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S U M M A R Y
A new analytical method for the computation of a truncated series of solid spherical harmonic
coefficients (HCs) from data on a spheroid (i.e. an oblate ellipsoid of revolution) is derived,
using a transformation between surface and solid spherical HCs. A two-step procedure is
derived to extend this transformation beyond degree and order (d/o) 520. The method is
compared to the Hotine–Jekeli transformation in a numerical study based on the EGM2008
global gravity model. Both methods are shown to achieve submicrometre precision in terms
of height anomalies for a model to d/o 2239. However, both methods result in spherical
harmonic models that are different by up to 7.6 mm in height anomalies and 2.5 mGal in
gravity disturbances due to the different coordinate system used. While the Hotine–Jekeli
transformation requires the use of an ellipsoidal coordinate system, the new method uses only
spherical polar coordinates. The Hotine–Jekeli transformation is numerically more efficient,
but the new method can more easily be extended to cases where (a linear combination of)
normal derivatives of the function under consideration are given on the surface of the spheroid.
It therefore provides a solution to many types of ellipsoidal boundary-value problems in the
spectral domain.
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1 I N T RO D U C T I O N

Spherical harmonic expansions are used in many branches of Earth
and planetary science to construct global models of various quanti-
ties of interest. They are especially useful for the representation of
harmonic functions. For example, global models of the Earth’s grav-
ity field are almost exclusively represented by a series of spherical
harmonic coefficients (HCs). The International Centre for Global
Earth Models currently lists more than 150 spherical harmonic
models of the Earth’s gravitational potential, as well as spherical
harmonic models of the gravitational fields of the Moon, Mars and
Venus. Spherical harmonic expansions are also used to describe the
geomagnetic field (e.g. Cain et al. 1989; Maus et al. 2005; Lesur
et al. 2008; Chulliat et al. 2015). Other applications include heat
flow models (e.g. Chapman & Pollack 1980; Pollack et al. 1993;
Hofmeister & Criss 2005; Hamza et al. 2008), isostatic-topographic
models (e.g. Rummel et al. 1988; Panasyuk & Hager 2000; Kaban
et al. 2004; Balmino et al. 2012; Claessens & Hirt 2013), seismic
wave speed models (e.g. Su et al. 1994) and post-seismic Earth
surface deformation models (e.g. Pollitz 1996; Riva & Vermeersen
2002).

Spherical HCs can easily be computed if data are available on
the surface of a sphere that is completely within the region where
the function is harmonic. However, since the Earth (as well as many

other bodies in the solar system) is to a much higher level of accuracy
approximated by a spheroid (i.e. an oblate ellipsoid of revolution),
the need arises for a methodology to compute spherical HCs from
data on a spheroid.

One possible methodology is a numerical one, using a statistical
technique such as least-squares estimation or collocation (e.g. Sansò
& Tscherning 2003; Abd-Elmotaal et al. 2014), but here an analyti-
cal solution is sought. Analytical methodologies have the advantage
that they allow for computation of coefficients above the maximum
degree defined by the resolution of the data grid, and that they can
avoid problems associated with the inversion of an ill-conditioned
matrix that burden the least-squares estimation procedure.

Several analytical methodologies have been proposed, such as
the upward-continuation method (Cruz 1986) and a method based
on Green’s second integral theorem (Sjöberg 1988). Both these
methods do not only require the function values on the spheroid,
but also their radial or normal derivatives, and they are now rarely
used in practice if at all.

The most popular method is here called the spheroidal harmonics
method. In this method, the function on the surface of the spheroid
is first expanded into a series of spheroidal harmonics, which can
then be transformed into a spherical harmonic expansion using a
transformation between spherical and spheroidal HCs (e.g. Buch-
dahl et al. 1977; Jekeli 1988; Dechambre & Scheeres 2002). The
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Hotine–Jekeli transformation between spherical and spheroidal HCs
(Jekeli 1988) was used, for example, in the creation of the global
gravity model EGM2008 (Pavlis et al. 2012) and the global model
of the Earth’s lithospheric magnetic field NGDC-720 (Maus 2010).

An alternative method is here called the surface harmonics
method. It follows from a transformation between solid spheri-
cal HCs and surface spherical HCs (Claessens 2006; Claessens &
Featherstone 2008). Like the spheroidal harmonics method, it does
not require any other information than the function values on the
spheroidal surface. Claessens & Featherstone (2008) show that an
efficient transformation from surface to solid spherical HCs can
only be achieved up to degree and order (d/o) ∼520, which severely
hampers the surface harmonics method. However, in Section 4, it
will be shown that an efficient transformation can be achieved up
to ultrahigh d/o using a new two-step procedure.

Apart from this improvement to the surface harmonics method,
this paper also provides a numerical comparison between the
spheroidal harmonics method and the surface harmonics method.
The major advantage of the surface harmonics method is that it can
easily be extended to cases where the function itself is not given on
the surface of the spheroid, but (a linear combination of) its surface
normal derivatives. This provides an advantage, for example, when
computing spherical HCs of the gravitational potential from gravity
disturbances or gravity anomalies (see Section 6). An additional but
only very minor advantage of the surface harmonics method over
the spheroidal harmonics method is that the data are completely
treated in spherical (polar) coordinates. Spheroidal coordinates (Ja-
cobi ellipsoidal coordinates) that are used in spheroidal harmonics
are not required. Note that many global data sets are provided in
terms of geodetic coordinates (Gauss ellipsoidal coordinates), but
these coordinates cannot directly be used for harmonic analysis or
synthesis, so in these cases a re-parametrization of the data is always
required. See Gruber & Abrykosov (2014) for a further discussion.

