J. WEB. INFOR. SYST. 2 (2), JUNE 2006. © TROUBADOR PUBLISHING LTD

95

Modeling Views in the Layered View Model for
XML Using UML

R. RAJUGAN, THARAM S. DILLON
eXel Lab, Faculty of Information Technology, University of Technology, Sydney, Australia
Email: {rajugan, tharam} @it.uts.edu.au

ELIZABETH CHANG
School of Information Systems, Curtin University of Technology, Perth, Australia
Email: Elizabeth.Chang@cbs.cutin.edu.au

LING FENG
Faculty of Computer Science, University of Twente, The Netherlands
Email: ling @ewi.utwente.nl

Received: January 28 2006; revised: March 26 2006

Abstract— In data engineering, view formalisms are used to
provide flexibility to users and user applications by allowing
them to extract and elaborate data from the stored data sources.
Conversely, since the introduction of EXtensible Markup Lan-
guage (XML), it is fast emerging as the dominant standard
for storing, describing, and interchanging data among various
web and heterogeneous data sources. In combination with XML
Schema, XML provides rich facilities for defining and constrain-
ing user-defined data semantics and properties, a feature that is
unique to XML. In this context, it is interesting to investigate
traditional database features, such as view models and view
design techniques for XML. However, traditional view formalisms
are strongly coupled to the data language and its syntax, thus
it proves to be a difficult task to support views in the case of
semi-structured data models. Therefore, in this paper we propose
a Layered View Model (LVM) for XML with conceptual and
schemata extensions. Here our work is three-fold; first we propose
an approach to separate the implementation and conceptual
aspects of the views that provides a clear separation of concerns,
thus, allowing analysis and design of views to be separated
from their implementation. Secondly, we define representations to
express and construct these views at the conceptual level. Thirdly,
we define a view transformation methodology for XML views
in the LVM, which carries out automated transformation to a
view schema and a view query expression in an appropriate
query language. Also, to validate and apply the LVM concepts,
methods and transformations developed, we propose a view-
driven application development framework with the flexibility
to develop web and database applications for XML, at varying
levels of abstraction.

Index Terms— View formalisms, data modeling, XML,
UML/OCL, XML views, OO conceptual models, conceptual
views, schema views, instance views, Layered View Model (LVM)

I. INTRODUCTION

Electronic data publication and dissemination is a complex
and challenging task. Only in the past decade, such publi-
cations of data are made easier, mostly due to the success of

Internet and the web technologies. Many people see published
or distributed data as web pages, electronic documents, web
(database) query results etc. Such web data, in comparison
to processed structured data (such as in a relational database
system) are usually unstructured, unorganized, schemaless and
increasingly exponentially. In addition, there is a growing trend
to produce and publish vast amount of scientific and business
data by automatically generating volumes of data by combin-
ing one or more distributed data sources, stored dispersedly
over the Internet, for the consumption of both human and
machines. In this context, it is important to provide database
like features [1], such as representing, efficient querying and
retrieving techniques, efficient storage and versioning, to such
large amount of data, to be of any use . Conversely, such large
amount web data have generated enormous research interest
and demand on traditional database systems and created new
era of data models and technologies, such as (web) data
warehouses, ontologies, medication systems, middleware, etc.
(11, [2], (3], [4], [5].

In the new era of electronic data publication, meaningful
information retrieval for a given context has proved to be
a challenging task due the vast amount of unstructured and
uncategorized data available to the users. The majority of
this data accumulated from the World Wide Web (WWW)
[6] and the shared data repositories is dispersed stored over
the Internet [1]. The exponential growth of the web and
its technologies, and the growing number of information
sources gathered or stored at multiple locations, created the
problem of standardization vs. customization, where anyone
can represent everything according to one’s own representation
and annotations. This triggered a series of new research
directions such as metadata description languages, search
engines, and knowledge representation techniques for the web
to organize, describe, manage and disperse information in
an orderly manner using the web as the new medium. To

96

this effect, many initiatives have been proposed, namely;
(a) the formation of new standard bodies and consortium,
to define and promote standards for the web, such as the
WWW consortium [6], ebXML (www.ebxml.org), OASIS
(http://www.oasis-open.org) etc., (b) new data models (HTML
[7], XML [8], XML Schema [9], RDF [10], OWL [11]), etc.,
(c)transformation and query languages proposals (e.g. XQuery
[12] , RDQL [13], XSLT [14]) and (d) new technological
frameworks (e.g. Web Services [15]) and (e) new knowledge
representation paradigms such as the Semantic Web [16].

