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Abstract 

Power harvesters that extract energy from vibrating systems via piezoelectric transduction 

show strong potential for powering smart wireless sensor devices in applications of health 

condition monitoring of rotating machinery and structures. This paper presents an analytical 

method for modelling an electromechanical piezoelectric bimorph beam with tip mass under 

two input base transverse and longitudinal excitations. The Euler-Bernoulli beam equations 

were used to model the piezoelectric bimorph beam. The polarity-electric field of the 

piezoelectric element is excited by the strain field caused by base input excitation, resulting 

in electrical charge. The governing electromechanical dynamic equations were derived 

analytically using the weak form of the Hamiltonian principle to obtain the constitutive 

equations. Three constitutive electromechanical dynamic equations based on independent 

coefficients of virtual displacement vectors were formulated and then further modelled using 

the normalised Ritz eigenfunction series. The electromechanical formulations include both 

the series and parallel connections of the piezoelectric bimorph. The multi-mode frequency 

response functions (FRFs) under varying electrical load resistance were formulated using 

Laplace transformation for the multi-input mechanical vibrations to provide the multi-output 

dynamic displacement, velocity, voltage, current and power. The experimental and theoretical 

validations, reduced for the single mode system were shown to provide reasonable 

predictions. The model results from polar base excitation for off-axis input motions were 

validated with experimental results showing the change to the electrical power frequency 

response amplitude as a function of excitation angle, with relevance for practical 

implementation. 
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1. Introduction 

 

The development of permanent embedded computing-based equipment has increased the 

demand from engineering industry to monitor or diagnose the health condition of structures 

and rotating machinery. The prevalent technological equipment still requires electrical power 

from the mains power supply or battery in order to read and transfer the electrical data signals 

via wireless sensor nodes into computer networks including data acquisition, instrument 

control and/or analyzers for condition health monitoring. An example in-depth theoretical and 

experimental review of such diagnosis and prognosis in the area of defence technology 

includes bearing vibration monitoring for engine turbomachinery as discussed by Howard [1]. 

The conventional battery systems have a limited lifespan for power production. The systems 

are still dependent upon the electrical power from the battery or mains power supply for 

recharging. This leads to the tedious task of replacing the conventional battery from the smart 

sensor device often located in remote or inaccessible areas. Machinery vibration presents an 

ideal application for piezoelectric power harvesting providing continuous power to sensor 

networks whenever the equipment is operating. An example for possible future development 

can be found in the application of aircraft sensor network systems to tackle self-diagnosis of 

engines and structures, [2]. 

 

     The application of power harvesting using cantilevered piezoelectric beams under input 

dynamic motion coupling with power electronic components has been an attractive field to be 

investigated both mathematically and experimentally by researchers. The investigation of a 

single mode of the mathematical model for scavenging low electrical power based on a range 

of frequency responses using the piezoelectric-based accelerometer and the cantilever 

piezoelectric models under input transverse base motion has also become a topic of interest. 

The electrical equivalent representation of the electromechanical piezoelectric structure has 

been discussed by Roundy and Wright [3], investigating the single mode of the piezoelectric 

beam with two different sizes of tip mass to show the trend of electrical voltage. Later work 

from duToit et al [4, 5] investigated a single mode of the mathematical models for scavenging 

low electrical power based on a range of frequency responses using the lumped-mass 

piezoelectric-based accelerometer model and the cantilever piezoelectric model using 

Rayleigh-Ritz’s method under input transverse base motion. The strain resulting from 

mechanical vibration associated with piezoelectric modes of operations of the cantilevered 

piezoelectric beam structure was shown to directly affect the electrical power output during 



3 
 

the dynamic response. In the analytical solution, the short and open circuit models of power 

harvesting were optimised to obtain power harvesting based on the frequency response under 

various load impedances. The comparison between the experiment and theory was also 

undertaken. However, the power at the resonance region seemed to under predict the results. 

Kim et al [6] further discussed the vibration energy harvester performance by considering the 

effects of tip mass geometry on the bimorph. The single mode of the electromechanical 

dynamic equations in scalar form given from duToit’s representation [4], was modelled based 

on the Rayleigh-Ritz’s method. The trends of tip transverse displacement, voltage and power 

harvesting with and without tip masses were plotted with respect to the variation of load 

resistances where slight difference of results between the model and experiment were found. 

Although, the purpose of simulation was the single mode FRFs, the multi-mode FRF model 

can provide a much more accurate representation as it can be adjusted to show the single 

mode response.  

 

The closed-form analytical model for a vibration power harvester using the cantilever 

piezoelectric beam under input transverse excitation has been investigated using the 

normalised eigenfunction form [7]. The constitutive electromechanical equations showed the 

frequency response analysis of the tip transverse displacement, voltage and power modelled 

under varying load resistance. The frequency response electrical voltage and power analytical 

results showed good agreement with the experimental measurements. Goldschmidtboeing and 

Woias [8] investigated different shaped rectangle and truncated triangular piezoelectric 

beams with varying tip mass under base transverse excitation using Ritz-Rayleigh’s method. 

They showed that varying the mass ratio between tip mass and piezoelectric mass and 

truncated ratio or shape ratio between the rectangle and triangular portion of the piezoelectric 

beam could be used for optimum power tuning. They noticed that the triangular shaped beam 

provided greater power when compared with the rectangular beam. Shu and Lien [10] 

discussed a cantilevered bimorph piezoelectric beam coupled with an electronic circuit under 

dynamic input force. They provided an analytical model to obtain the non-dimensional 

normalized parameters of displacement, voltage and electrical power where the formulations 

were used to obtain the optimal parameter functions. Renaud et al [9] discussed the unimorph 

piezoelectric beam under input impact load to generate the electric voltage. The impact load 

was from a slider that hit the tip of the piezoelectric element. The electrical equivalent 

method was used to analyse the coupled unimorph electrical and mechanical system using the 

lumped mass single degree of freedom model. Recent power harvesting  research using a new 
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piezoelectric material, the single crystal relaxor ferroelectric material (PMN-PT) has been 

investigated by Mathers et al [11], where the fabricated micro-piezoelectric cantilever beam 

with proof mass was used for predicting the vibration power harvesting. The use of 

piezoelectric material from PMN-PT with the interdigitated electrode (IDE) was aimed to 

improve the energy conversion efficiency where the use of varying proof mass from the 

polydimethylsiloxane (PDMS) aimed to tune the natural frequency. The analytical model of 

the elastic vibrating beam associated with the direct effect of the piezoelectric equation was 

used to give the electrical voltage frequency response. However, the modelled 

electromechanical dynamic behaviour of the piezoelectric beam did not consider the effect of 

backward piezoelectric coupling on the power harvesting model for the frequency responses 

of displacement, voltage and power.  