The determination of spherical HCs from function values on a
spheroid is a solution to an ellipsoidal boundary-value problem.
Several types of boundary-value problems can be distinguished,
based on the form of the data provided. When the function itself
is known on the spheroid, a so-called Dirichlet boundary-value
problem arises, and the solution of this case is the main focus
of this paper. However, in Section 6, it is shown that other types of
boundary-value problems, such as the Neumann, Robin and second-
order (gradiometric) boundary-value problem (e.g. Mackie 1965)
can also be solved using the surface harmonics method.

2 S P H E R I C A L A N D S P H E RO I DA L
H A R M O N I C S

The series of spherical harmonics provides a solution to Laplace’s
differential equation, which all harmonic functions obey (e.g. Hob-
son 1931; Sigl 1985). Since the Earth’s gravitational and magnetic
fields are harmonic vector fields exterior to the masses of the Earth,
they can be represented anywhere in the exterior space by a solid
spherical harmonic expansion

f (r, θ, λ) =
∞∑

n=0

(
R

r

)n+1 n∑
m=−n

f
R

nmY nm(θ, λ) (1)

where f is a function that is harmonic external to some closed do-
main, (r, θ , λ) is the set of spherical polar coordinates, R is the radius

of a reference sphere, f
R

nm are the fully normalized solid spherical
HCs of degree n and order m and Y nm are the fully normalized spher-

ical harmonic functions. The spherical harmonic functions form a
set of orthogonal base functions on the sphere, and are defined by

Y nm(θ, λ) = Pn|m|(cos θ )

{
cos mλ for m ≤ 0
sin mλ for m > 0

(2)

where Pn|m|(cos θ ) are fully normalized (4π -normalized) associ-
ated Legendre functions. These form the solution to the associated
Legendre differential equation (e.g. Abramowitz & Stegun 1972)
and numerically stable algorithms to compute them up to high d/o
are provided in, for example, Masters & Richards-Dinger (1998),
Holmes & Featherstone (2002), Jekeli et al. (2007) and Fukushima
(2012).

A more general alternative to the spherical harmonic expansion is
an ellipsoidal harmonic expansion. Since the geodetic reference el-
lipsoid is a spheroid, this paper is only concerned with the spheroidal
harmonic expansion, which is a special case of the ellipsoidal har-
monic expansion for a triaxial ellipsoid (the spherical harmonic ex-
pansion in eq. (1) is in turn a special case of the spheroidal harmonic
expansion). The spheroidal expansion provides a representation of
the function f in spheroidal coordinates (u, β, λ)

f (u, β, λ) =
∞∑

n=0

n∑
m=−n

Qnm

(
i u

E

)
Qnm

(
i b

E

) f
u
nmY nm(β, λ) (3)

where b is the semi-minor axis of the spheroid, E is the linear eccen-
tricity of the spheroid and Qnm are associated Legendre functions of
the second kind. The computation of the associated Legendre func-
tions of the second kind Qnm is hampered by numerical instabilities
(Sona 1995), but Fukushima (2013) provides a stable algorithm for
the computation of the ratio of two of these functions.

When the spherical harmonic expansion is synthesized on the
reference sphere (r = R), eq. (1) reduces to

f (R, θ, λ) =
∞∑

n=0

n∑
m=−n

f
R

nmY nm(θ, λ) (4)

and when the spheroidal harmonic expansion is synthesized on the
reference spheroid (u = b), eq. (3) reduced to

f (u, β, λ) =
∞∑

n=0

n∑
m=−n

f
u
nmY nm(β, λ). (5)

Eqs (4) and (5) represent the inverse Legendre transform (Jekeli
1988). A Legendre transform can be applied to any continuous
function, harmonic or not, defined on any surface for which every
point is uniquely defined by its latitude and longitude, in a suitable
coordinate system. Thus, a function defined on the surface of a
spheroid can also be represented by a series of coefficients using
spherical polar latitude and longitude

f (re, θ, λ) =
∞∑

n=0

n∑
m=−n

f
e
nmY nm(θ, λ) (6)

where re is the spheroidal radius, which for a spheroidal surface can
be expressed as a function of the spherical polar latitude θ , the semi-
major axis of the spheroid a and the first numerical eccentricity of
the spheroid e2

re = a

√
1 − e2

1 − e2 sin2 θ
(7)
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The coefficients f
e
nm are called surface spherical HCs. They can be

computed from an integration over the unit sphere σ , the (direct)
Legendre transform

f
e
nm = 1

4π

∫
σ

f (re, θ, λ)Y nm(θ, λ)dσ. (8)

The coefficients f
R

nm (eq. 4) and f
u
nm (eq. 5) can also be computed

via the Legendre transform, but they are called solid spherical HCs
and solid spheroidal HCs, respectively, to indicate that they can be
used more generally in the solid harmonic expansions in eqs (1) and
(3).