A. XML

The eXtensible Markup Language (XML) is emerging as
the core data representation (and storage) standard for the
web, from annotated web pages to Semantic Web and ontology
bases. Since its adoption by the W3C as a standard in 1996,
which was derived from its predecessor SGML, XML was
originally intend to be a simple, yet meaningful data descrip-
tion and encoding language for electronic data representation,
publishing and dissemination over the web, readable for both
human and machines. Its tag-based, self descriptive, semi-
structured data model provides facilities for user-defined tags
and description that enables authoring of XML documents
easier and customizable, yet allows external readers (human,
agents and applications) to interpret or integrate them cor-
rectly. Due to this, the core data model for majority of the
new and emerging web technologies, such as XML Schema,
XQueryX, Web Databases, Web Services, Semantic Web, web
protocols (e.g. SOAP, XAML) are based on XML.

XML, from a data engineering point of view, it can be
considered as semi-structured. From a database point of view,
it can be considered as a document than an inter-connected
collection of data elements. Since it is self-descriptive, tag
descriptions embedded within the document, thus enabling the
reader (human or machine) to interpret the content without a
need for managed metadata repositories or metadata schema.
But, XML document by itself cannot provide validity to
a document (i.e. does the document is lexically correct as
the author intended?). For this purpose, the W3C proposed
Document-Type-Definition (DTD) and its successor XML
Schema (XSD).

DTD (and XSD) contain user-defined element type defini-
tions and attribute descriptions to describe an XML document,
its structure and the meaning of it content. The replacement
of DTD is the XML Schema, which is richer in vocabularies
and considerable extends the capabilities of DTD for defining
and constraining the content of XML documents [17] [18].
The XSD, which itself is represented in XML, provides a
set of advanced constructs, such as XML document usage,
meaning, relationships and a rich set of constraints, that can
be grouped into three groups of twelve components, to define
and constraint XML documents. One of the main features of
XML/XML Schema is the separation of document content
from its presentation and/or structure.

B. Modeling XML Data

In the context of data engineering, though XML is rich in
data modeling constructs, XML focus on syntactic structure

J. WEB. INFOR. SYST. 2 (2), JUNE 2006. © TROUBADOR PUBLISHING LTD

than data semantics and their relationships [17] [18]. Due to
this nature, modeling and representing real-world objects using
XML/XML Schema proves to be a challenging task. Since
Object-Oriented (OO) conceptual modeling [19] [20] is capa-
ble of modeling real-world objects, relationships, constraints
and constructs, focusing on semantic, structural and dynamic
aspects at varying level of abstraction, which is precise and
comprehensible to the users, it is interesting to study OO
modeling approaches for XML data/document modeling.

In practice, an OO model provides the blue print of a system
or problem being considered. From a data engineering point
of view, OO has been successfully applied to solve complex
problems such as real-time databases to data warehousing
and OLAP queries. The success of the OO model is mainly
due to its ability capture, model and communicate a problem
in question with needed level of abstraction using industry
standard notations and techniques.

Similarly, for structured data (noticeably the relational data),
the database technologies have proven their success in many
areas, such as models, efficient storage and retrieval tech-
niques, performance improvement techniques, model automa-
tion and transformation tool etc. Unlike the semi-structured
data (i.e. XML) models, for the structured data, data storage,
retrieval and manipulation have evolved to provide perfor-
mance and ROI that is acceptable to industry and enterprise
standards. Thus, it is interesting to investigate OO approaches
to traditional database concepts, theory and practice, in the
context of web and XML. Here, this paper investigates a view
model for XML and its applications in designing XML e-
solutions.