Smart structures and associated mathematical modeling has been an attractive field for 

many researchers with various applications, although the previous references have not clearly 

provided the analytical methods in terms of Hamiltonian mechanics. In the earlier 

mathematical concepts, [12, 13] the piezoelectric crystal plate equations were derived using 

variational calculus establishing the constitutive dynamic equations of the electromechanical 

components. Later on, the application areas were extended to control systems where this 

included the analytical methods for control of the bimorph vibration [14] and the usage of 

piezoelectric tubes subjected to periodic excitation [15] using Hamiltonian mechanics. Some 

recent developments of piezoelectric technology concern the usage of piezoelectric material 

placed as a patch onto the structure and subject to ambient mechanical vibration in order to 

convert the vibration to useful electrical energy. Recent mathematical study of the weak and 

closed forms of the electromechanical dynamic equations of the piezoelectric bimorph with 

tip mass [16, 17] were derived using the strong form of Hamiltonian’s principle.  The 

normalised Ritz eigenfunction form was used to further formulate the weak form method 

whereas normalised direct analytical solution using boundary value method was further used 

to formulate the closed form method. The Laplace transformation in terms of frequency 

response functions were then applied to the electromechanical dynamic equations in order to 

give multi-output for multi-input responses. The validation with the experimental results in 

[17, 18] was also given with good agreement by considering one and two input base motions 

on the piezoelectric bimorph.  

 

This paper presents a novel analytical model of the dynamic behaviour of an 

electromechanical piezoelectric bimorph beam based on the normalised Ritz method using 
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the weak form of Hamiltonian’s principle. The Laplace transform of the dynamic equations 

based on the strain-polarity-electric field effects of the piezoelectric bimorph under two input 

base transverse and longitudinal excitations has been used to show the multi-mode frequency 

response functions. This includes the effect of input base transverse and longitudinal 

excitations onto the bimorph, where the parametric electromechanical effects of the 

piezoelectric bimorph due to the input base excitation affected the existence of the strain 

fields. It is also noted that the electrical force and moment of the piezoelectric bimorph can 

be further extended to establish the forward and backward piezoelectric couplings due to the 

effect of the transverse and longitudinal stress field of the piezoelectric bimorph interlayer 

which can affect the mechanical and electrical dynamic behaviours. Moreover, the theoretical 

analysis and experimental results of the electromechanical bimorph frequency response 

functions (FRFs) under the input base transverse acceleration were validated using 

measurement of the tip absolute dynamic displacement, velocity, electrical voltage, current 

and power harvesting. In addition, the FRFs of the bimorph with the tip mass under the action 

of simultaneous transverse and longitudinal accelerations are analysed to show polar power 

harvesting results. 

 

2. Mathematical Analysis 

 
The constitutive electromechanical dynamic equations of the piezoelectric bimorph beam 

was formulated using the weak form of Hamiltonian theorem that consisted of the strain 

energy of the central bimorph substructure (brass shim), the linear electrical enthalpy for the 

upper and lower piezoelectric layers, and the kinetic energy of the bimorph including the tip 

mass. The application of typical PZT material was considered in the theoretical bimorph beam 

model using the plane-stress relationship, the {3-1} mode of operation and the induced 

electrical field was developed in the z-direction or thickness of the material. The cantilevered 

piezoelectric bimorph beam was considered to have simultaneous two input base transverse 

and longitudinal excitations. The constitutive dynamic equation after simplifying [16, 17] can 

be written as, 
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    The variables relu , relw , v , q, baseu  and basew  indicate the relative longitudinal and 

transverse displacement fields, voltage, electrical charge and input base longitudinal and 

transverse excitations, respectively. Moreover, the coefficients ( )kDC ,
11 , ( )kFC ,

11 , ( )kGR ,
31 , ( )kHR ,

31 , 

( )kS33 , ( )kAI , , ( )kCI , , ( )A
tipI , ( )C

tipI , ( )kD
xxN ,  and ( )kF

xxM , indicate the longitudinal extension and 

transverse stiffness coefficients reduced from plane stress, longitudinal extension and 

transverse piezoelectric couplings, capacitance of the piezoelectric element, zeroth and 

second mass moment of inertia of the bimorph, zeroth and second mass moment of inertia of 

the tip mass, and in-plane force and moment of the bimorph, respectively. Each coefficient 

from Eq. (1) is given in more detail in appendices A, B and C. Superscript  k  indicates the 

layers of the bimorph. It should be noted that the second integral represents the divergence 

theorem reflecting the boundary conditions over the surface S of the bimorph element in the 

direction xn of the unit vector normal to the x-axis. The second integral from Eq. (1) is 

sometimes called the generalised internal force and moment for every element discretisation 

and these become necessary when the element boundary S coincides with boundary of domain 

Ω  and their existence depends on external loads on certain nodes of the structure. The 

second integral can be a crucial part to be included when using finite element analysis if 

external loads are applied to the structure. In terms of the analytical approach proposed here, 

the second integral can be ignored because the displacement fields ( relu , relw ) and virtual 

displacement fields ( reluδ , relwδ ) were assumed as eigenfunction forms which meet the 

continuity of mechanical form or strain field and boundary geometry.  

 

The solutions of Eq. (1) can be obtained using eigenfunction series of longitudinal 

extension and transverse bending effects. The form of the solutions can be prescribed as,  
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where parameters, ( )xΨ r  and ( )xΘr  are defined as the independent mode shapes of relative 

motions in the form of eigenfunction series. In this case, these parameters can be determined 

using analytical solution forms for the cantilevered piezoelectric beam with a tip mass which 

can be formulated as shown in appendix D.  Corresponding to Eq. (2), Eq. (1) can be further 

formulated in terms of eigenfunction forms by setting virtual displacement forms ( )turδ ,

( )twrδ  and ( )tvδ  separately to obtain three independent dynamic equations using the 

variational principle. Parameters of virtual displacements meet the duBois-Reymond’s lemma 

to indicate that only dynamic equations have solutions. At this point, three dynamic equations 

of the piezoelectric bimorph beam can be formulated.   

 

The first dynamic equation represents the electromechanical piezoelectric bimorph under 

longitudinal extension. Here it is written as, 
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The second dynamic equation represents the electromechanical piezoelectric bimorph under 

transverse bending form. It can be stated as, 
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The third dynamic equation represents the electromechanical piezoelectric bimorph under 

electrical form. It can be written as, 
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or it can be differentiated with respect to time to obtain current and with the addition of an 

external resistor into Eq. (5) to give, 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 01
331 2

2
,

31
1

,
31 =−−+− ∫∑ ∫∑ ∫

==
tv

R
yxtvSyxtw

x
xΨ

Ryxtu
x

xΘ
R

loadΩ

km

r Ω
r

rkHm

r Ω
r

rkG dddd
d

ddd
d

d


 
 (6) 



8 
 

The constitutive dynamic equations from Eqs. (3), (4) and (6) can be reformulated in 

matrix form by including the mechanical damping coefficients after integration with respect 

to y to give,  
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It should be noted that the ^ symbol refers to the modified variables after multiplying with the 

width b of the bimorph. Eq. (7) represents the non homogeneous differential dynamic 

equation of the piezoelectric bimorph beam with two input base excitations after considering 

the rotary inertias of the bimorph and tip mass. In this case, we ignored the second part from
( )w
qrM which refers to the rotary inertia of the bimorph component. Eq. (7) can also be used for 

modelling the piezoelectric bimorph using either series or parallel electrical connection. The 

connections just depend on the chosen piezoelectric couplings and also the chosen internal 

capacitance which will be considered in the next section. In addition to that, other parameters 

from this case such as mass moment of inertia, stiffness coefficients, piezoelectric constant 

and permittivity are viewed as constant values. The analysis must also consider the geometry 

of the piezoelectric bimorph where it will affect all aspects of power harvesting performance. 