While the coefficients f
e
nm and f

u
nm may represent the same

function on the same surface, they will attain different numerical
values due to the use of a different coordinate system.

3 S P H E RO I DA L H A R M O N I C S M E T H O D

For the sake of completeness, the well-known formulae of the
Hotine–Jekeli transformation between spherical and spheroidal HCs
are shown here in the current notation. The forward transformation,
that is, the transformation from solid spherical HCs f

R

nm to solid
spheroidal HCs f

u

nm , is given by Jekeli (1988)

f
u

nm = Sn|m|

(
b

E

) w∑
i=0

δnmi f
R

n−2i,m (9)

where Sn|m|( b
E ) is Jekeli’s renormalized Legendre function of the

second kind, δnmi are weights that are computed recursively (Gleason
1988, eq. 1.18), and

w = int

(
n − m

2

)
(10)

The reverse transformation is given by Jekeli (1988)

f
R

nm =
w∑

i=0

�nmi

Sn|m|
(

b
E

) f
u

n−2i,m (11)

where the weights �nmi can also be computed recursively (Gleason
1988, eq. 1.24). Sebera et al. (2012, eq. 20) provide optimised
recurrence relations for Jekeli’s renormalized Legendre functions of
the second kind. The reverse transformation can be used to generate
a series of solid spherical HCs from data on a spheroid, after the
data on the spheroid has been expanded into solid spheroidal HCs.
This is the transformation of most interest here.

4 S U R FA C E H A R M O N I C S M E T H O D

4.1 Forward transformation

Claessens & Featherstone (2008) provide a transformation from

solid spherical HCs f
R

nm to surface spherical HCs f
e
nm (the forward

transformation). Just as in the spheroidal harmonic method, the
reverse transformation is of most interest, because this provides a
method to generate a set of solid spherical HCs from data on a
spheroid. The reverse transformation is treated in Section 4.2, but
the derivation of the forward transformation is also briefly repeated
here, primarily to facilitate the subsequent explanation of the reverse
transformation.

Assuming that the function f is harmonic everywhere outside
and on the surface of the spheroid, the solid and surface spherical
harmonic expansions in eqs (1) and (6) can be equated

∞∑
n=0

n∑
m=−n

(
R

re

)n+1

f
R

nmY nm(θ, λ) =
∞∑

n=0

n∑
m=−n

f
e
nmY nm(θ, λ) (12)

The forward transformation relies on a binomial series expansion
of the latitude-dependent term (R/re)n+1

(
R

re

)n+1

=
(

c√
1 − e2

)n+1

(1 − e2 sin2 θ )
n+1

2 =
∞∑
j=0

αnj sin2 j θ

(13)

where c = R/a, that is, the ratio between the reference sphere radius
and the semi-major axis of the spheroid, and

αnj =
(

c√
1 − e2

)n+1

(−1) j

( n+1
2

j

)
e2 j (14)

Note that the summation over j will have only a finite number of non-
zero terms for odd n, whereas for even n, the number of non-zero
terms is infinite.

The transformation then utilizes a relation among spherical har-
monic functions of the same order m (Claessens 2005)

sin2 j θY nm(θ, λ) =
j∑

i=− j

K
2i,2 j

nm Y n+2i,m(θ, λ) (15)

where the weights K
2i,2 j

nm depend only on the spherical harmonic
degree n, order m and the summation indices i and j. The formu-
lae for their computation are shown in Claessens and Featherstone
(2008, eqs 18 and 19). Using eqs (13) and (15), the transformation
formula from solid to surface spherical HCs takes the form of an
infinite weighted summation over solid spherical HCs of equal order
m (Claessens & Featherstone 2008)

f
e

nm =
∞∑

i=−∞
λnmi f

R

n−2i,m (16)

where the weights also follow from an infinite summation

λnmi =
∞∑

j=|i |
αn−2i, j K

2i,2 j

n−2i,m (17)

Upon comparison of eqs (9) and (16), it can be seen that both the
spheroidal harmonics method and the surface harmonics method
include a simple weighted summation over spherical HCs. While
eq. (9) contains a finite summation and eq. (16) an infinite summa-
tion, both summations are in practice truncated after a number of
terms, which is permissible as both are convergent.

4.2 Reverse transformation

The reverse transformation from surface spherical HCs to solid
spherical HCs is more complicated, but a solution can be found
when it is acknowledged that, in practice, the spherical harmonic
series is only evaluated up to a certain maximum d/o M. This means
that eq. (16) can be written in matrix form

F e = 
F R (18)

where F e and F R are vectors containing all surface and solid HCs
up to the maximum d/o, respectively and 
 is a matrix containing
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the weights λnmi. Since 
 is square, eq. (18) can easily be inverted,
which results in the reverse transformation formula

F R = 
−1F e (19)

The inversion of the matrix 
 faces two potential problems: (1)
the matrix may not be well conditioned for a high M and (2) the
inversion is computationally intensive for high M. Since a spherical
harmonic expansion up to d/o M contains (M + 1)2 coefficients,
the dimension of 
 is (M + 1)2 by (M + 1)2. It can be seen from
eq. (16) that, if the coefficients in the vectors are first sorted by order
m, and subsequently sorted by even and odd degrees n, the matrix

 becomes block diagonal, which facilitates its inversion. Still, it
requires the inversion of 4M matrices of dimension up to (M + 2)/2
by (M + 2)/2 for M is even and (M + 1)/2 by (M + 1)/2 for M
is odd, which is a considerable computational effort for large M.
A more efficient method is presented hereafter.