C. Databases, Views and XML

In data engineering, the notion of views is essential in
databases, as it allows various users to see data from different
viewpoints. This is made possible by data “abstraction” and
data partitioning” provided by the view mechanism in a lan-
guage specific, well-defined data model. Since the introduction
of the successful view mechanism for the relational data model
[21], [22], motivation for views has changed over the last two
decades. At present, views are widely used in:

1) user access and user access control applications
2) defining user perspectives/profiles [23]
3) designing data perspectives
4) dimensional data modeling [24], [25], [26]
5) providing improved performance and logical abstraction
(materialized views) in data warehouse/OLAP and web-
data cache environments [24], [27]

6) web portals & profiles

7) extraction of document structures or sub graphs in semi-
structured documents [5]

8) Semantic Web, for sub-ontology or Ontology views [28],
[29]

From this list, it is apparent that the uses and applications of
views are realized more than their initially envisioned by Codd
et al. [30](i.e., data elaboration vs. the 2-Es; data Extraction
and Elaboration), with extensive research being carried out
by both researchers and industry to improve view design,

RAJUGAN ET AL.: MODELING VIEWS IN THE LAYERED VIEW MODEL FOR XML USING UML 97

construction, and performance. But, the view specification and
definition still remains as a data language and model depen-
dent low-level (instance) construct. Conversely, in conceptual
modeling paradigms such as OO or E-R/DFD, the modeling
notation and/or languages provide no semantics to capture
view formalisms at the conceptual (or logical) level.

Therefore, given the shortcomings of the existing view
mechanisms and the growing popularity of XML in tradi-
tional structured data domains, it becomes essential to have
a view mechanism that allows database designers to sup-
port and maintain existing applications, while designing new
applications for emerging data standards and languages to
utilize XML data/documents. Thus, in adapting or extending
database concepts to XML (e.g. views) domain, there exist
few challenges that need to be considered. They are:

1) Dual property: in XML, for a given (view) query expres-
sion, it should be able to construct result sets from stored
both data-centric and document-centric XML documents
without modifications.

2) Heterogeneity: in contrast to relational data, where all
tuples in relations are of the same structure, XML
provides varying and (non-atomic) complex structures.
Therefore, in a stored XML document, depending upon
such structures and embedded constraints (reference,
choice, all, sequence etc), sub-elements of XML hierar-
chy may be missing and/or repeated. At present, many
existing XML view definition languages need complex
data definition and specification formalisms to perform
such tasks.

3) Uniqueness: each tuple in a relation can be uniquely
accessed due to key-base constraints (primary key, for-
eign key) defined for them. In the case of XML, its
semi-structured nature prevents similar constraints from
being placed. But in comparisons with relational models,
defining and validating such a key mechanism for XML
is a computationally expensive and complex task, as
unlike relational, the XML structure is hierarchical.
Also, unlike relational, XML is not dependent on keys
and normalization but on node hierarchy and ordering.
But there exists some work on indexing, “normalization”
for XML and defining key-based constraints to improve
query processing for XML [31].

4) Ambiguity: an XML document, due to its self-
descriptiveness, can be vague in structural definition.
Therefore, one document may have multiple schemas
defined. Therefore, querying and defining views for such
documents is a difficult task, and thus view definition
may vary from one language to another.

5) Ordering: data extraction and elaboration in XML (and
in many semi-structured data) documents should keep
the original order of structures. Thus, query language
(and views) should be aware of such constructs and
process them accordingly. Again, at present, in the
context of view definition and querying, due to non-
defined standards, tasks such as specifying and process-
ing ordering vary from one view definition language to
another.

6) Logical or schema constraints: in many XML docu-
ments, constraints such as element repetition, ordering
etc. are only visible and constrained at the schema level
than being embedded within the document elements.
Thus, in such circumstances, the view definition (and
the query) language should be able to access and process
such logical level constructs to keep the XML document
semantics intact.

7) Customization: most existing view definition languages
provide view customization only at the instance (or
result) level. They do not allow customization of XML
document structures at the higher level (e.g. schema)
that may be required for processing some queries and/or
document constraints (e.g. model integration, abstract
query processing, etc.).

8) Language independence: most existing XML view
mechanisms do not support view definition that is inde-
pendent of view specification languages, thereby lacking
the flexibility required in extracting hierarchical data
structures without loss of syntactical XML document
semantics that is required for XML (and in general for
semi-structured data) and

9) View validity: Another challenging task of XML view is
its validity. Using valid XML document as stored/base
document does not necessarily guarantee a valid XML
view/(s) [32]. This is because in relational or OO
database systems, there is a fixed model and a cata-
logue of defined data types (domain) which can validate
views. In XML there is no fixed data model for XML
documents.