The geometry of the piezoelectric bimorph beam with the tip mass was modelled as shown in 
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Fig. 1. Variables L, hs and hp indicate the bimorph length, substructure thickness and 

piezoelectric thickness (same thickness between bottom and top layers), respectively. Other 

geometry parameters of tip mass can be found in Table 1.  

 
2.1. Normalised Constitutive Electromechanical Dynamic Equations 

Corresponding with the convergent eigenfunction forms of Eq. (2), Eqs. (3), (4) and (5) 

need to be modified in order to achieve the orthonormality conditions. In this case, we 

introduce the convergent space- and time-dependent Ritz eigenfunction forms as, 

      
( ) ( )∑

=
=

m

r

ti
r

w
rrel exΨcx,tw

1
)( ω   , 

   
  ( ) ( )∑

=
=

m

r

ti
r

u
rrel exΘcx,tu

1
)( ω                   (8) 

In terms of considering only the mechanical equation, Eq. (8) can be substituted into Eqs. 

(3) and (4) to give the independent algebraic equations of the eigenvalues corresponding to 

the longitudinal and transverse bending form as, 
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or Eqs. (9) and (10) can be respectively formulated into explicit forms as,  
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It should be noted that ( )u
rc and ( )w

rc are called the unknown Ritz coefficients for the respective 

longitudinal and transverse bending forms which refer to the eigenvectors in the mechanical 

domain. Since Eqs. (11) and (12) generate the set of m-eigenvalue algebraic equations, the m-
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eigenvectors for each eigenvalue can be stated as the generalized Ritz coefficients ( )w
krc  and 

( )w
krc . At this point, the generalized space-dependent Ritz eigenfunctions can be formulated 

[17] as,   

  ( ) ( ) ( )∑=Ψ
=

m

k
k

w
krr xΨcx

1
 ,  ( ) ( ) ( ) m,,rxΘcx

m

k
k

u
krr ....,21

1
==Θ ∑

=
           (13) 

The generalised Ritz mode shapes for Euler-Bernoulli bimorph beam can be normalised 

with respect to mass as,       

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
m

L
x
Ψ

ILΨIxxΨI

xΨ
xΨ

rC
tipr

A
tipr

L

0

A,k

r
r 1,2,....,r

d
dd

1/22
22

=





















++∫

=

ˆ

ˆ          (14) 

              ( ) ( )
( ) ( ) ( ) ( )

m

LΘIxxΘI

xΘxΘ

r
A

tip

L

0
r

A,k

r
r 1,2,....,r

d 22
=







 +∫

= 2/1
ˆ

ˆ                  (15) 

Corresponding to Eqs. (14) and (15), the normalised eigenfunction series forms can now 

be stated in terms of the generalised space- and time-dependent functions as,  

    ( ) ( ) ( )∑
=

=
m

r
rrrel twxΨx,tw

1

ˆ   , 
     

( ) ( ) ( )∑
=

=
m

r
rrrel tuxΘtxu

1

ˆ,                       (16) 

Corresponding to Eqs. (3) and (4), the orthonormalisations can be proven by using Eq. 

(16) and applying the orthogonality property of the mechanical dynamic equations for Euler-

Bernoulli bimorph beam [17] as, 

                         
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

rq
qrC

tipqr
A

tip

L

0
qr

A,k
x

LΨ
x

LΨILΨLΨIxxΨxΨI δ=++∫ d
d

d
dd

ˆˆˆˆˆˆˆ              (17) 

        ( ) ( ) ( ) ( ) ( ) ( ) rqqr
A

tip

L

qr
kA LLIxxΘxΘI δ=ΘΘ+∫ ˆˆˆˆˆ

0

, d  ,
 

( ) ( ) ( ) ( )
rq

u
r

L qrkD x
x

xΘ
x

xΘ
C δω

2

0

,
11

ˆˆ
ˆ =∫ d

d
d

d
d

   (18) 

                   

( ) ( ) ( ) ( )
rq

w
r

qL
rkF x

x

xΨ

x
xΨC δω

2
2

2

0
2

2
,

11

ˆˆˆ =∫ d
d

d
d

d                            (19) 

where rqδ is the Kronecker delta, defined as unity for rq =  and zero for rq ≠ . The Rayleigh 

mechanical damping can be reduced in terms of orthonormalisation as, 

          ( ) ( ) ( ) ( ) ( ) ( )
qr

u
r

u
rqr

u
r

u
qr

uu
qrC δωζδωβδα 2

2
=+=                          (20)

  
 

     ( ) ( ) ( ) ( ) ( ) ( )
qr

w
r

w
rqr

w
r

w
qr

ww
qrC δωζδωβδα 22

=+=                            (21)
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In this case, although the modal mechanical damping ratios can be determined 

mathematically, the chosen modal mechanical damping ratios ( )u
rζ  and ( )w

rζ were obtained by 

experiment to give accurate results across the resonance frequency regions. Applying the 

orthonormalisations from Eqs. (17)-(19) into the electromechanical piezoelectric bimorph 

beam equation from Eq. (1) gives, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )tuQtvPtututu base
u

r
u

rr
u

rr
u

r
u

rr  −=+++
22 ωωζ  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )twQtvPtwtwtw base
w

r
w

r
w

rr
w

r
w

rr  −=+++
22 ωωζ  

( ) ( ) ( ) ( ) ( ) ( ) 0ˆˆ =+++ tvRtvPtwPtuP LDr
w

rr
u

r                              (22) 
It is noted that because Eq. (22) has been normalised due to Eq. (16), the normalised 

parameters ( )u
rP , ( )w

rP , ( )u
rP̂ , ( )w

rP̂ , DP , ( )u
rQ and ( )w

rQ can be reduced as,  

              

( ) ( ) ( ) x
x

xΘRP
L

rkGu
r d

d
d

∫−=
0

,
31

ˆ
ˆ  ,  ( ) ( ) ( ) x

x
xΨRP

L
rkHw

r d
d

d
∫=
0

2

2
,

31

ˆˆ  

 

              