Claessens & Featherstone (2008) have shown that 
 is well con-
ditioned at least up to a certain d/o, thanks to the diagonal dominance
of the matrix for low M. For low degrees and orders, the weights
λnmi are close to 1 for i = 0 and close to zero for i �= 0. Since
the weights of index i = 0 are all situated on the diagonal of the
matrix 
, for spherical harmonic expansions up to a certain d/o the
matrix will be strictly diagonally dominant, that is, for all rows the
absolute value of the diagonal element will be larger than the sum
of the absolute values of all other elements in the row. This comes
down to the condition

|λnm0| >

∞∑
i=−∞,i �=0

|λnmi | for 0 ≤ m ≤ n ≤ M. (20)

In the case of a spheroid with the eccentricity of the Earth (e2 ≈
0.00669), the condition in eq. (20) is met for M ≤ 520 (Claessens &
Featherstone 2008). Since strictly diagonally dominant matrices are
always well conditioned, the inverse of the matrix 
 can be found
when this condition is met.

More interestingly, a set of linear equations, such as the one in
eq. (18), can be solved using an iterative approach which will al-
ways converge if the condition of diagonal dominance is met (e.g.
Golub & Van Loan 1996, p. 120). An iterative approach, such as the
Jacobi method, Gauss–Seidel method, or successive overrelaxation
(SOR) method (e.g. Strang 1986; Golub & Van Loan 1996), is com-
putationally much more efficient than a complete matrix inversion.
However, once diagonal dominance is lost, that is, beyond d/o 520,
these iterative algorithms quickly diverge.

Nowadays, a maximum spherical harmonic d/o of M = 520 is no
longer adequate for many practical applications. Spherical harmonic
models of the Earth’s gravity field up to higher d/o are already
in existence, such as EGM2008 (Pavlis et al. 2012, M = 2190).
Also, recent harmonic models of the Earth’s magnetic field, such
as EMM2015 (Chulliat et al. 2015, M = 720), exceed d/o 520.
Therefore, a two-step transformation procedure that overcomes the
problems with the inversion of 
 is proposed, as follows.

In the two-step procedure for the reverse transformation, an ap-

proximate solution for the solid spherical HCs f
R

nm is computed
first. The rationale behind this is the following. If the approximate
coefficients are a close approximation of the true coefficients, the
transformation from approximate to true coefficients potentially
gives rise to a diagonally dominant transformation matrix, since the
diagonal elements will be close to 1 and the off-diagonal elements
will be small.

A good approximation for the solid spherical HCs can be found
by approximating each term in the summation on the left-hand side

of eq. (12) by each term in the summation on the right-hand side in
eq. (12), even though the summation does not strictly hold term-by-
term

f
R

nmY nm ≈
(

re

R

)n+1

f
e
nmY nm (21)

where the term (R/re)n+1 has been moved to the right-hand side of
the equation. The term (re/R)n+1 is then expanded into a binomial
series similar to eq. (13), and eq. (15) is inserted

f̂ R
nmY nm =

∞∑
j=0

ωnj

j∑
i=− j

K 2i,2 j
nm f

e
nmY n+2i,m (22)

where the hat in f̂ R
nm indicates it is an approximation of f

R

nm , and

ωnj =
(√

1 − e2

c

)n+1

(−1) j

(− n+1
2

j

)
e2 j . (23)

Reorganization of the summation order results in a practical formula
for the computation of f̂ R

nm

f̂ R
nm =

∞∑
i=−∞

μnmi f
e
n−2i,m (24)

where the weight factors μnmi are computed in a very similar fashion
as the weight factors λnmi in eq. (17)

μnmi =
∞∑

j=|i |
ωn−2i, j K 2i,2 j

n−2i,m . (25)

Thus, the first step in the two-step procedure is the computation of
the approximate coefficients f̂ R

nm through eq. (24). In the second

step, the ‘true’ coefficients f
R

nm are computed from the approxi-
mate coefficients. This second step is a reverse transformation that
follows from inserting eq. (16) into eq. (24)

f̂ R
nm =

∞∑
i=−∞

μnmi

∞∑
j=−∞

λn−2i,m, j f R
n−2(i+ j),m =

∞∑
i=−∞

νnmi f R
n−2i,m

(26)

where the weight factors νnmi follow from a rearrangement of sum-
mation orders

νnmi =
∞∑

j=−∞
μnmjλn−2 j,m,i− j . (27)

The inversion of eq. (26) is computationally stable and efficient,
since a transformation matrix containing the weights νnmi is strongly
diagonally dominant up to very high d/o M, that is,

|νnm0| >

∞∑
i=−∞,i �=0

|νnmi | for 0 ≤ m ≤ n ≤ M (28)

for very large M. This is shown numerically in Section 5.1.
Due to the diagonal dominance shown by the weights νnmi, eq.