Therefore it is apparent that the XML differ from traditional
data models on (a) data format, (b) data structure and (c)
data organization. Thus, in summary, it is clear from the
aforementioned that a view mechanism for XML may be
benefit more if:

o it is independent of the view specification language,

« it provides view specification (and possibly definition) at

a higher level (e.g. schema) than at the instance level,

o the view specification and definition are native to XML
document structure and semantics,

o it adheres to generic definition that is deployable in
a varity of present and emerging XML technologies
and storage models, as XML (and semi-structured data)
standards are an on going process,

« it supports XML data extraction and (preferable) elabo-
ration at varying levels of abstraction, such as instance,
query and schema levels.

The next section outlines some ideal characteristics for an

XML view mechanism based on the challenges.

D. Properties of an Ideal View Mechanism for XML

A structured data item, e.g. a person’s first name conform
to one system wide data type (or schema type) that defines
its data format, domain and possible values. These structured
data items are usually singular (or simple) or singled valued.
Also, such data values can be accessed via query language,
which first determined the data type (or schema) from the

98

global schema and execute the query against the data sets (or
tuples). But advancements in OO and database technologies
have enabled one to have complex data items (or Abstract
Data Types (ADT)) and provide techniques to access such
complex data structures to be accessed via query languages
[19]. The popularity and the efficiency of relational model
have made the structured data as the de-facto standard for
many Information Systems. The success of relational model
evident from two facts; (a) though successful in modeling
and programming, unpopularity native OO databases and (b)
successful adaptation of OO (logical) data models using core
relational database engines.

Given these facts, it is essential to investigate the core
properties of a native view mechanism for XML. Here, we
outline some of these envisaged properties of an ideal view
mechanism for XML that is being considered in this paper.
They are:

o A view mechanism for XML should be independent
of a fixed data model, and rely on dynamic XML
Schema/DTD like mechanism for data description and
elaboration. This is a contradistinction to some of early
work on XML views, such as [33], where authors argue
that an XML view model should depend on ODMG [34]
like structured data model. The argument for this is that,
XML is well adopted and accepted due to its data model
independence and the rich data description (semantics)
provided by its self-descriptive tags. Adapting an ODMG
like data model for XML and XML views may lose
its purpose and introduce complex schema (or logical
wrapper) processing and management, resulting in loss
of data semantics, meaning and performance in various
applications.

o A view mechanism for XML should be independent of
one particular query language (e.g. SQL) or propriety
data languages, and should be able to support multiple
query languages as, one core purpose of XML is interop-
erability, where one source XML data segment/document
may need to be instantiated at multiple target IS sites,
by multiple query/data languages, generating similar data
sets. Also, to accommodate fast emerging, robust and
efficient query and data (or domain) languages (e.g.
LOREL [35], RDQL [13], SPARQL[36], SQL ’03 [37]
etc.), the view model (and the view instantiation) should
be independent of one specific query/data language.

¢ Typically, an XML view may be a base for defining
other views (view of a view) and may have to stratify
queries issued against it. Thus, a view mechanism for
XML should provide validation [32] in addition to well-
formed view instances. That is, a XML view instance
should be a ”self-contained” or "mini” XML document
with its own validation mechanism (such as view DTD or
Schema), as unlike in structured data views, there exists
no global schema to constraint and validate XML view
instances.

o The XML view instance should not only provide individ-
ual data elements, but also the sub-tree hierarchy (without
loss of data semantics and integrity) from the original

J. WEB. INFOR. SYST. 2 (2), JUNE 2006. © TROUBADOR PUBLISHING LTD

stored document/(s) structure.

o XML data items inherently carry many item specific
constraints such as simple/complex content, the notion
of ordering and choice and item specific constraints such
as “facet”.

¢ A view mechanism for XML should support easy in-
tegration into existing and new XML applications and
support construction of architectural constructs such as
data cubes, dimensional data models and XML (data)
interfaces.

The intension of the view mechanism proposed here is to:

1) provide a generic view mechanism for XML that can
be utilized in the present and upcoming XML technol-
ogy standards environments (e.g. XML databases, web
services, ontologies),

2) support specification and definition of views at a higher
level of abstraction than at the document or instance
level,

3) provide view validity without using external validates
and/or applications. That is, the view mechanism should
utilise XML Schema like mechanism to validate con-
structed views and

4) support MDA like initiatives (i.e. platform independent
view mechanism) for XML solutions.