( ) ( )∑
=

=
m

r

u
r

u
r PP

0

ˆ   ,
     

( ) ( )∑
=

=
m

r

w
r

w
r PP

0

ˆ  ,
  

( )∫−=
L

k
D xSP

0
33

ˆ d    

             

          

( ) ( ) ( ) ( ) ( )LΘIxxΘIQ r
A

tip

L

r
kAu

r
ˆˆˆ

0

, +∫= d

 

,   ( ) ( ) ( ) ( ) ( )LΨIxxΨIQ r
A

tip

L

r
kAw

r
ˆˆˆ

0

, +∫= d   

 
Equation (22) can be solved using Laplace transforms. In this case, the multi-mode 

electromechanical dynamic equations of the piezoelectric bimorph system can be written as,   

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )( )













−+





 ++−= ∑

=
susQsPRsPss

sZ
su base

u
r

m

r

w
rLD

w
r

w
r

w
r

r
r

2

1

222 21 ωωζ    

( ) ( ) ( ) ( )( )



+ ∑

=

m

r
base

w
r

u
r

w
r swsQPsP

1

2                   (23)
 
 

( ) ( )
( ) ( ) ( )( )( ) ( ) ( ) ( )( )













−+++−= ∑
=

swsQsPRsPss
sZ

sw base
w

r

m

r

u
rLD

u
r

u
r

u
r

r
r

2

1

222 21 ωωζ  

( ) ( ) ( ) ( )( )



+ ∑

=

m

r
base

u
r

u
r

w
r susQPsP

1

2      (24)
   

( ) ( )
( ) ( ) ( ) ( ) ( )( ) ( )( ){ }




++= ∑

=

m

r
base

u
r

u
r

u
r

w
r

w
r

r

swsssQsP
sZ

sv
1

222 21 ωωζ    

( ) ( ) ( ) ( ) ( )( ) ( )( ){ }



+++∑

=

m

r
base

w
r

w
r

w
r

u
r

u
r susssQsP

1

222 2 ωωζ                   (25)
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The characteristic polynomial form from Eq. (22) can be formulated as,       

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )22

1

2

1

222

2222

22

22

w
r

w
r

w
r

m

r

u
r

m

r

u
r

u
r

u
r

w
r

LD
w

r
w

r
w

r
u

r
u

r
u

rr

sssPsssP

RsPsssssZ

ωωζωωζ

ωωζωωζ

++−++−

+++++=

∑∑
==

                    (26)
   

2.2. Multi-Mode Electromechanical Frequency Response Functions 
 
     Corresponding to Eqs. (23)-(25), the frequency response function (FRF) can be formulated 

by transforming ( )s  with ( )ωj . After applying some simple algebra, the superposition of 

electromechanical frequency responses of the piezoelectric bimorph can be formulated as, 

           ( ) ( ) ( )ωωω jjj FHG =                (27) 

where the FRF in matrix form can be stated to give, 

   

( )

( ) ( )
( ) ( )
( ) ( )
( ) ( )


















=

ωω
ωω
ωω
ωω

ω

jHjH
jHjH
jHjH
jHjH

j

4241

3231

2221

1211

H                                           (28) 

and the following output and input vector representations can be stated as,  

      ( ) ( ) ( ) ( ) ( )[ ]Trr jIjvjwjuj ωωωωω =G  ,  ( ) [ ]Ttj
base

tj
base eweuj ωω ωωω 22 −−=F           (29) 

The first multi-mode FRF represents the generalised longitudinal displacement function with 

respect to input longitudinal acceleration. In the case, the FRF can be obtained from input 

base longitudinal excitation by ignoring the input transverse excitation as,  

( ) ( )

ω
ωω

ω
ω

js
tj

base

r

eu
ju

jH
=−

=
211

                

     ( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( )

( )

( ) ( ) ( )

( )

( ) ( ) ( ) 


















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−

+−
−+

+−
−+
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−=

∑∑

∑
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=
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r
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r
w
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r
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w
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r
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u
r

w
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rLD

u
r

u
r

u
r

j

Pj

j

PjRPj

j

QPjQRPj

j
1

22

2

1
22

2

1
22

2

22

22

2

2
1

ωωζωω

ω

ωωζωω

ω
ω

ωωζωω

ω
ω

ωωζωω

           (30) 

Eq. (30) can be modified to obtain the FRF as a function of position of the piezoelectric 

element (x) and frequency ( )ωj  by transforming it back into the normalised longitudinal Ritz 

eigenfunction form as, 

( ) ( )
ω

ωω
ω

ω
js

tj
base

rel

eu
j,xuj,xH

=
−

= 211
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( )
( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( )

( )

( ) ( ) ( )
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( ) ( ) ( )
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



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



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
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


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ω
ω

ωωζωω

                    (31)
   

The FRF relating the input base transverse acceleration to the output longitudinal 

displacement can be obtained as, 

( ) ( )
ω

ωω
ω

ω
js

tj
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r

ew
jujH

=
−

= 212
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




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
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
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∑∑

∑

==

=

m

r
u

r
u

r
u

r

u
r

m

r
w

r
w

r
w

r

w
r

LD

m

r
w

r
w

r
w

r

w
r

w
r

u
r
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r
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1
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1
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ωωζωω

ω

ωωζωω

ω
ω

ωωζωω

ω

ωωζωω

                     (32)
  

 

Modifying Eq. (32) by transforming it back into the normalised Ritz longitudinal 

eigenfunction form gives, 
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ω

ωω
ω

ω
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=
−
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




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

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


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r

w
r

w
r

w
r

LD

m

r w
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2
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ω
ω

ωωζωω

ω

ωωζωω

                   (33)  

The multi-mode FRF represents the transverse displacement with respect to input 

longitudinal acceleration. If base-input transverse motion is ignored, the FRF of transverse 

motion related to the base input longitudinal excitation can be obtained as, 
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ω
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=
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




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
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
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∑∑

∑
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u
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u

r
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                    (34) 

Corresponding to the normalised Ritz transverse eigenfunction form in Eq. (16a), Eq. (34) 

can be modified to obtain the FRF as a function of position of the piezoelectric element ( )x  
and frequency ( )ωj  as  , 

( ) ( )
ω

ωω
ω

ω
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tj
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=

−
= 221  
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r
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                   (35)
  

 

The multi-mode FRF of transverse displacement with respect to input base transverse 

acceleration can be obtained as,  
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                   (36) 

Eq. (36) can be modified by transforming it back into the normalised Ritz transverse 

eigenfunction to obtain the FRF as a function of position of the piezoelectric element ( )x  and 

frequency ( )ωj  as, 
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ωω
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                      (37) 

The FRF relating the input base longitudinal acceleration to the output electric voltage can be 

obtained as, 
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The multi-mode FRF of the output electrical voltage with respect to the input base transverse 

excitation can be calculated, omitting the input base longitudinal excitation to give,  
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The multi-mode FRF relating the input base longitudinal acceleration to the output electrical 

current can be obtained as, 
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The FRF of the output electrical current with respect to the input base transverse excitation 

can be calculated, omitting the input base longitudinal excitation to give,  
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The multi-mode FRF of power harvesting with respect to the input base longitudinal 

acceleration can be expressed as, 
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The multi-mode FRF of power harvesting with respect to the input transverse acceleration 

can be calculated as,  
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The optimal multi-mode FRF power harvesting related to the transverse acceleration can be 

calculated by differentiating with respect to load resistance and setting the differentiable 

power function to zero. It is noted that parameter LR represents per-unit load resistance 

loadR1− . Corresponding to Eq. (43), the optimal load resistance can be formulated as,   
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It should be noted that the optimal load resistance can be substituted back into Eq. (43) to 

give the optimal power harvesting.  

