify the routing. Following is the text of the third input file for the example in 
figure 3. For demonstration purposes, input variable A is fed through the two cells in 
the bottom row (the array size is 2×3). 

 'BACA'
Input variables in multiplexer 1 
Input variables in multiplexer 0  

Generation of the three input files can be easily automated, but at the present stage 
they are still hand-generated. 

3.2 Initial Population 

The function of a MUXTREE cell is defined by a 17-bit configuration register [5]. 
Eight of those bits define the routing of signals within the cell. This byte is called the 
routing byte. Therefore, the flow of signals within a particular array will be defined by 
the routing bytes of all cells in the array (the routing genome). The size of this genome 
in bits is 8 times the number of cells in the array. For a 2×3 array, its routing would be 
completely defined by 2×3×8= 48 bits; therefore, any randomly generated 48-bit 



 

 

pattern will encode an arbitrary routing. In the genetic router proposed, every 
individual of the population is a routing genome. In the examples presented next, the 
initial population consists of 100 randomly generated individuals. 

3.3 Fitness Function and Evaluation  

The problem of evaluation is to find out how close an arbitrary routing is from the 
routing needed to implement the target multiplexer network. To achieve this, a 
carefully chosen fitness function must be used. 

Definition 1: Two multiplexers are equivalent when they have the same inputs in 
the same order.  Such inputs are defined as correct inputs. 

Definition 2: Two multiplexers are partially equivalent when they have at least one 
input in the same position, i.e. at least one correct input. 

By these definitions, a given routed MUXTREE array would be able to implement 
the same function as the target multiplexer network when it contains a set of 
multiplexers equivalent to those in the target network. In other words, the routing will 
be complete when it contains equivalent multiplexers for all multiplexers in the target 
network. Consequently, the fitness of a particular routing should be related to the 
number of equivalent  and partially equivalent multiplexers. Hence, the fitness of a 
routing is defined as the number of correct inputs it contains. Since every multiplexer 
has three ordered inputs, the maximum fitness a routing can achieve is the number of 
multiplexers in the target network (n) multiplied by 3. 

fmax= 3n .                                                        (1) 

To determine the fitness of a particular routing, it is necessary to locate all the 
correct inputs it contains. For this purpose, a connectivity matrix is used to “simulate” 
the propagation of signals within the network. Before propagation, the multiplexers in 
the embryonic array have no particular correspondent in the target network. After 
propagation, corresponding multiplexers are determined according to the number 
correct inputs every embryonic multiplexer has.  

At the end of the evaluation process, every individual of a population will have a 
number associated to it. The bigger the number, the closer that routing is from solving 
the target network. For space reasons, a more detailed description of the connectivity 
matrix and the propagation process will be left for a future paper. 

3.4 Selection 

Selection is the process of choosing the individuals that will be parents of a new 
population. The genetic router presented in this paper implements selection by 
tournament, which consists in randomly selecting two genomes from the population 
and choosing the one with the highest fitness. For example, 

If fA > fB,   then: Cg = GA 
If fA < fB,   then: Cg = GB 
If fA = fB,   then: Cg = GA 
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Where: 
fA = Fitness of genome A; fB = Fitness of genome B 
GA = Genome A;  GB = Genome B;  Cg = Chosen genome  

3.5 Crossover and Mutation 

Crossover and mutation are used in the genetic router to prevent solutions from 
clustering around local minima.  

Crossover consists of taking two ‘parents’ that have survived the selection process 
and mixing them to create two new individuals. Figure 4 shows two six-byte 
individuals being crossed over in two randomly selected points. 

 

 

 Parent 1 B1 B2 B3 B4 B5 B6 

Parent 2 BA BB BC BD BE BF 

Breaking points 

Child 1 B1 B2 

B3 B4 

B5 B6 

Child 2 BA BB 

BC BD 

BE BF 
 

Fig.4.  Crossover between two individuals of a population 

The crossover points are selected in such a way that bytes remain unaltered so that 
well-routed cells are preserved from one generation to the next. 