Also, it is NOT the intention of this paper to propose a
new view standard for XML or extensions to XML query
languages. Rather, the focus is to provide a view mechanism
for XML at the conceptual, schema, and document levels
by means of OO conceptual modeling. To help illustrate the
concepts, a real-world case study of a fictitious global logistic
company called LWC & e-Solutions Inc., e-Sol in short, is
used and described in detail in section III below.

In this section, we presented issues such as, data models,
model requirements and challenges that are important in the
context of XML. The rest of this paper is organized as follows.
In section II, we review some of the early works in view related
domain, followed by section III, which describes an example
case study used to illustrate our concepts and notions in this
paper. This is followed by the introduction and the semantics
of our Layered View Model (LVM) for XML in Section IV.
Section V presents modeling issues related to the views in
the LVM, followed by a detailed discussion on modeling
views in the LVM using UML/OCL in section IV. Section VII
describes the schemata transformation methodology adopted
in the LVM. Section VIII presents some potential real-world
application scenarios that utilizes our LVM, followed by
section IX, which concludes the paper and outline our future
research direction.

II. RELATED WORK

In this section, a discussion on view formalisms that are
available today is presented, including some of the proposals
for new semi-structured data view formalisms and constraint
specification for such views. Existing view mechanisms can
be grouped into four categories, namely; (a) early (namely
relational) view formalisms, (b) view formalisms for Object-
Oriented (OO) paradigm, (c) semi-structured (namely XML)

RAJUGAN ET AL.: MODELING VIEWS IN THE LAYERED VIEW MODEL FOR XML USING UML 99

view formalisms and (d) views for SW. A detailed discussion
on these view models can be found in our work in [39], [38].
Here we only look at views for semi-structured data.

A. Views for Semi-Structured Data

Since the emergence of semi-structured data models, namely
XML [8], the need for semi-structured data models to be
independent of the fixed data structure and description go
against the fundamental properties of the classical structured
data models. However, since its introduction, much work
has been directed towards providing traditional database-like
features such as data access, query language, views, etc. to
XML in an ongoing process.

XML documents which are tag-based and self-describing
data documents represent a hierarchical tree structure. At the
conceptual level, they can be visualised as hierarchical trees
or graphs. An XML document is usually associated with a
Document Type Definition (DTD) [40] or XML Schema [9]
which is used to define and constrain the syntax and structure
of a document. Though XML is usually considered as semi-
structured data, there exist some differences between the two.

Many researchers have attempted to resolve view related
issues in the semi-structured paradigm by using graph based
[1], [41], [42] and/or OO based data models [5], [43], [44].
But, in all the above cases, as in the case of relational and
0O, the actual view specification and definitions are available
only at the lower levels of abstraction (implementation level)
and not at the conceptual and/or logical level. This is one of
the main issues of concern for views in the semi-structured
(and XML) data models.

Semi-structured data (from XML to Semantic Web), unlike
structured data do not follow a rigid, well-defined structure (as
opposed to relational and OO data) and usually constrained
and described by schemas. For example, the popularity of
XML is due to its ability to support heterogeneity of data and
structure for a given concept. That is, at the schema level,
XML may define and constrain an XML document, while
allowing XML document to have incomplete information.
In such situations, defining and specifying views using the
classical approach, that is, using a data manipulation or query
language, may have allow for flexibility of dealing with
incomplete or missing information. This is a complex task
in comparison to writing simple view definitions.

Conversely, at a higher level of abstraction than the data
language level, XML (and semi-structured) data can be easily
visualized, defined, cataloged, queried and customized to suit
one’s need [1], [17], [18], [28], [45]. Thus, providing a view
formalism for semi-structured data should consider specifying
views at a higher level of abstraction than relational or OO
views.

B. Declarative XML Views

One of the early discussions on XML views was by Serge
Abiteboul [33] and later more formally by Sophie Cluet et
al. [46]. They proposed a declarative notion of XML views.
Abiteboul points out that:

1) a view for XML, unlike relational or OO views, should
do more than just providing different presentation of
underlying data [33]. This, he argues, arises mainly due
to the nature (semi-structured) and the usage (primarily
as common data model for heterogeneous data on the
web) of XML;

2) XML views should use OO views as the foundation,
should follow analogous to (his [47]) OO view concepts,
such as virtual values, virtual classes and imaginary
classes;

3) an XML view specification should rely on a data model
(like ODMG [34] model) and a query language. Query
language, he stats as the central issue for view definition,
as query languages for XML are still at their initial
stages of development or still evolving, and no view
creation facilities are provided. W3C XPath [48] and
XQuery [49] are such examples, together with the SQL
2003 standard;

4) an XML view specification should be more than rela-
tional and OO views as XML is deployed over web.
Thus, web specific characteristics, such as replication,
change notification, etc. should be part of the view
specification;

5) an XML view should allow for dealing with incomplete
information.