 

Corresponding to Eqs. (30) and (32), Eq. (23) can be modified in terms of the generalised 

time-dependent longitudinal function  as, 

 ( ) ( ) ( ) basebaser wjHujHtu  ωω 1211 +=  

( ) ( )( ) ( )( )tj
base

tj
baser ewjHeujHtu ωω ωωωω 2

12
2

11 −+−=                         (45)
  

 

Corresponding to Eq. (16b), modifying Eq. (45) in terms of any position along the 

piezoelectric beam gives the steady state relative longitudinal displacement under two input 

base excitations as, 

( ) ( )( ) ( )( )tj
base

tj
baserel ewjxHeujxHtxu ωω ωωωω 2

12
2

11 ,,, −+−=              (46) 

The multi-mode absolute longitudinal displacement can be formulated in terms of Eq. (46) as, 
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tj
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12
2

11 −+−+=             (47) 
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It should be noted that the absolute displacement field was formulated as 

. The generalised time dependent relative transverse displacement 

in Eq. (24) can be modified corresponding with Eqs. (34) and (36) as, 

 ( ) ( ) ( ) basebaser wjHujHtw  ωω 2221 +=   

( ) ( )( ) ( )( )tj
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tj
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22
2

21 −+−=                       (48)
  

 

Corresponding to Eq. (16a), Eq. (48) can be modified into the steady state relative transverse 

displacement in terms of any position on the piezoelectric beam as, 
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2
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Corresponding to Eq. (49), the multi-mode absolute transverse displacement can be reduced 

as,  
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2
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It should be noted that Eq. (50) is formulated as ( ) ( ) ( )txwtwtxw relbaseabs ,, += . Eq. (25) can be 

modified into the generalised electrical potential response in terms of Eqs. (38) and (39) to 

give, 

   
    

( ) ( ) ( ) basebase wjHujHtv  ωω 3231 +=                       (51) 
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2
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Corresponding to Eqs. (40) and (41), the generalised electrical current response  can be 

obtained by modifying Eq. (25) and then multiplying with loadR1 to give, 

                                         ( ) ( ) ( ) basebase wjHujHtI  ωω 4241 +=                          (53) 
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2
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Corresponding to Eqs. (47) and (50), Eqs. (31)  and (37) can be modified to give the multi-

mode FRF of the absolute displacements and velocities related to the base input longitudinal 

and transverse accelerations at any position along the bimorph respectively as, 
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( ) ( ) ( )txututxu relbaseabs ,, +=
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It should be noted that Eqs. (47), (50) and (55) are applicable for analysing the absolute 

dynamic responses when comparing the results using the Laser Doppler Vibrometer (LDV) 

because the measured signal output from the Vibrometer  can be transferred into a digital 

signal FFT Analyzer to display the results. The results obtained from measurements can be 

the time dependent absolute displacement, velocity, acceleration, frequency spectrum and 

frequency response function located at any position along the piezoelectric bimorph.  

 

3. Experimental Validation 

 
In this section, the application of the electromechanical dynamic responses of the 

piezoelectric bimorph beam under two input base longitudinal and transverse excitations are 

considered by simulation and experiment. The results obtained from the analytical method 

can be validated by comparison with the experimental study. The chosen properties of the 

piezoelectric bimorph with centre brass shim were based on the PZT PSI-5A4E from Piezo 

Systems, INC. including tip mass as given in Table 1. Two types of experiments were 

conducted. First, the cantilevered piezoelectric bimorph beam with the tip mass was clamped 

at the base structure to provide only input base transverse excitation. Second, the rigid 

protractor base structure was used with incremental bimorph angle of 22.5o in order to vary 

the direction of input acceleration and to investigate the resulting bimorph electromechanical 

dynamic responses. The B & K impedance head type 8001, connected to the B & K Charge 

Amplifier Type 2635, was used to measure the input acceleration from the B & K exciter 

type 4809. Since the generating vibration signal amplitude needs to be regulated, the exciter 

was connected to the B & K Power Amplifier Type 2706. Moreover, the wave function 

generator, connected to the Power Amplifier, was used to create specific harmonic input 

excitation. The vibration of the tip mass located at the end of the bimorph was measured 

using a laser digital vibrometer Polytec PDV 100 by attaching a small piece of reflector tape 

onto the tip mass to measure the absolute dynamic displacement, velocity and frequency 

responses. All signal measurements from the charge amplifier, piezoelectric bimorph and 

vibrometer were connected to the B & K FFT Pulse Analyzer 3560B. The analyzer displayed 

the measurement results using the Pulse software with subsequent analysis conducted using 

the MATLAB software. The complete experimental setup is shown in Fig. 2. 



19 
 

The FRF obtained from the analytical analysis can be used to model the piezoelectric 

bimorph with either series or parallel connection and a purely resistive load. In this case, the 

parallel connection was chosen for the example theoretical results. The FRF can be used to 

model and analyse the frequency, displacement, velocity, voltage, current and power 

harvesting based on the chosen varying load resistances. The FRF was investigated with  

changing resistances of 560 Ω, 5.6 kΩ, 20 kΩ, 30 kΩ, 51 kΩ, 60 kΩ, 79 kΩ, 150 kΩ, 200 kΩ 

and 602 kΩ. The mechanical damping ratios were determined experimentally with a load 

resistance of 560 Ω approaching short circuit. The damping ratios for the transverse and 

longitudinal forms around the fundamental resonant frequency were found to be 013901 .w =ζ
 

and 03001 .u =ζ . In this case, the absolute dynamic displacement (considered as the total 

dynamic displacement) can also be obtained due to the input base motion and the relative 

dynamic displacement. The input acceleration for the analysis here was 306 mg (1 g = 

gravitational acceleration 9.81 m/s2).  

