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Abstract 

Raman spectroscopy has been widely used in the structural characterisation of 

various carbonaceous materials. Through spectral deconvolution, FT-Raman 

spectroscopy has been used to gain insights into the transformation of char structure 

during gasification, providing new evidence to understand the char gasification 

mechanisms. These studies have mainly focused on the first-order Raman spectra in 

the range between 800 and 1800 cm-1. Additional information can be gained from the 

second-order Raman spectra. This study aims to develop a new spectral 

deconvolution scheme for the second-order Raman spectra of chars from the 

gasification of coal and biomass. As our initial attempt, the second-order Raman 

spectra of chars in the range between 2,000 and 3,300 cm-1 were deconvoluted into 

7 bands representing the main structural features in the chars. Both total Raman 

peak area and band area ratios are used to gain information about the structural 

features of char. Using chars from the gasification of WA Collie sub-bituminous coal 

in CO2 and H2O as examples, the implication of the first-order and second-order 

Raman spectral data in terms of gasification mechanisms is discussed. 

 

Keywords: Raman spectroscopy; Second order; Char structure; Gasification; Coal; 

Biomass 
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1. Introduction 

 

Gasification is an effective method to convert a solid fuel into a high value 

gaseous fuel [1]. An important aspect of gasification is the reaction between char 

and gasifying agents to produce syngas [2]. This is a heterogeneous gas-solid 

reaction and is very complicated as a result of changes in the char structure during 

gasification [2,3]. Therefore, understanding the transformation of structural feature of 

char during gasification and the effects of char structure on its gasification reactivity 

is critically important for a better understanding of the gasification mechanisms [4-7]. 

Raman spectroscopy has been widely used as a powerful tool to characterise 

various carbonaceous materials due to its ability to response to symmetric vibration 

of less or non-polar bonds [8,9]. A Raman spectrum represents the scattering due to 

many types of distinctly different bonds in the char. There are two Raman spectral 

regions, in the ranges of ~ 800 to 1800 cm-1 (first order) and ~ 2,000 to 3,300 cm-1 

(second order), that are of interests in understanding the structural features of a 

carbonaceous material. Much has been done to investigate the char structure 

through deconvolution and analysis of various bands in the first-order Raman 

spectra [10-15]. Like a first-order Raman spectrum, a second-order Raman spectrum 

is also the summation of scattering from many bonds. If deconvoluted properly, a 

second-order spectrum can also provide additional detailed information about the 

skeletal structure of a carbon-based material. However, second-order Raman 

spectroscopy has been mainly used for the characterisation of highly ordered carbon 

materials such as graphite [9,16,17]. Little study has been carried out on the highly 

disordered carbon materials such as chars from the pyrolysis and gasification of coal 

and biomass. Even for some research that analysed the second-order Raman 
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spectrum of some highly disordered carbon materials [18-25], most samples have 

undergone a high temperature treatment (higher than 1000 ˚C) [18,19,24,25], 

resulting in the samples have become crystallisation and graphitization. Therefore, 

the second-order Raman spectra of such samples were simply deconvoluted into 

three or four bands and the interpretation of these bands follow the bands 

assignment of highly ordered carbon materials [19-25]. 

Obviously, the second-order spectra of chars from the pyrolysis and gasification 

process (<1000 ˚C) differ considerably from that of highly ordered materials or highly 

graphitized materials. A simple adoption of the concept of bands in the second-order 

spectra for highly ordered carbon materials would be very inappropriate for the 

analysis of char structure. Unlike the second-order spectra of graphite-like materials 

that exhibit a clearly-resolved strong peak of 2D (overtone of D band) and a peak of 

D+G (combination of D band and G band) [9,16,17], the second-order spectrum of a 

char could show a very broad band. The overlaps between the 2D and D+G bands 

as well as the shoulders at the two sides of the 2D and D+G broad bands in the 

second-order Raman spectrum of a char could contain much information about the 

structural feature of the char. Therefore, instead of just considering the 2D and G+D 

bands, the second-order Raman spectrum could be deconvoluted into more bands in 

order to acquire detailed information about the chemical structure of the char. In 

addition, because of the differences in crystal structure between graphite and 

amorphous carbon, simple applications of the interpretation of the second-order 

Raman spectra of highly ordered materials to chars would result in some misleading 

information and miss some important information about the skeletal carbon 

structures.  
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In our previous study [26], a WA Collie sub-bituminous coal was gasified at 

different temperatures (800, 850 and 900 ˚C) in atmospheres containing steam and 

CO2. The Raman spectra of char samples collected after varying extents of 

gasification were acquired by using a laser with a wavelength of 1,064 nm [11,26]. In 

this study, the same spectra in the second-order region have been analysed. 