The above points in Abiteboul’s work identify some of the
core issues that are concerns for view formalism for XML.
However, his proposition to couple XML to a structured data
model (ODMG) and to query languages, in our opinion may
restrict the capabilities of XML and may be considers as
an extended OO model for XML than a native XML view
formalism. Also, the problems that are associated with the
mixed OO class and view hierarchy is still an issue here in
these proposed XML views.

C. View Mechanism in Xyleme

In the works [44], [46], authors extend some of the concepts
proposed in [33], and proposed a development of a view
formalism for XML to support web scale XML data warehouse
environment: the Xyleme [50], [51] project. In regards to
the XML views, due to its scale, the authors propose a
semi-automatic approach to view generation and they discuss
in detail on how abstract XML paths/DTDs are mapped to
concrete paths/DTDs. More formally an XML view definition
in Xyleme is stated as [46]:

“....A view defined by a set of pairs < p,p’ >, called mappings,
where p is a path in the abstract DTD and p’ a path in some
concrete DTD..”

These concepts, which are implemented in the Xyleme
project provides one of the most comprehensive mechanisms
to construct an XML view to date. The Xyleme project uses
an extension of ODMG Object Query Language (OQL) to
implement such an XML view. But, in relation to concep-
tual modelling, these view concepts provide no support. The
view model is derived from the instantiated XML documents
(instant level) and is associated with DTD in comparison to
flexible XML Schema. Also, the Xyleme view concept is

100

mainly focused on web-based XML data. Characteristics of
Xyleme views include [44], [46], [50]:

@) due to the scale of Xyleme data set, XML views
enables the user to query a single structure that
summarizes a domain of interest (as opposed to
multiple schemas);

(ii)) Xyleme views operates on web scale clusters (as op-
posed to relational or OO data), XML data gathered
by web crawlers that are automatically classified by
external tools;

a view query in Xyleme is defined by a union of
many queries over many clusters. Usually, here, the
views are constructed automatically;
the query language for XML views in Xyleme is a
variant (extension) of the OQL [34] and also satisfy
some of the XQuery features;
(v) the concepts related the view domain is considered as
concrete and the concepts related to the XML view
is considered abstract (e.g. DTD, values, etc.);
in regards to the properties of the XML view in
Xyleme:

o View definition is a OQL like

o View is defined by a set if path pairs (or map-

pings) with a path in the abstract DTD and path
in the concrete DTD

o View schema is provided by an abstract DTD

(iii)

(iv)

(vi)

As stated earlier, XML views in Xyleme provide one
of the most comprehensive implementation architectures for
constructing web scale XML views. It is scalable and based
on core OO data model principles. However, given the scale
of the Xyleme project, it is desirable to have language-neutral,
high-level, view specification and definition formalism. This
will arguably provide a better transformation and mapping
formalism to the existing domain specific XML document
structures and language-specific view definitions. Also, a high-
level view specification formalism will provide view visibility
to end users rather than semi-auto generated view specification
code. Another desirable feature for Xyeleme is the utilization
of XML Schema as opposed to DTD as XML Schema is
better suited for such web scale task (added deceptions and
vocabularies, available data descriptors, support for multi-
schema documents, etc.).

D. Views in the ORA-SS Model

Object-Relationship-Attribute Model for Semi-Structured
Data (ORA-SS) is one of the early works that looked at view
specification at a high-level abstraction (as opposed to query
language) using visual constructs was proposed in [32], [52].
This is also one of the first works that looks at using XML
Schema and XQuery in specifying XML views. Here, XQuery
is used as the view/query language over the views. The view
definition includes an additional view declaration clause before
XQuery expression.

The ORA-SS data model is a visual notation with schema,
instance, and functional dependency and inheritance diagrams.
It is comparable to the Extended-ER model with three basic
concepts: object classes, relationship types and attributes.