 

As can be seen from Figs. 3 and 5, the tip absolute dynamic displacement and velocity 

FRFs at the first resonance frequency shifts along the frequency axis as the load resistance 

changes. When the load resistance tended toward short circuit at the frequency of 76.1 Hz, 

the amplitudes (absolute displacement and velocity) tended to increase with reducing 

resistance. Opposite behaviour was found as the resistance approached the open circuit 

response at the frequency of 79.6 Hz, with increased response with increasing resistance. This 

indicated that the effect of the lowest and highest load resistances of 560 Ω and 602 kΩ on 

the bimorph tended to reduce the sensitivity of the electrical form around the resonance 

frequency region due to the dominant mechanical behaviour of the bimorph showing the 

highest amplitudes. Moreover, as shown in Fig. 4, tip absolute transverse displacement from 

the short to open circuit resonance frequencies of 76.1 and 79.6 Hz, respectively seemed to 

have similar trend pattern and different amplitude values with tip absolute velocity as shown 

in Fig. 6. The results shown from the tip displacement and velocity responses indicated close 

agreement between the experimental and analytical models with changing load resistance.  

As can be seen from Fig. 7, the first mode FRF of electrical voltage also gave close 

agreement between theoretical and experimental results under varying resistance. The trend 

of electrical voltage for short circuit conditions tended to give the lowest amplitude whereas 

the open circuit load gave the highest amplitude. In this case, the increase of load resistance 

from the short to open circuits resulted in an increasing voltage amplitude followed by an 



20 
 

increasing shift in the resonance frequency. The off-resonance frequency regions also gave 

increased voltage response with increasing resistance. Furthermore, Fig. 8 also shows very 

good agreement between the measured and simulated short and open circuit resonance 

amplitudes versus load resistance. The maximum electrical voltage amplitudes with the short 

and open circuit resonances can be reached with increasing load resistance. However, the 

maximum level of the open circuit resonance amplitude indicated a higher value compared 

with the short circuit when the short and open circuit amplitudes passed over the transitional 

point of 60 kΩ.  

 

As shown in Fig. 9, there was a slight increase of electrical current amplitude with 

decreasing load resistance followed by decreasing resonance frequencies. In this case, the 

electrical current frequency response with varying load resistance shows the 

electromechanical attenuation behaviour. The trend of electrical current shows a monotonic 

pattern opposite to that of the electric voltage response shown in Fig. 7. The analytical and 

experimental results gave very good agreement under varying load resistances as shown in 

Fig. 9. The short circuit frequency response seemed to give the highest amplitude at load 

resistance of 560 Ω and resulted in the lowest resonance around 76.1 Hz compared to other 

load resistances. The load resistance of 5.6 kΩ still indicated short circuit behaviour although 

the amplitude obtained was a bit lower than the load resistance of 560 Ω, while the resonance 

frequency still indicated the same value.  The open circuit load resistance of 602 kΩ gave the 

lowest current amplitude with the higher resonance frequency compared with other load 

resistances. Moreover, the maximum amplitudes of electrical current for both short and open 

circuit resonance frequencies under varying load resistance was achieved with decreasing 

load resistance as shown in Fig. 10. The level of maximum current amplitudes from short and 

open circuit resonances was shown to be different. In this point, the short circuit resonance 

amplitude below the transitional point of 60 kΩ gave higher current value compared with the 

open circuit resonance amplitude.  

 

The comparison of electrical power harvesting frequency response of the bimorph with 

varying load resistance is presented in Fig. 11 with close agreement between the theoretical 

and experimental results. It should be noted that the power harvesting resonance frequency 

response also shifts as the load resistance changes, showing a combination of trends from the 

voltage and current responses as expected. The FRF of voltage approaching short circuit 

conditions gave the lowest voltage amplitude whereas the FRF of electrical current seemed to 
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give the highest current amplitude with the same resonance frequency. This indicates that the 

power harvesting under short and open circuit conditions will not be optimal because 

although the tip absolute displacement or velocity were at maximum value, the electrical 

current and voltage amplitude results appeared to have opposite trends to each other. The 

result is that the short or open circuit resistance regions provide the lowest amplitude of 

power.  

Two maximum points from the power harvesting response curves in Fig. 11 involved load 

resistances of 20 kΩ and 200 kΩ, respectively, with the local minimum curve having 

resistance of 60 kΩ. The local maximum points showed higher transverse displacement and 

velocity amplitudes and also gave higher power harvesting results compared with the local 

minimum point obtained from the 60 kΩ resistance. The optimal power harvesting amplitude 

occurred with the load resistance of 60 kΩ over the resonance frequency region. This gave 

the lowest level of tip absolute dynamic displacement or velocity amplitude and was located 

at the intermediate curves from the dynamic displacement, velocity, electrical current and 

voltage. The short and open circuit resonance frequency power results are shown in Fig. 12 

under various load resistances showing that they reach the maximum power level with 

different load resistances as expected.  

Another important aspect of predicting power harvesting can be shown by setting the base 

protractor structure onto the piezoelectric bimorph with different angles (polar form) to 

simulate the effect of having input excitation with different orientation. The application of 

this case can be found in most industrial environments where the input base vibration source 

will give multidirectional inputs onto the piezoelectric beam structure. It should be noted that 

the majority of mechanical strain in the bimorph interlayer results from the transverse input 

base motion.  

The input base acceleration of the exciter for the polar tests was kept at a constant value of 

3 m/s2 for every angle. The resulting polar form results are shown in Fig. 13 for different 

frequencies and resistances. In this case, the angles of the base protractor structure were setup 

from 0o - 180o with the incremental angles of 22.5o. The polar power results show the 

symmetrical response for the angles from 0o-90o and 90o-180o as expected with very close 

agreement between the analytical and experimental results. The maximum power was 

measured at the angle of 90o due to the dominant transverse motion of the bimorph as 

expected from the model. The lowest power can be found at the angles of 0o and 180o due to 

the dominant longitudinal input base motion at this condition. The polar power harvesting 

results shown in Figs. 13a and 13b for the load resistances of 20 KΩ and 150 kΩ tended to 
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overlap each other. This situation can also be found in the results with the angle of 90o shown 

in Fig. 11 where the two amplitudes of power from the load resistances of 20 kΩ and 150 kΩ 

coincide for the frequencies of 77.71 Hz and 72.67 Hz. The comparisons between the 

analytical and experimental results still showed reasonable agreement. The polar power 

harvesting should be seen to be a result of the combination of both the transverse and 

longitudinal system response. Similar behaviour of power was also found from the protractor 

angles of 180o-270o and 270o-360o.  

 

4. Conclusions 

 
This paper has presented the comparison between analytical and experimental studies of a 

cantilevered piezoelectric bimorph beam with one and two input base transverse and 

longitudinal excitations. The resulting non-homogeneous electromechanical matrix 

differential equations were obtained using the weak form from Hamiltonian’s principle. The 

formulations can be used to model either series or parallel connections of the piezoelectric 

bimorph beam. In this case, we chose to present only the parallel connection as shown in the 

theoretical and experimental results. The solution forms were based on the normalised Ritz 

eigenfunctions and were manipulated using Laplace transforms to obtain the FRFs. The 

resulting analytical model provides multi-input dynamic excitation and multi-output 

electromechanical dynamic responses including time series-dependent electromechanical 

responses. As the formulations were given in terms of the multi-mode FRFs, the single mode, 

which is the main concern for power harvesting, can be easily obtained from the multi-mode. 