Compared with our previous work [4,6,7,11-15,26] which mainly focused on the 

analysis of the first-order Raman spectra, a new spectral deconvolution method for 

the Raman spectra in the second-order region was established in order to acquire 

detailed information about the changes in char structure during gasification. The 

information about char structure from the second-order region is compared with that 

of the first-order region and complementary or additional information was found 

through analysis of the second-order Raman spectra. 

 

2. Experimental  

 

2.1 Gasification of coal  

 

The details of the gasification experiments have been presented previously [26]. 

Briefly, Collie sub-bituminous coal, supplied by the Muja Power Station in Western 

Australia, was used. It has an ultimate composition of 75.7% C, 4.5% H, 1.4% N, 0.5% 

S and 17.9% O [26]. The gasification experiments were carried out in a fluidised-

bed/fixed-bed reactor [26,27] with coal particles being heated up rapidly. 
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2.2 Char characterisation   

 

The acquisition of Raman spectra of chars were detailed before [26]. The same 

spectra were used in this study. Briefly, a Perkin-Elmer Spectrum GX FT-IR/Raman 

spectrometer with an excitation laser of 1,064 nm was used to acquire the Raman 

spectra of chars [11,26]. A char sample was firstly ground into powder and then 

diluted and ground with spectroscopic grade KBr [11,26]. The char concentration of 

0.25 wt% in KBr-char mixture exhibited the plateau total Raman intensity in the first-

order Raman region [26]. The total Raman peak area in the second-order Raman 

region had also reached the plateau with this char concentration as shown in Figure 

1. An InGaAs detector was used to collect Raman scattering using a back scattering 

configuration [11,26]. Each spectrum represents the average of 200 scans and the 

spectral resolution was 4 cm-1 [11,26]. Baseline correction was carried out on each 

spectrum using the software provided by Perkin-Elmer with the spectrometer [11,26]. 

The first-order and second-order regions had different baselines.  

 

3. Deconvolution and band assignment of the second-order Raman spectra 

 

The second-order Raman spectra of chars in the range between 2,000 and 3,300 

cm-1 were curve-fitted with 7 mixed Gaussian and Lorentz bands using the GRAM/32 

software. The position and assignment of these 7 bands are briefly summarized in 

Table 1, which we believe represent the typical structural features of chars from the 

pyrolysis and gasification of coal and biomass.  

In the second-order spectra of sp2 carbon materials, there is a strong Raman 

feature appearing in the range of 2,500-2,700 cm-1, and it is called the 2D band to 

mean that it is the overtone of D band in the first-order region [9,16,17]. In the study 
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of the second-order Raman spectra of highly ordered carbonaceous materials, the 

2D band was considered to originate from a double resonance, involving two iTO 

phonons near the K point of the unit cell [9]. The intensity of the 2D band was 

believed to be related to the number of grapheme layers and the stacking order 

[9,16,17]. Unlike the defect-induced D band in the first-order region, the 2D band 

does not indicate any kinds of disorder or defect for the graphite-like material 

[9,16,17,28,29]. However, the “crystal” structure of char is quite different from the 

graphite-like carbon materials. Chars from the pyrolysis and gasification of coal and 

biomass are highly disordered carbonaceous materials with a wide variety of O-

containing groups and sp2-sp3 or sp3-sp3 cross-linking structures [11]. According to 

the bands assignment for the highly dis-ordered materials [11], the D band mainly 

represents aromatics with not less than 6 rings. For graphitic materials, the D band 

and 2D band come from two different physical scattering processes so there is no 

direct relationship in band intensity between these two bands [9,16,17,28,29]. 