J. WEB. INFOR. SYST. 2 (2), JUNE 2006. © TROUBADOR PUBLISHING LTD

Here, an object class corresponds to an entity type an el-
ement in XML documents. A relationship type describes a
relationship among object classes. Attributes are properties,
and may belong to an object class or a relationship type. ORA-
SS data model has four diagrams: the schema diagram, the
instance diagram, the functional dependency diagram and the
inheritance diagram. This is one of the first view models that
support some of abstraction above the data language level.
The XML view in ORA-SS is done in the following steps:

@) transformation of the stored XML documents into
the ORA-SS model (diagram);

(ii) additional semantics that are not feasible to specify
at the instance XML document level, but provided
in the ORA-SS model are added, including: partic-
ipation constraints of object classes and distinction
between attributes of object classes and relationship
types. Also, with end-user participation (manually)
the following sub-tasks are performed:

o identification of key attributes of each object
class;
o identification attributes that belong to object
classes;
o identification of relationship types among object
classes;
o identification of attributes of relationship types.
(iii) The development of a set of rules to guide the design
of valid XML views. These include, model specific
four visual transformation operations for creating
XML views, namely, selection, projection, join and
swap operation;
Algorithm driven validation for the XML views
constructed.

(iv)

This is one of the early works that elaborates on the con-
ceptual model like semantics to define XML views. However,
the drawback this approach includes:

@) ORA-SS model is constructed from instance level
semantics; that is, it represents and XML document
as opposed to representing conceptual or logical
semantics that may have lost or not present in the
XML document. Thus, this work may be analogous
to Query-by-Example tools in relational or work such
as [53], [54], [55] where XML document semantics
are used to create visual representation of the XML
document semantics and used to construct XML
Views,

(ii)) Though the view formalism provides semantic en-
richment with user participation and explicit dia-
grammatic representation, it does not consider the
addition of conceptual semantics or important con-
straints that are useful for the XML domain, such as
ordered composition, exclusive disjunction, etc.,

View definitions are possible only if the source data

is accurate and complete. No provision is given in the

ORA-SS model to deal with missing or incomplete

XML node, element or attribute values,

Validation requires external algorithms.

(iii)

(iv)

RAJUGAN ET AL.: MODELING VIEWS IN THE LAYERED VIEW MODEL FOR XML USING UML 101

Wa

{ e-Sol Staff

e-Solution Customers

Fd
"

/

e-Solution Customers

Fig. 1. e-Sol context diagram.

E. Technology Specific View Formalisms

In this section, we look at some of the XML view proposals
that are the by-product of another concept or technological
solution. These include: Active XML [4] view system and
the MIX view [56], [57] system. Though not comprehensive
enough to be considered as an XML view concept, they do
address some of the issues associated with XML views. The
following sections look at this research in some detail.

F. Active XML Views

As described above in Active View systems, the Active
XML [4], [43] views are the result of using XML as the data
model in the Active Views system. The Active Views system is
built on top of Ardent Software XML repository based on the
0> OODBMS system [58]. In the Active Views system, since
view is presented as an object, it allows for both properties
and methods. The Active Views system uses the OQL as a
view definition language and the Lorel [35], [59] language as
the query language over the views.

G. Views in the MIX System

The MIX View system [56], [57] is a by-product of develop-
ing web scale mediator systems. It is based on supporting me-
diator architecture to provide the user with an integrated view
of the underlying heterogeneous information/data sources.
The MIX system employs XML as the data exchange and
integration medium between mediator components and the
XML DTD to provide structural descriptions of the data.

The Query language of MIX system is Xmas [60] (XML
Matching and Structuring Language) which is claimed to be a

e-Auction

- -

e-Solution Staff
(Logistics,
Warehouse and
Admin)

e-Sol Staff

high-level, declarative query language. The Xmas provides:
(a) object fusion and pattern matching on the input XML
data and (b) grouping and order constructs for generating new
integrated XML objects.

The interface to MIX is provided by the graphical user
interface BBQ (Blended Browsing and Querying) [61] which
support Query-by-Example operations. The output of a BBQ
operation is a Xmas query. Though MIX system provides
support for XML views, it is not a XML View by nature. It is
a by-product to support data mediation for web-based infor-
mation systems. Though powerful, the drawbacks include:(a)
no standalone framework to support XML views and non-
standard language/(s) used to query/manipulate data, (b)it does
not utilize XML Schema, a semantically rich replacement for
XML DTD and (c) the resulting views are not systematically
validated.