(26) can be solved iteratively. Various methods can be utilized.
Using the Jacobi iteration method (e.g. Strang 1986), the solution
after k + 1 iterations is given by

f
R

nm(k+1) = 1

νnm0

(
f̂ R
nm −

int( n
2 )∑

i=int( n−M
2 ),i �=0

νnmi f
R

n−2i,m(k)

)
(29)

where f
R

nm(k) are the solid spherical HCs after k iterations. The ap-
proximate coefficients can be used as initial values for the iteration:

f
R

nm(0) = f̂ R
nm .
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Figure 1. Overview of numerical computations and comparisons (SHA: spherical/spheroidal harmonic analysis; SHS: spherical/spheroidal harmonic synthesis
and CT: coefficient transformation).

In the Gauss–Seidel method, the coefficients f
R

nm are computed
consecutively for increasing degree n, and this method utilizes the

fact that when computing f
R

nm , the coefficients of lower degree n
have already been computed. Eq. (29) is then replaced by

f
R

nm(k+1) = 1

νnm0

(
f̂ R
nm −

−1∑
i=int( n−M

2 )

νnmi f
R

n−2i,m(k)

−
int( n

2 )∑
i=1

νnmi f
R

n−2i,m(k+1)

)
. (30)

Faster convergence can be obtained with the SOR method, where
an overrelaxation factor ω is introduced. The solution in this case
reads (cf. Strang 1986)

f
R

nm(k+1) = f
R

nm(k) + ω

νnm0

(
f̂ R
nm −

0∑
i=int( n−M

2 )

νnmi f
R

n−2i,m(k)

−
int( n

2 )∑
i=1

νnmi f
R

n−2i,m(k+1)

)
(31)

where the factor ω should be set to a value between 0 and 2. The
SOR method is equal to the Gauss–Seidel method for ω = 1, but
may converge faster for other choices of the overrelaxation factor.

5 N U M E R I C A L S I M U L AT I O N

The surface harmonics method and the spheroidal harmonics
method are here tested and compared numerically. The harmonic
function used in the tests is the disturbing potential T computed from
the EGM2008 global gravity field model (Pavlis et al. 2012) to
M = 2190, where the Geodetic Reference System parameters
adopted in the creation of EGM2008 (Pavlis et al. 2012, appendix A)

were used to define the reference potential. The tests were performed
using a modified version of the harmonic_synth software (Holmes
& Pavlis 2006) for spherical harmonic synthesis, the SHTools soft-
ware version 3.1 (Wieczorek 2015) for spherical harmonic analysis
and in-house software for the coefficient transformations.

Because the surface harmonics method requires a grid of func-
tion values in terms of geocentric latitude θ and the spheroidal
harmonics method requires a grid in terms of reduced latitude β,
two regular global grids of the disturbing potential were generated
through spherical harmonic synthesis on the EGM2008 reference
ellipsoid with a resolution of 2.5 arcmin (see Fig. 1). These grids
contain the data from which a solid spherical harmonic expansion is
to be computed by the spheroidal and surface harmonics methods.

The first step in this process is a spherical harmonic analysis
on both grids. Through the Driscoll & Healy (1994) algorithm,
as implemented in SHTools, harmonic series up to d/o 2159 were
obtained. Note that the Driscoll & Healy (1994) algorithm requires
a grid resolution of 2.5 arcmin to obtain a series to d/o 2159, but
algorithms that require a lower resolution also exist (e.g. McEwen
& Wiaux 2011). Analysis of the grid in terms of geocentric latitude
results in a surface spherical harmonic series, while the grid in terms
of reduced latitude results in a solid spheroidal harmonic series.
Fig. 2 shows the spectra of these two series, indicating that they
have similar power in all wavelengths. However, the coefficients
are significantly different for high d/o, as is shown by the degree
variances of the coefficient differences.

5.1 Coefficient transformation

To test the spheroidal harmonics method, the Hotine–Jekeli trans-
formation (eq. 11) was performed on the solid spheroidal harmonic
series using the recurrence relations for Jekeli’s renormalized Leg-
endre functions of the second kind by Sebera et al. (2012, eq. 20).
The summation was truncated at i = 40, resulting in a set of solid
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Spherical harmonic analysis on a spheroid 147

Figure 2. Degree variances of (1) surface spherical HCs of the disturbing
potential T

e
nm (black), (2) solid spheroidal HCs of the disturbing potential

T
u
nm (blue) and (3) the differences between those two (red), indicating that

while both series have very similar power (the latter obscures the former),
the differences between coefficients are significant.

Figure 3. Values of |λn00| (solid blue) and
∑40

i=−40,i �=0 |λn0i | (dashed blue)

from (17), as well as |μn00| (solid black) and
∑40

i=−40,i �=0 |μn0i | (dashed

black) from (25) and |νn00| (solid red) and
∑40

i=−40,i �=0 |νn0i | (dashed red)
from (27) based on GRS80 parameters.

spherical HCs to d/o 2239. Due to the convergence of the series in
eq. (11), the truncation at i = 40 is more than sufficient. For com-
parison, EGM2008 which is also computed using the Hotine–Jekeli
transformation is truncated at d/o 2190.