However, a char from the gasification of coal or biomass does not have similar lattice 

structure and therefore its D and 2D bands do not necessarily originate from two 

scattering processes. Based on the vibrational theory of the overtone process for 

chemical structures [8,30], it is believed that the D band and the 2D band come from 

the same vibration mode for the amorphous carbon materials. Therefore, the 

interpretation of the 2D band in the second-order spectra of char should be the same 

as the D band in the first-order [11], i.e. representing the large aromatic ring systems 

(no less than 6 fused rings). It is also expected to have close relationship with the D 

band in term of the band intensity in the second-order Raman spectra. 

Another main band in the second-order spectra of carbonaceous materials is the 

D+G band located in the range of 2800-2950 cm-1 with an exciting laser in the visible 
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range [16,17,24,25]. In the study of the highly ordered carbon materials, this band is 

considered as a disorder-induced band and would disappear with increasing 

crystallinity [16,24]. Amorphous carbon materials such as char from gasification 

would not have a band of the same nature in their second-order spectra. Instead, in 

this study, the D+G band is assigned to the aromatic ring structures of amorphous 

carbon materials. 

Different from the graphite-like materials, vast amounts of spectral residue would 

be left if only 2D and D+G bands were considered to deconvolute the second-order 

Raman spectra of chars. Based on the spectra of some model aromatic compounds 

[30] and considering the structure of char from coal/biomass gasification process 

[11-15], two bands have been assigned in the region between the 2D band and D+G 

band. One is the overtone of the fundamental vibrations of aryl methyl functional 

groups at around 2,750 cm-1 [30] and named as 2VR (in order to correspond with the 

band name VR in the first-order [11]). The other is the (2D)L band (standing for 2D left) 

at around 2,650 cm-1. These two bands are mainly found in amorphous carbon 

materials [24,25,30]. In this case, 2VR+(2D)L can represent the small aromatic ring 

systems, and it is believed to decrease with the condensation of aromatic ring 

systems according to some Raman spectra of amorphous carbon materials that 

have been heat-treated at high temperature [24,25]. 

In addition, there is a weak peak [16,25,31,32] in the range of 2350-2500 cm-1 that 

can be found in the second-order Raman spectra of some highly ordered carbon 

materials by an exciting laser in the visible range, showing no dispersive behaviour 

with different laser excitation energy [31,32]. Some believe that this band is related 

to 2LO phonons second-order scattering [31], while others explain that this band 

originates from the combination of the D band and the modulation around 1,100 cm-1 
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[32]. Based on the band assignment in the first-order Raman spectra [11], in the 

second-order Raman spectra of chars by an exciting laser at 1,064 nm, the 

frequency of this band is almost twice of that of the S band. Therefore, in this study, 

this band is assigned to the overtone of S band, named as 2S band, representing the 

sp3-rich structures, sp2-sp3 carbonaceous structures and other cross-linking 

structures in char.  

In addition to the five bands assigned above, other two bands, a (D+G)L band 

(standing for D+G band left) at 3,060 cm-1 [28] and a 2G band (overtone of G band) 

at 3,180 cm-1 [16,25], were assigned to the aryl CH vibration and aromatic ring 

structures respectively.  

During spectral deconvolution, band positions were fixed whilst different maximum 

limits were applied to restrain the bandwidths. A typical example of the spectral 

deconvolution/curve-fitting of a second-order Raman spectrum of char using the 7 

bands is shown in Fig. 2. Similar degrees of successful curve-fitting can be found for 

all other char samples investigated in this study.  