Crossover is performed according to a crossover probability. Every time a 
crossover is going to take place, a random number is generated; if the number is 
smaller than crossover probability, then the crossover takes place, otherwise both 
parents pass to the next generation unchanged. In the examples presented in this paper, 
crossover probability is 0.8. 

It is possible to apply mutation to children generated by crossover. By means of a 
mechanism similar to the one used in crossover, a mutation probability will define the 
possibility of mutation. Mutation probability in the examples of this paper is 0.15. 
When mutation is applied, the byte and bit to be mutated are selected randomly. 
Mutation inverts the logic value of the selected bit. 

3.6 New Population 

A new population is generated with the individuals selected for their fitness. It is 
possible that two new individuals end up being identical after they have passed 
through crossover and mutation. If that is the case, one of the repeat individuals is 



 

 

eliminated from the population and a brand new individual is randomly generated. All 
individuals in the new population are different to one another. 

3.7 Output File 

The genetic algorithm that solves the routing of multiplexer networks into 
MUXTREE arrays stops searching when one of the following conditions is met: A 
solution has been found, or the search has run a predetermined number of generations 
whether or not a solution has been found. The latter case can end up with none, one or 
multiple solutions to the routing.  

If at least one solution is found, the genetic router generates a VHDL file containing 
the description of a look-up table that receives at its inputs the co-ordinates of a cell 
and returns the configuration register associated to that cell. This file has to be 
integrated to the design of the MUXTREE array that will implement the desired 
function. In section 4 there is a VHDL file generated by the genetic router. 

If multiple solutions are found, a new level of fault-tolerance could be introduced to 
MUXTREE arrays. In its present implementation, MUXTREE arrays are disabled 
when spare cells have ran out and a new fault arises. However, with multiple routings 
capable of implementing the logic functions represented by the multiplexer network, it 
would be possible to download a new genome to the array every time spare cells run 
out. It is possible that one of the “spare genomes” can still implement the desired 
function. 

4 Example: Routing of a Module-10 Counter 

To demonstrate the functionality of the genetic router, the implementation of a 
module-10 counter is presented next. Table 1 shows the truth table of the counter and 
figure 5 the multiplexer network that implements it.  

Table 1.  Truth table of a module-10 counter 

D C B A D+ C+ B+ A+

0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 1
0 0 1 1 0 1 0 0
0 1 0 0 0 1 0 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0
1 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0
Other combinations 0 0 0 0

 
Table 2 presents the text of the three input files according to figure 5. The content 

of the third file is only a “0” because in a counter there are no external inputs, i.e. the 
application is purely sequential. This is indicated by the flip-flops at the outputs of the 
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multiplexers that deliver the counting function in figure 5. These outputs are latched 
by a clock common to all cells. 
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Fig. 5. Multiplexer network that implements a module-10 counter 

Table 2. Input files for the genetic router 

First input file Second input file Third input file 
0.8
0.15
4 5 15
4 4 5 4 2
4 2 10 13 14
4 2 10 13 14

1A01A01A01A00BA1BaABb0BA
cB0dCefD00CghC0iD0jDk 

0 

 
The following code is the VHDL file that the genetic router automatically generated 

when found the routing for the module-10 counter. The value of the configuration 
register for spare cells is specified by the case “when others”. 

 
library IEEE;
entity Mem_counter9 is

port (
okaux: in STD_LOGIC;
xy: in STD_LOGIC_VECTOR (7 downto 0);
conf: out STD_LOGIC_VECTOR (16 downto 0));

end Mem_counter9;
architecture Mem_counter9_arch of Mem_counter9 is
type REG is array (16 downto 0) of bit;
begin
process(okaux,xy)
begin
if ( okaux = '0' ) then
conf <= "01001000100000000";

else
case xy is
when "00000000" => conf <= 01000000101000101";



 