The results obtained from the single mode FRFs showed the changes in resonance frequency 

based on the load resistance changes. The comparisons between the analytical and 

experimental results were achieved with good agreement. Moreover, the experimental 

findings show that the maximum tip absolute displacement tended to give the lowest and 

highest electrical voltage for resistance values approaching the short and open circuit 

conditions respectively. Conversely, the maximum tip absolute displacement tended to give 

the highest and lowest electrical current approaching the short and open circuits conditions, 

respectively. This shows that the maximum dynamic displacement does not necessarily result 

in the highest current or voltage. The short and open circuit conditions were found to give the 

lowest amount of power. This indicates that the power harvesting can be maximised without 

maximising displacement, current or voltage. This situation was shown clearly for the load 

resistance value around 60 kΩ where the displacement at this load resistance showed the 
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lowest value but also gave convenient amplitudes for the electrical current, voltage and power 

across a broad frequency range. Finally, the polar power harvesting electromechanical 

dynamic response of the bimorph with the tip mass under two input base transverse and 

longitudinal accelerations also showed close agreement between the analytical and 

experimental results. The maximum power was achieved when the bimorph beam was under 

input transverse excitation at the angle of 90o as expected. Although the combination of input 

excitations (transverse and longitudinal) to the base bimorph can be shown with the interval 

angle of 0o < θ <90o or 90o< θ <180o, the generated power still resulted primarily from the 

transverse bending in the bimorph element where the input base transverse excitation played 

the major role of exciting the bimorph.     
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Appendix A. Determining mass moment of inertias of the piezoelectric bimorph and tip 
mass 

Coefficient mass moment of inertias from Eq. (1) can be simply formulated in terms of 

geometry and material characteristics of the piezoelectric bimorph. In terms of Fig. 1, the 

zero-th mass moment of inertia of the piezoelectric bimorph was given as,  
  

        
( ) ( ) ( )21, 2 A,

s
A,

p
kA ρbhρhI +=                          (A1) 

The densities
 

( )1Aρ , and ( )3Aρ ,  represent the material located within the upper and lower 

piezoelectric layers respectively and ( )3Aρ , represents the material of the middle layer of the 

brass shim. Furthermore, the second mass moment of inertia represents the rotary inertia of 

the bimorph which is formulated as,  

  

( ) ( ) ( )2
3

1
33

,

41223
2 C,sC,ss

p
kC ρhρhhhI +














−






 +=  ,                     (A2) 

where the densities
 

( )1Cρ , and ( )3Cρ ,  denote the same material located within the upper and 

lower piezoelectric layers respectively. It should be noted that ( ) ( ) ( ) ( )33 ,,,, C1CA1A ρρρρ ===  

and
 

( ) ( )22 ,, CA ρρ = . The zeroth mass moment of inertia of the proof mass based on Fig. 1 can 

also be formulated as,    

    
( ) ( )( ) ( )A

tiptipbsptiptip
A

tip ρslhhlhI +−= 2                      (A3) 

The second mass moment of inertia which is called the rotary inertia at the centre of gravity 

of the proof mass, can be written,
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         (A4) 

where /2lxx tipg1 −= , /2lxx bg2 −= and gx is the centre of gravity of the tip mass.  
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Appendix B. Determining stiffness coefficients for the piezoelectric bimorph interlayer 

The extensional stiffness coefficient of the piezoelectric bimorph can be stated as,   

              
( ) ( ) ( )2,

11
1,

11
,

11 2 D
s

D
p

kD QhQhC +=                             (B1) 

The transverse stiffness coefficient can be formulated as, 
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where 11Q represents the plane stress-based elastic stiffness of the bimorph beam.  
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Appendix C. Determining forward and backward piezoelectric coupling coefficients and 
internal capacitance of the piezoelectric bimorph 
 
 The piezoelectric coupling 31R̂ in terms of series and parallel electrical connections will be 

discussed in detail and new techniques for formulating the piezoelectric coupling will also be 

given. The electric field of the piezoelectric bimorph depends on the positive and negative 

terminals located on the lower and upper surfaces of the piezoelectric element, respectively. 

Each connection (the series and parallel connections) can be arranged into two types of poled 

configurations i.e. X-poled and Y-Poled which depends on the direction of polarities and 

strain effect between the piezoelectric benders (upper element and lower element). As 

considered previously, the piezoelectric bimorph is not only assumed to undergo pure 

transverse bending but it also undergoes additional deformation i.e. longitudinal extension, 

which is reflected in the strain fields of the Euler-Bernoulli’s beam expression. This will 

affect the polarisation of the piezoelectric bimorph which depends on strain at the lower and 

upper layers due to input mechanical vibration and also the chosen type of connections. The 

piezoelectric bimorph is assumed to have symmetrical geometry with the same material in the 

upper and lower layers and a brass centre shim. At this point, when the piezoelectric element 

was initially undeformed, the polarisation direction, for example, was in the z-axis 

(perpendicular to the bimorph length) giving the initial polarized state. Subsequently, when 

tensile stress acts perpendicular to the z-axis on the element, the polarisation will behave in 

the opposite direction to the z-axis. Conversely, when the piezoelectric element is under 

compressive stress perpendicular to the z-axis, the polarisation will be in the same direction 

as the z-axis. This indicates that the change of stress from tensile to compressive or vice versa 

in the piezoelectric element will result in a reversal of the direction of polarisation [18]. This 

situation is known as the direct piezoelectric effect where the polarisation is proportional to 

the stress field and the stress field is also proportional to the strain field which can be stated 

in terms of Einstein’s summation convention as jiji dP σ= . At this point, the polarisation of 

the piezoelectric bimorph undergoes X-poling and Y-poling in one type of connection 

because the piezoelectric bimorph was considered mathematically under two input-base 

excitations using coupling superposition of the elastic-polarity field. When the piezoelectric 

bimorph beam is arranged for parallel connection as shown in Fig. C.1, two poling vectors 

cross in the piezoelectric material (upper and lower layers), which is X-poled (opposite 

polarisations between upper and lower layers) due to the longitudinal extensional term and Y-

poled (same polarisations between upper and lower layers) due to the transverse bending 
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term. On the other hand, the series connection with the same material can also have two 

poling effects given by the Y-poling due to the longitudinal extension term and X-poling due 

to the transverse bending term. In this case, the cantilever piezoelectric bimorph with two 

input excitations modelled both electrical connection types. It is noted that ( )k,GR31 represents 

the backward and forward piezoelectric couplings for the longitudinal extension term and
( )H,kR31 represents the backward and forward piezoelectric couplings for the transverse 

bending term. 