Although the second-order Raman spectra of chars were curve-fitted with 7 bands, 

the discussion of Raman spectroscopic data will be mainly focused on three bands, 

2D, 2VR+(2D)L and 2S, which represent the main chemical structure in char and are 

much sensitive to the structural changes. D+G band and two other minor bands, 2G 

and (D+G)L, actually represent the typical aromatic structures in carbon-based 

materials and are less sensitive to the structural changes. Thus, they will not be 

discussed further here.  
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4. Results and discussion  

 

4.1 Total peak areas of the second-order Raman spectra of chars from the 

gasification of WA Collie sub-bituminous coal 

 

The observed Raman intensity would be affected by both Raman light scattering 

ability and the light absorption ability of char. In the first-order region, the electron-

rich structures such as the O-containing groups in char tend to have high Raman 

scattering ability mainly due to the resonance effect between O and O-connected 

aromatic ring [11]. Therefore, their presence tends to increase the total first-order 

Raman intensity [11]. On the other hand, the increasing condensation of the 

aromatic ring systems in char would increase the light absorptivity and thus tends to 

decrease the observed Raman intensity [11].  

The presence of O-containing structures and the condensation of aromatic ring 

systems are expected to have effects on the observed second-order Raman intensity 

similar to those in the first order region. Figure 3 exhibits the total peak areas of the 

second-order Raman spectra in the region of 2000-3300 cm-1, considered as the 

total second-order Raman intensity, of chars as a function of the gasification holding 

time. For the chars produced from the gasification in steam-containing atmospheres 

(15% H2O-Ar and 15% H2O-CO2), the total second-order Raman intensity increased 

with increasing gasification temperature and holding time. However, the second-

order total Raman intensity is almost constant (with large scatters) for the chars 

produced from the gasification in pure CO2. These results are consistent with the 

first-order Raman data [26]. These two different behaviours in terms of the total 

Raman intensity indicate that the gasification reaction mechanisms of char in H2O 

and CO2 atmospheres are different [26]. The results suggest that the oxygen-



11 

containing species derived from steam increased the O-containing groups in char 

[26]. With increasing holding time and gasification temperature, more and more O-

containing groups have formed, hence increasing the total Raman peak areas of 

chars obtained from the gasification in steam-containing atmospheres. While for CO2 

gasification, the concentration of such structure is almost constant (with large 

scatters). In addition, the generally lower total Raman peak areas of chars from 

gasification in CO2 indicate that the concentration of O-containing groups in char 

must be lower for gasification in CO2 than that in steam.   

 

4.2 Ratios of some major bands to the total Raman intensity in the second-order 

spectra  

 

4.2.1 The ratio of the 2D band to the total second-order Raman peak area  

 

As are exhibited in Fig. 4, for the chars produced from the gasification in steam-

containing atmospheres, a higher temperature resulted in a higher I2D/ITotal ratio, 

indicating the growth in the relative concentrations of large aromatic ring systems in 

char. In addition, with increasing gasification holding time, the I2D/ITotal ratio increased 

initially before it reached a plateau. The same results can also be found in the first-

order Raman in term of the ID/ITotal ratio [26]. However, the change of such intensity 

ratio is not obvious for the chars from CO2 gasification in the second-order Raman, 

possibly because of the low total Raman intensity, and thus the low signal-to-noise 

ratios for the chars from the gasification in CO2. Actually, in the first-order Raman, 

the ID/ITotal ratio increased with increasing gasification temperature and holding time 

for the chars from CO2 gasification [26].  
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4.2.2 The ratio of the 2VR+(2D)L band to the total Raman intensity  

 

The overlap between the 2D band and the D+G band has been deconvoluted into 

2VR band and (2D)L band, the intensity of these two bands can be taken as a brief 

reflection of the concentrations of smaller aromatic ring systems in char. 

As is shown in Fig. 5, the decreases in the band ratio I2VR+(2D)L/ITotal for chars from 

the gasification in steam-containing atmospheres indicate that the relative 

concentrations of small aromatic ring systems decreased with increasing gasification 

temperature and holding time. These results are consistent with the first-order 

Raman data [26] and suggest that the smaller aromatic ring systems were either 

preferentially consumed by gasification or converted into large ones during 

gasification [13-15,26]. On the other hand, for the chars from CO2 gasification, there 

is no obvious trend except a possible decrease in the band ratio I2VR+(2D)L/ITotal with 

increasing gasification temperature from 800 to 900 ˚C. However, the relative band 

ratio I(Gr+Vl+Vr)/ITotal in the first-order Raman decreased with increasing gasification 

temperature and holding time [26]. This difference is also possibly because of the 

low signal-to-noise ratios in the second-order Raman for the chars from the 

gasification in CO2, which made it difficult to resolve weak trends in band area ratios. 