 

when "00000001" => conf <= 00000000111100100";
when "00000010" => conf <= 00000100111010011";
when "00000011" => conf <= 00000000111000001";
when "00000100" => conf <= 00000000010110100";
when "00000101" => conf <= 10000000100101101";
when "00000110" => conf <= 11001011100100001";
when "00010000" => conf <= 01110000001110010";
when "00010001" => conf <= 00100000101010101";
when "00010010" => conf <= 00100001000100010";
when "00010011" => conf <= 00100000001110001";
when "00010100" => conf <= 00000010000000000";
when "00010101" => conf <= 00001001110001000";
when "00010110" => conf <= 00000000000101011";
when "00100000" => conf <= 00011001000100110";
when "00100001" => conf <= 01000101101110010";
when "00100010" => conf <= 00011000001110001";
when "00100011" => conf <= 00000001110000010";
when "00100100" => conf <= 00000000000111001";
when "00100101" => conf <= 00000000000110001";
when "00100110" => conf <= 00100000111111011";
when "00110000" => conf <= 01000101011111010";
when "00110001" => conf <= 00000000010011010";
when "00110010" => conf <= 00011101011110010";
when "00110011" => conf <= 00000000001100110";
when "00110100" => conf <= 00000000000011000";
when others => conf <= 01001000100000000";

end case;
end if;

end process;
end Mem_counter9_arch;

 
Figure 6 shows part of the simulation of the module-10 counter implemented in a 

MUXTREE array. Synthesis and simulation were carried out in Xilinx’s Foundation. 
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Fig. 6.  Simulation of the module-10 counter implemented in a MUXTREE array 
 
Figure 7 shows a graphical representation of one of the solutions found by the 

genetic router. The clock input is common to all cells. Solid lines represent fixed 
connections and broken lines are the connections programmed by the genome of the 
module-10 counter. Numbers in the multiplexers correspond to those in figure 5. A 
careful visual inspection of figure 7 will demonstrate that in fact, the multiplexer 
network in figure 5 is contained in the embryonic array presented. 
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Fig. 7.  Routing of a module-10 counter in a 4×5 MUXTREE array 

4.1 Results with Other Examples 

Table 3 resumes the results obtained when routing other applications. The column 
entitled Type indicates whether the application is combinational (C) or sequential (S). 
The Array size column indicates the size of the MUXTREE array that contained the 
application. The following column contains the size of the multiplexer network, 
followed by the maximum number of generations that the genetic algorithm searched 
for the solution. The following column indicates in which generation the first solution 
was found, followed by the time taken to find it. Next column presents the number of 
valid solutions delivered by the genetic router when ran the maximum number of 
generations. The last column presents the probability of successfully routing the 
corresponding application, e.g. the genetic router will find a solution to the 3-bit 
up/down counter, 7 out of 10 times that the program runs 10,000 generations. 



 

 

Table 3. Results obtained when routing other applications. 

Application Type Array 
size 

Mux-net 
size 

Num. of 
gen. 

Gen. of 
1st sol. 

Time to 
1st sol. 

Num. of 
solutions 

Routing 
prob. 

3-bit voter C 2×2 3 100 1 0.5 seg 82 1 
3-bit U/D counter S 3×3 5 10000 250 1.2 min 85 0.7 
4-bit CRC generator C 2×6 10 10000 80 45 seg 78 0.5 
2-bit complete adder C 4×8 15 30000 8500 60 min 75 0.4 
4-bit parity generator C 4×8 15 30000 2500 25 min 80 0.9 
5-bit parity generator C 5×6 11 20000 450 8 min 76 0.2 
Module-10 counter S 4×5 15 30000 6500 60 min 80 0.5 

5 Conclusions and Future Work 

The genetic router presented in this paper is capable of mapping a given multiplexer 
network into a MUXTREE array. The router could also be applied to solve routing 
problems in networks presenting a topology similar to that of MUXTREE arrays. 

The multiple solutions delivered by the genetic router open the possibility of a new 
level of redundancy in applications requiring high levels of availability. Different 
routings could be tried in the same hardware until functionality of the array is restored. 

There still are questions regarding the capabilities of the genetic router that require 
further research. How efficient in terms of resource-usage are the solutions found by 
the router? What is the maximum number of multiplexers that the router can solve? 
How sensitive the router’s performance is to changes in the GA parameters? How well 
the genetic router compares against other routing techniques? [12-15] Embryonics is a 
very vast field where much research remains to be done. 