To test the surface harmonics method, the reverse transformation
detailed in Section 4.2 was performed on the surface spherical
harmonic series. As in the Hotine–Jekeli transformation, all infinite
series were truncated after 40 terms, that is, the summations in
eqs (17) and (25) were performed up to j = 40, the summation
in eq. (24) from i = −40 to 40 and the summation in eq. (27) was
performed from j = −40 to 40. This is also more than sufficient (see
Section 5.2).

The success of the reverse transformation hinges on the question
whether eq. (28) holds up to M = 2239. Fig. 3 shows that this is
clearly the case, as the dashed red line remains well below the solid
red line for all degrees n. Only the case m = 0 is shown in this
figure, as this provides a ‘worst case’.

The Gauss–Seidel method (eq. 30) was used, because it is difficult
to predict an optimum overrelaxation factor for the SOR method.
The convergence is rapid for all degrees, as can be seen in Fig. 4. A

Figure 4. Degree variances of approximate coefficients of the disturbing
potential (24) (black) and of additions to those coefficients from iterations 1
to 6 (red through to blue) using Gauss–Seidel iteration (30), indicating rapid
convergence for all degrees.

Figure 5. Degree variances of (1) surface spherical HCs of the disturbing
potential T

e
nm (black), (2) solid spheroidal HCs of the disturbing potential

T
u
nm (blue) and (3) the differences between those two (red), indicating that

both series are nearly identical (the latter obscures the former) except for
the coefficients close to the maximum degree.

total of 10 iterations were applied to compute the final coefficients.
The computational effort required for each iteration is insignificant
compared to the effort required to compute the weights νnmi.

5.2 Comparison of solid spherical harmonic series

The spheroidal harmonics method and the surface harmonics
method each provide a solid spherical harmonic expansion of the
disturbing potential. These could easily be transformed into an ex-
pansion of the gravitational potential, like EGM2008, using the
parameters of the reference ellipsoid. From a theoretical point of
view, it can be expected that these two expansions are not identical,
and neither will be identical to EGM2008. The reason for this is
that each of the models is based on a different truncated series, with
as a result a different omission error.

A comparison between the two solid spherical harmonic series
resulting from the surface harmonics method and the spheroidal har-
monics method is performed in the spectral domain and the space
domain. First, Fig. 5 shows the differences between the power spec-
tra of the two series. It can be seen that the differences between the

 at C
urtin U

niversity L
ibrary on A

ugust 8, 2016
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/


148 S.J. Claessens

Figure 6. Zoom-in on the ‘tail’ end of Fig. 5: degree variances of (1) surface
spherical HCs of the disturbing potential T

e
nm (black), (2) solid spheroidal

HCs of the disturbing potential T
u
nm (blue) and (3) the differences between

those two (red), highlighting the differences close to the maximum degree.

coefficients are very small except for the very highest d/o close to
M. This is as expected, because the coefficient transformation for-
mulae (for both the surface harmonics method and the spheroidal
harmonics method) show that the omission error in the series trun-
cated at d/o 2159 will only affect solid spherical HCs close to that
degree (2079 < n < 2239 based on i = 40, but any effect outside
2130 < n < 2190 is insignificant).

Fig. 6 shows a close up of the range from degree 2120 to 2200.
This shows that the coefficients resulting from the surface harmonics
method decrease in value more rapidly than those resulting from the
spheroidal harmonics method. Therefore, while the latter can safely
be truncated after d/o 2190, like EGM2008, the former can already
be truncated after d/o 2180. This also shows that in practice it is
sufficient to evaluate significantly less than 40 terms. The large
number of terms were only used in this study to highlight the high
precision of the methods (see Section 5.3). Fig. 6 also helps to
explain the differences between the highest degree coefficients of the
topographic potential model dV_ELL_RET2012 and EGM2008,
which was noted in Claessens & Hirt (2013) but not explained.

The two solid spherical harmonic series were also compared in the
space domain. Fig. 7 shows the differences between regular global
2.5 arcmin grids of height anomalies in terms of geodetic latitude.
The maximum difference is 7.6 mm and the rms of differences
is 0.47 mm. Fig. 8 shows the same, but for gravity disturbances.
The maximum difference is 2.5 mGal and the rms of differences is
0.15 mGal.

A very similar pattern can be observed in Figs 7 and 8. In both
figures, the differences are of a short-wavelength nature (in agree-
ment with Figs 5 and 6), and are largest in mountainous regions near
the equator. An explanation for these short-wavelength differences
is that the two series to M = 2159, one of surface spherical HCs and
the other of solid spheroidal HCs, do not contain the exact same
signal. This can, for example, be seen from the fact that a transfor-
mation of surface spherical HCs up to d/o M to solid spheroidal HCs
using the transformation formulae described here would result in
(incomplete) non-zero solid spheroidal HCs beyond the maximum
degree M (and the same argument holds vice versa). Hence, the two
series of solid spherical HCs to M = 2239 do not contain the exact
same signal either. Figs 7 and 8 give an indication of the differences
caused by this.