In addition, the relative concentrations of small aromatic rings in the chars from 

gasification in CO2 were higher than those in the chars from gasification in steam-

containing atmospheres, also demonstrating that the presence of H radicals from 

H2O dissociation can enhance the transition from the relatively small to large 

aromatic ring systems in char as we revealed in the previous studies [14,15,26].     
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4.2.4 The ratio of the 2D band to the 2VR+(2D)L band  

 

The Raman band area ratio I2D/I2VR+(2D)L can be used as a more direct indication of 

the transition of small to large aromatic ring systems in char samples. As shown in 

Fig. 6, for the chars produced from the gasification in steam-containing atmospheres, 

this band area ratio increased with increasing gasification temperature and holding 

time, which indicate that small aromatics are gradually consumed and/or converted 

into large ones in char structure. The same trends can also be found in the related 

ratio ID/I(Gr+Vl+Vr) in the first-order Raman spectral data [26]. Moreover, the intensity 

ratio I2D/I2VR+(2D)L of the char from the gasification in pure CO2 was lower than the 

char from the gasification in the steam-containing atmospheres. This can also be 

explained by considering that the H radicals generated by H2O could penetrate into 

char matrix and induce the condensation of the aromatic rings [14,15,26], thereby 

increasing the relative concentrations of large aromatic ring systems in char structure. 

 

4.2.5 The ratio of the 2S band to the total Raman intensity  

 

The intensity of 2S band can be used as indication of the sp3-rich structures such 

as alkyl-aryl C-C structures, the crossing-linking density as well as the substitutional 

groups (other than O-containing ones) in char.  

From Fig. 7, it can be seen that, for the gasification in steam-containing 

atmosphere, the intensity ratio I2S/ITotal decreased from 800 to 900 ˚C, and also 

showed a decrease with increasing holding time and then achieved a plateau value. 

These results suggested that high temperature and long reaction time tend to cause 

the loss of the alkyl-aryl C-C structures and the crossing-linking density. There were 

much less changes in the intensity ratio I2S/ITotal if the holding time is long enough, 

indicating that the amount of such crossing-linking structure in char reached a 
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dynamic balance between their generation and consumption. For the chars from CO2 

gasification, there is no clear trend for the ratio I2S/ITotal, and the data show obvious 

fluctuations. This is also because that the total Raman intensity of the second-order 

as well as the 2S band is very weak for the chars from CO2 gasification, giving rise to 

high noise-to-signal ratios and causing some inaccuracy during curve-fitting.   

An important difference between the first-order and second-order Raman spectra 

of chars from gasification in steam-containing atmospheres is that the ratio IS/ITotal in 

the first-order Raman did not change clearly with gasification temperature and 

holdings time while the ratio I2S/ITotal in the second-order Raman showed a decrease 

with increasing gasification temperature and holding time. It should be noted that 

there is less interference from the neighbouring bands in the analysis of the intensity 

of 2S band than that with the S band. Not all peaks in the region of the first-order 

region have their corresponding peaks in the second-order region, which has 

facilitated the spectral deconvolution of some bands such as 2S band. Therefore, the 

second-order Raman spectra can provide additional details about the changes in 

char structure.  

 

5. Conclusions  

 

This study has demonstrated that the second-order Raman spectroscopy can be 

used as a powerful technique to analyse the skeletal structure of highly disorder 

carbon-based materials such as the chars from the gasification of Collie sub-

bituminous coal. A novel deconvolution method has been established and the 

second-order Raman spectra of chars were curved-fitted with 7 bands representing 

the typical chemical structures in the char. 



15 

During the gasification in steam-containing atmospheres, the relative contents of 

O-containing groups and large aromatic ring systems in char increased, while the 

relative contents of small aromatic ring systems decreased as gasification proceeded. 

These results are consistent with the findings in the first-order Raman analysis. 

However, the second-order spectra of chars from gasification in CO2 showed high 

noise-to-signal ratio than the first-order Raman spectra, making the spectral 

deconvolution of the second-order spectra less reliable than that of the first-order 

spectra. 