 

Case I.  Series electrical connection.  

a)  Piezoelectric coupling for X-poling due to transverse bending can be formulated as, 
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b) Piezoelectric coupling for Y-poling due to longitudinal extension can also be stated as, 
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The capacitance of the piezoelectric element was calculated as,  
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It should be note that the upper and lower layers of the piezoelectric bimorph will have the 

same material and geometrical structure, thus the permittivity of the piezoelectric element 

will be ( ) ( ) εςςς 33
3

33
1

33 == . It should be noted that ες33  is the permittivity at constant strain that 

can be formulated as 31313333 de−= σε ςς  or EQd 11
2
313333 −= σε ςς  where ,1 1111

EE sQ = σς33  is the 

permittivity at constant stress and Es11  is the elastic compliance at constant electric field. 

Case II.  Parallel electrical connection 

a)  Piezoelectric coupling for X-poling due to longitudinal extension can be formulated as, 
( ) ( ) ( )
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b) Piezoelectric coupling for Y-poling due to transverse bending can be formulated as, 
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The capacitance of the piezoelectric element for parallel connection was given by, 
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Appendix D. Determining the space-dependent eigenfunction forms of the Euler-
Bernoulli piezoelectric bimorph beam with tip mass 

 

As mentioned previously, the space-dependent eigenfunctions can be used to develop the 

solution forms of the dynamic equations (Eq. (7)). To obtain the solution forms for Eqs.  (3), 

(4) and (6), mechanical dynamic equations of transverse bending and longitudinal extension 

for the cantilevered piezoelectric bimorph beam with tip mass must be established 

independently to obtain the mode shapes or space-dependent eigenfunctions. These mode 

shapes are solution forms of the eigenfunction series to be used in Eq. (7). Firstly, the 

transverse bending dynamic equation for the cantilevered piezoelectric bimorph beam can be 

formulated as,  
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If rotary inertia from the piezoelectric bimorph is ignored, then ( ) ( )kFkA CI ,
11

2,4 ˆˆ ωµ =  will 

give four roots,  

            jμλ,μλ ,, ±=±= 4321  

The boundary condition of the transverse bending equation can be formulated with the tip 

mass and rotary moment of inertia from the tip mass as, 
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The characteristic equation can be obtained after manipulation to give,  
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where, 
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The frequency equation and eigenvalues can be calculated by analysing the determinant from 

Eq. (D3) to give,  
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After applying boundary conditions and some algebraic calculations, the mode shape can 

now be formulated as, 
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Secondly, the dynamic equation of longitudinal motion for the cantilevered piezoelectric 

bimorph beam can be written as, 
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Eq. (D7) can be modified into a characteristic equation and two roots from the characteristic 

equation can be obtained as, 
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The boundary condition can be formulated as, 
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The frequency equation and eigenvalues can be calculated by applying boundary conditions 

to give, 
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After applying boundary conditions and some algebraic calculations, the mode shape can 

now be formulated as, 

  ( ) xbxΘ rr γsin1=                                   (D10) 
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Fig. 1. Piezoelectric Bimorph Beam with a Tip Mass 

Material  properties Piezoelectric    Brass   Geometry properties  Piezoelectric  Brass 
Young’s modulus , 11Q   (GPa) 66 105 Length , L (mm) 30.1   30.1 
Density,  ρ   (kg/m3) 7800 9000 Thickness, h (mm) 0.19 (each) 0.13 
Piezoelectric constant, d31 (pm/V) -190 - Width, b (mm) 6.4 6.4 

Permittivity, σς 33  (F/m) 1800 oς  - First coefficient ( )A
tipI (kg)†        0.0022        

permittivity of free space, oς (pF/m) 8.854 - Third coefficient ( )C
tipI (kg m2)†       7.3743 910−×  

† Calculated according to the geometry and material properties of tip mass and the rotary inertia at centre of gravity of tip mass  
   coincident with the end of  the bimorph length as shown in Fig. 1 where ltip= 8.1 mm, htip= 5.7 mm, lo= 5 mm and stip= 6.4 mm (width).  
   First and third coefficients refer to zeroth and second mass moment of inertias respectively 

Table 1 Characteristic properties of the piezoelectric bimorph system. 
 

 

Fig. 2.  (a) Experimental Setup  and (b) Piezoelectric bimorph beam with tip mass  under parallel connection  

(a) 
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Piezoelectric Bimorph  
with parallel 
connection   

1.  Computer 
2.  B & K FFT Analyzer Type 3560B 
3.  B & K Power Amplifier Type 2706 
4.  B & K Charge Amplifier Type 2635 
5.  Arbitrary waveform Generator 
6.  B & K Exciter Type 4809 
7.  Piezoelectric Bimorph with    

 base structure connected to B & K 
impedance head Type 8001 

8. Laser Vibrometer Polytec PDV 100  

(a) (b) 
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Fig. 3.  FRFs of tip absolute Dynamic Displacement Analytical results (Solid line) and Experiment (Round dot) 
 

Fig. 4. Tip absolute Dynamic Displacement versus Load Resistance under the Short circuit  
            Resonance Frequency of 76.1 Hz and Open Circuit Resonance Frequency of 79.6 Hz 
 
 

Fig. 5. FRFs of tip absolute Dynamic Velocity with Analytical results (Solid line) and Experiment (Round dot) 
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Fig. 6. Tip absolute Dynamic Velocity versus Load Resistance under the Short circuit Resonance   
             Frequency of 76.1 Hz and Open Circuit Resonance Frequency of 79.6 Hz 
 
 

Fig.7. FRFs of Electrical Voltage with the Analytical results (Solid line) and Experiment (Round dot)  
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Fig. 8. Electrical Voltage versus Load Resistance under the Short circuit Resonance Frequency of    
               76.1 Hz and Open Circuit Resonance Frequency of 79.6 Hz 
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Fig. 9.  FRFs of Electrical Current with Analytical results (Solid line) and Experiment (Round dot) 

Fig. 11. FRFs of Power Harvesting with Analytical results (Solid line) and Experiment  (Round dot) 
            Including Optimal Values From Local Minimum to Maximum (Black Square)   
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Fig. 10. Electrical Current versus Load Resistance under the Short circuit Resonance Frequency of   
             76.1 Hz and Open Circuit Resonance Frequency of 79.6 Hz 
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a) b) 

c) 
d) 

Fig. 12. Power Harvesting versus Load Resistance under the Short circuit Resonance   
              Frequency of 76.1 Hz and Open Circuit Resonance Frequency of 79.6 Hz 
 
 

Fig. 13. FRF of Polar Power Harvesting from measurement (W/(306 mg)2) at 20 kΩ       ,at 60 kΩ       , at 150 kΩ      and 
from theoretical at 20 kΩ               , at 60 kΩ                , at 150 kΩ              , : (a) 72.67 Hz (b) 77.71 Hz (c) 75 Hz and (d) 
80 Hz 
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Fig. C.1. Cantilevered piezoelectric bimorph beam with two input base longitudinal and transverse 
excitations under electrical parallel connections. 