5.3 Validation of coefficient transformations

The numerical precision of the surface and spheroidal harmonics
methods is analysed by a comparison of height anomalies in the
space domain. For validation of the spheroidal harmonics method, a
regular global 2.5 arcmin grid of the disturbing potential in terms of
reduced latitude was synthesized from the solid spheroidal harmonic
series and subsequently transformed into height anomalies using
Bruns’s equation. This is compared to height anomalies on the
same grid synthesized from the solid spherical harmonic series (see
Fig. 1). Any discrepancies between these two grids must be the
result of rounding errors and of the truncation of the transformation
series. However, note that these grids are not identical to grids of
height anomalies that would be synthesized directly from EGM2008
to d/o 2190.

The same process is applied to validate the surface harmonics
method, using the surface harmonic series instead and synthesis-
ing on a grid in terms of geocentric latitude (see Fig. 1). Table 1
shows that both the spheroidal harmonics method and the surface
harmonic methods achieve a very high precision with differences
in height anomalies no larger than a few micrometres. The rms of
differences is smallest for the surface harmonics method, which
may be explained by the more rapid decrease of coefficients shown
in Fig. 6.

Table 1 also shows the precision of the approximate solid spher-
ical HCs that are computed as an intermediate step in the surface
harmonics method (eq. 24). These approximate coefficients result
in errors up to a few centimetres in height anomalies, and more
significant errors for quantities that have more power in the higher
degrees. As such, direct use of the approximate coefficients is not
recommended.

In terms of numerical efficiency, the spheroidal harmonics
method is more efficient than the surface harmonics method,
mostly because of the two-step procedure required in the sur-
face harmonics method. However, neither method is very demand-
ing. Both coefficient transformations are less time-consuming than
the generation of a global full-resolution grid of function val-
ues through spherical harmonic synthesis. If required, higher ef-
ficiency could be achieved in both methods—in particular in the
surface harmonics method—by a lower truncation of convergent
series.

6 S O LU T I O N S F O R O T H E R B O U N DA RY
C O N D I T I O N S

Up to here it was assumed that values of the function of interest are
given on the surface of the spheroid, which results in a Dirichlet-type
boundary-value problem (e.g. Mackie 1965; Sigl 1985). However,
a solid spherical harmonic expansion may also be sought if (a linear
combination of) first- and second-order derivatives of the function
are given on the spheroid.

If the derivatives are in the radial direction, both the spheroidal
harmonics method and the surface harmonics method can easily
be adapted to this situation, since there is a one-to-one relation be-
tween spherical HCs of a function and the spherical HCs of its radial
derivatives. However, when derivatives in the normal direction to
the spheroid are given, the spheroidal harmonics method cannot be
used. The surface harmonics method, on the other hand, can be used
in this situation. This is of significance, because common quanti-
ties in geodesy, such as gravity disturbances and gravity anomalies
can be accurately related to normal derivatives of the disturbing
potential.
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Figure 7. Differences between height anomalies computed from solid spherical HCs that were generated with (1) the surface harmonics method and (2) the
spheroidal harmonics method (units in metres; Robinson projection).

Figure 8. Differences between gravity disturbances computed from solid spherical HCs that were generated with (1) the surface harmonics method and (2)
the spheroidal harmonics method (units in milligal; Robinson projection).

Table 1. Global statistics of transformation validation: differences between
height anomalies synthesized from (1) surface spherical HCs and approxi-
mate solid spherical HCs (24), (2) surface spherical HCs and solid spherical
HCs from the surface harmonics method (30) and (3) solid spheroidal HCs
and solid spherical HCs from the spheroidal harmonics method (11) ((±1.0
× 10−12) indicates a value in between −10−12 and +10−12, that is, a value
smaller than can accurately be determined given the number of digits used
in the computations) (units in metres).

Approximate Surface CT Spheroidal CT

Minimum −1.7 × 10−02 −1.9 × 10−07 (±1.0 × 10−12)
Maximum 1.1 × 10−02 1.6 × 10−06 6.2 × 10−06

Mean 1.8 × 10−05 (±1.0 × 10−12) 8.0 × 10−11

rms 0.7 × 10−03 2.7 × 10−10 1.3 × 10−08

In the generation of EGM2008 and earlier global gravity models,
approximate ellipsoidal corrections were applied to gravity anoma-
lies to obtain an expression that uses radial derivatives, following
Gleason (1988) and Rapp & Pavlis (1990). These ellipsoidal cor-
rections are unnecessary when using the surface harmonic method,
as follows.

Let f
′e
nm be the surface spherical HCs of the first-order normal

derivative f ′ with respect to the spheroidal surface

f ′(re, θ, λ) =
∞∑

n=0

n∑
m=−n

f
′e
nmY nm(θ, λ). (32)

Likewise, let f
′′e

nm be the surface spherical HCs of the second-order
normal derivative f ′′ with respect to the spheroidal surface

f ′′(re, θ, λ) =
∞∑

n=0

n∑
m=−n

f
′′e

nmY nm(θ, λ). (33)
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These series can be used to solve Neumann and second-order
boundary-value problems, respectively. Claessens & Featherstone
(2008) give formulae for the computation of f

′e
nm and f

′′e
nm from

a set of solid spherical HCs f
R

nm , assuming the function f is har-
monic anywhere on and outside the spheroidal surface. These take
the same form as (eq. 16), a weighted summation over coefficients
of equal order m

f
′e
nm =

∞∑
i=−∞

λ′
nmi f

R

n−2i,m (34)

f
′′e

nm =
∞∑

i=−∞
λ′′

nmi f
R

n−2i,m . (35)

The equations for the weights λ′
nmi and λ′′

nmi are given in Claessens
and Featherstone (2008, eqs 41 and 42).