Compared with the first-order Raman results, additional information is found in the 

second-order Raman spectra of chars from the gasification in steam-containing 

atmospheres. The area ratio IS/ITotal of char did not change clearly with gasification 

temperature in the first-order Raman spectroscopy. However, there is a significant 

change with gasification temperature and holding time in the ratio of the overtone of 

S band (I2S) in the second-order Raman spectroscopy, indicating that the cross-

linking density decreased as gasification proceeded. 

The second-order Raman spectroscopy of chars from the gasification in CO2 and 

H2O atmospheres indicates that the gasification mechanisms of char in these two 

atmospheres are different, confirming our earlier conclusions.  
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 Second-order Raman spectroscopy can be used to characterise chars. 

 A new deconvolution method has been established to characterize char 

structure. 

 The char-H2O and char-CO2 gasification reactions follow different 

mechanisms.  

 



 

Fig. 1. Effects of char concentration in char-KBr mixture on the total second-order Raman area (2000-

3300 cm-1). Char was prepared from the gasification of the Collie sub-bituminous coal in 15% H2O 

balanced with Ar at 900 ˚C. 
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Fig. 2. Spectral deconvolution of a Raman spectrum (second-order region) of the char from the 

gasification of the Collie sub-bituminous coal in 15% H2O balanced with Ar at 900 ˚C. 
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Fig. 3. Total second-order Raman area as a function of holding time for the chars from the 

gasification of Collie sub-bituminous coal at 800, 850 and 900 ˚C in (a) 15% H2O balanced with Ar; (b) 

pure CO2; (c) 15% H2O balanced with CO2. 
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Fig. 4. Raman band area ratio 2D/Total as a function of holding time for the chars from the 

gasification of Collie sub-bituminous coal at 800, 850 and 900 ˚C in (a) 15% H2O balanced with Ar; (b) 

pure CO2; (c) 15% H2O balanced with CO2. 
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Fig. 5. Raman band area ratio 2VR+(2D)L/Total as a function of holding time for the chars from the 

gasification of Collie sub-bituminous coal at 800, 850 and 900 ˚C in (a) 15% H2O balanced with Ar; (b) 

pure CO2; (c) 15% H2O balanced with CO2. 
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Fig. 6. Raman band area ratio 2D/2VR+(2D)L as a function of holding time for the chars from the 

gasification of Collie sub-bituminous coal at 800, 850 and 900 ˚C in (a) 15% H2O balanced with Ar; (b) 

pure CO2; (c) 15% H2O balanced with CO2. 
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Fig. 7. Raman band area ratio 2S/Total as a function of holding time for the chars from the 

gasification of Collie sub-bituminous coal at 800, 850 and 900 ˚C in (a) 15% H2O balanced with Ar; (b) 

pure CO2; (c) 15% H2O balanced with CO2. 
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Table 1 Summary of peak/band assignment. 

Band name  Band position, cm-1 Description  Bond type References 

2G 3180 Overtone of G band;  
aromatic rings 

sp2 11,17,  
this work 

(D+G)L 3060 Aryl CH stretch vibration sp2 23 

D+G 2860 Combination of D band and G band; 
aromatic rings 

sp2 11,17,24,  
this work  

2VR 2750 Overtone of the aryl CH3 in-phase 
bend vibration;  
amorphous carbon structures 

sp2; sp3 23 

(2D)L 2650 Small aromatic rings system; 
amorphous carbon structures 

sp2; sp3 This work 

2D 2560 Overtone of D band;  
C-C between aromatic rings;  
large aromatic rings system  

sp2 11,17,24,   
this work 

2S 2350 Overtone of S band; Caromatic-Calkyl; 
C-C on hydroaromatic rings;  

sp2; sp3 11,17,  
this work 

 

 



 

 

ITotal: The presence of O-containing 
structures. 
 

I2D/I2VR+(2D)L: The transition of small to 
large aromatic ring systems. 
 

I2S/ITotal: The presence of alkyl-aryl C-C 
structures and other crossing-linking 
structures.  
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