Acknowledgements 

We like to thank the Institute of Electrical Research and CONACyT for the facilities 
and financial support given to carry out this research. Thanks to Dr. Luis Schettino  
and the reviewers for their valuable comments. 

References 

[1] Mange D., Sanchez E., Stauffer A., Tempesti G., Durand S., Marchal P. and Piguet C., 
“Embryonics: A new methodology for designing FPGAs with self-repair and self-
reproducing properties”, Technical report 95/152, EPFL, Logic Systems Laboratory, 
1995 

[2] Ortega C. and Tyrrell A., “Fault-tolerant Systems: The way Biology does it!”, 
Proceedings Euromicro 97 (Short Contributions), Budapest, IEEE CS Press, September, 
1997, pp.146-151 
 



Publicado en Evolvable Systems: From Biology to Hardware (ICES 2003) 
Tyrrell, Haddow y Torrensen (Eds.), Lecture Notes in Computer Science 2606 

 Springer-Verlag, 2003, pp.249-261 

 

[3] Tempesti G., Mange D., Stauffer A.and Teuscher C., “The BioWall: an Electronic Tissue 
for Prototyping Bio-Inspired Systems”, in A. Stoica et al. (Eds.), Proceedings of the 2002 
NASA/DoD Conference on Evolvable Hardware, IEEE Computer Society, Los Alamitos, 
Calif., 2002, pp.221-230 

[4] Restrepo H.and Mange D., “An Embryonics Implementation of a Self-Replicating 
Universal Turing Machine”, in Y. Liu, K. Tanaka, M. Iwata, T. Higuchi, M. Yasunaga 
(Eds.), Evolvable Systems: From Biology to Hardware, ICES 2001, volume 2210 of 
Lecture Notes in Computer Science, 2001, pp.74-87 

[5] Ortega C., Mange D., Smith S. and Tyrrell A., “Embryonics: A Bio-Inspired Cellular 
Architecture with Fault-Tolerant Properties”, Genetic Programming and Evolvable 
Machines, Vol.1-3, July 2000, pp.187-215 

[6] Tempesti G., Mange D. and Stauffer A., “A Robust Multiplexer-based FPGA Inspired by 
Biological Systems”, Special Issue of Journal of Systems Architecture on Dependable 
Parallel Computer Systems, February 1997, pp.719-733 

[7] Ortega C. and Tyrrell A., “MUXTREE revisited: Embryonics as a Reconfiguration 
Strategy in Fault-Tolerant Processor Arrays”, Proceedings of ICES98, Lausanne, 
Switzerland, September, 1998, Lecture Notes in Computer Science 1478, Springer-
Verlag, 1998, pp.206-217 

[8] Ortega C. and Tyrrell A., “Design of a Basic Cell to Construct Embryonic Arrays”, IEE 
Transactions on Computers and Digital Techniques, Vol.145-3, May, 1998, pp.242-248 

[9] Ortega C. and Tyrrell A., “Reliability Analysis in Self-Repairing Embryonic Systems”, in 
Stoica A., Keymeulen D. and Lohn J. (Eds.), Procs. of 1st NASA/DoD Workshop on 
Evolvable Hardware, Pasadena, CA, IEEE Computer Society, July 1999, pp.120-128 

[10] Holland J., Adaptation in Natural and Artificial Systems, MIT Press, 1992 
[11] Goldberg D., Genetic Algorithms in Search, Optimization and Machine Learning, 

Addison-Wesley, ISBN: 0201157675, 1989 
[12] Drechsler, Evolutionary Algorithms in VLSI CAD, Kluwer, 1998 
[13] Minato Shin-Ichi, Binary Decision Diagrams and Applications for Vlsi CAD,Kluwer 

International Series in Engineering and Computer Science, 342, 1996 
[14] Bushnell Michael Lee, Design Automation: Automated Full-Custom Vlsi Layout Using 

the Ulysses Design Environment, Perspectives in Computing, Vol 21, 1988 
[15] Cheng Chung-Kuan (Editor), Interconnect Analysis and Synthesis, Wiley-Interscience, 

October 1999 
 