The transformation matrices 
′ and 
 ′′, containing the weights
λ′

nmi and λ′′
nmi respectively, are both diagonally dominant up to d/o

520, just as 
 (Claessens & Featherstone 2008). The reverse trans-
formation can, however, be performed efficiently using a two-step
procedure similar to the one described in Section 4.2.

Approximating normal derivatives by radial derivatives gives the
approximate relations (cf. eq. 21)

f
R

nmY nm ≈ −
(

re

R

)n+2
R

n + 1
f

′e
nmY nm (36)

f
R

nmY nm ≈
(

re

R

)n+3
R2

(n + 1)(n + 2)
f

′′e
nmY nm . (37)

This leads to expressions for the approximate solid spherical HCs
(cf. eq. 24)

f̂ R
nm =

∞∑
i=−∞

μ′
nmi f

′e
n−2i,m (38)

f̂ R
nm =

∞∑
i=−∞

μ′′
nmi f

′′e
n−2i,m (39)

where the weight factors μ′
nmi and μ′′

nmi are computed in a very
similar fashion as the weight factors μnmi in eq. (25)

μ′
nmi = − R

n + 1 − 2i

∞∑
j=|i |

ωn+1−2i, j K 2i,2 j
n−2i,m (40)

μ′′
nmi = R2

(n + 1 − 2i)(n + 2 − 2i)

∞∑
j=|i |

ωn+2−2i, j K 2i,2 j
n−2i,m . (41)

Eqs (40) and (41) contain singularities for n − 2i = −1 and −2, but
it can be seen from eqs (38) and (39) that μ′

nmi and μ′′
nmi are only

required for n − 2i ≥ 0, since spherical HCs of negative degree are
discarded in the practical evaluation of eqs (38) and (39).

Once approximate solid spherical HCs are available, the second
step of the reverse transformation is identical to that described in
Section 4.2. The relation between the approximate coefficients f̂ R

nm

and the ‘true’ coefficients f
R

nm is given by eqs (26) and (27), but
with primes added to the weights λnmi, μnmi and νnmi. The reverse
transformation can then again be solved iteratively using the Jacobi,
Gauss–Seidel or SOR method (eqs 29–31).

As in the Dirichlet problem, the weights ν ′
nmi and ν ′′

nmi for the
Neumann and second-order problems are strongly diagonally dom-
inant up to high d/o (at least up to n = 2190). This diagonally

dominant behaviour of the weights in all cases is similar, because
the magnitude of the weight functions λnmi, λ′

nmi and λ′′
nmi is dom-

inated by the contribution from the terms (R/re)n+1, (R/re)n+2

and (R/re)n+3, respectively, for large values of n. Since the in-
verse of these power terms are incorporated in μnmi, μ′

nmi and μ′′
nmi ,

the cause of the non-diagonal dominance in the high degrees is
‘counter-balanced’.

Boundary-value problems where the boundary condition is
a linear combination of zero-, first- and second-order deriva-
tives of a harmonic function, such as the Robin boundary-value
problem, can also be solved using the surface harmonic ap-
proach presented here, by simply applying a linear combina-
tion of the coefficient transformations. A special example is
the computation of a global gravity model from gravity anoma-
lies on the surface of a spheroid. The forward transformation
for that problem is given in Claessens & Hirt (2015), and the
two-step procedure outlined here can be used for the reverse
transformation.

7 C O N C LU D I N G R E M A R K S

In this paper, it is shown how various boundary-value problems
where the boundary is a spheroid can be solved using a transfor-
mation between solid and surface spherical HCs. It is shown that
surface HCs of the harmonic function or its first- or second-order
derivative, defined on the surface of any spheroid, can be expressed
as a weighted summation over solid spherical HCs of that function.
This provides a generalization of the well-known ‘spherical’ case,
where surface HCs are defined on the surface of a sphere, as an al-
ternative to existing methods. This is of particular interest to Earth
sciences, since the surface of the Earth can accurately be described
by a spheroid.

The method was compared numerically to the Hotine–Jekeli
transformation between solid spheroidal and spherical HCs. These
test show that both methods can achieve submicrometre precision
in terms of height anomalies for a model to d/o 2239. However,
both methods result in spherical harmonic models that are differ-
ent by up to 7.6 mm in height anomalies and 2.5 mGal in grav-
ity disturbances due to the different coordinate system used. The
main advantage of the Hotine–Jekeli transformation is that it is nu-
merically more efficient. The new method for transformation from
surface to solid spherical HCs has as its main advantage that it
can more easily be customized to different boundary quantities,
such as gravity disturbances or gravity anomalies for global gravity
modelling.
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