H. Views for Semantic Web

In related work in Semantic Web (SW) [62] paradigm,
some view mechanisms have been proposed in [28], [63],
[64], where the authors present a RDF views with support
for RDF [10] schema (using a RDF schema supported query
language called RQL). This is one of the early works focused
purely on RDF/SW paradigm and has sufficient support for
logical modeling of RDF views. The extension of this work
(and other related projects) can be found at [65]. RDF is an
object-attribute-value triple, where it implies object has an
attribute with a value [18]. It only makes intentional semantics
and not data modeling semantics. Therefore, unlike generic
view mechanisms, views for such RDF (both logical and
concrete) have no tangible scope outside its domain. In related

102
«include» _ - “f e-Sol (e-Hub) "~ ,ucess
- ~
- ~
- ~
e i T Sy
P / \ ~
bl aincluden \ Ty
«includens winterfaces
Users /’ \\ e-Commerce
/ \
/ \
! A
/ \
i
«subsystems «subsystems»
WMs LMS
ZA Peay
| I
| 1
| I
1. 1.
«subsystem» wsubsystem»
e-WMS (e- eLMS (e-
Commerce) Commerce)
Fig. 2. e-Sol system overview.

area of research, the authors of the work proposed a logical
view formalism for ontology [29], [66] with limited support
for conceptual extensions, where materialized ontology views
are derived from conceptual/abstract view extensions. Another
area that is currently under development is the view formalism
for SW meta languages such as OWL. Here, we only highlight
one of view formalism that is under development for OWL,
namely views for OWL in the ”User Oriented Hybrid Ontology
Development Environments™ [67] project.

III. AN ILLUSTRATIVE CASE-STUDY EXAMPLE

The e-Sol Inc. aims to provide logistics, warehouse, and
cold storage space for its global customers and collaborative
partners, as illustrated in the context diagrams in Figs. 1 and
2. The e-Sol solution includes a standalone and distributed
Warehouse Management System (WMS/e-WMS), and a Lo-
gistics Management System (LMS/e-LMS) on an integrated
e-Business framework called e-Hub for all inter-connected
services for customers, business customers, collaborative part-
ner companies, and LWC staff (for e-commerce B2B and
B2C). Some real-world applications of such company, its
operations and IT infrastructure can be found in . For ease
of understanding, a simplified use-case diagram of the system
is provided in Fig. 3.

In WMS (Figs. 6 and 7), customers book/reserve warehouse
and cold storage space for their goods. They send in a request
to warehouse staff via fax, email, or phone, and depending
on warehouse capacity and customers’ grade (individual, com-
pany or collaborative partner), they get a booking confirmation
and a price quote. In addition, customers can also request
additional services such as logistics, packing, packaging etc.
When the goods physically arrive at the warehouse, they are
stamped, sorted, assigned lots numbers and entered into the
warehouse database (in Lots-Master). From that day onwards,
customers get regular invoices for payments. In addition,
customers can ask the warehouse to handle partial sales of their
goods to other warehouse customers (updates Lots-Movement
and Goods-Transfer), sales to overseas (handled by LMS) or
take out the goods in full or in partial (Lots-Movement).

Also customer can check, monitor their lots, buy/sell lots
and pay orders via an e-Commerce system called e-WMS.

J. WEB. INFOR. SYST. 2 (2), JUNE 2006. © TROUBADOR PUBLISHING LTD

In LMS, customers use/request logistics services (warehouse
or third-party logistics providers) provided by the warehouse
chains. This service can be regional or global including multi-
national shipping companies. Like e-WMS, e-LMS provide
customers and warehouses an e-Commerce based system to
do business. In e-Hub, all warehouse services are integrated
to provide one-stop warehouse services (warehouse, logistics,
auction, goods tracking, payment etc) to customers, third-party
collaborators and potential customers.

In e-Sol, due to the business process, data have to be
in different formats to support multiple systems, customers,
warehouses and logistics providers. Also, data have to be
duplicated at various points in time, in multiple databases, to
support collaborative business needs. In addition, since new
customers/providers to join the system (or leave), the data
formats has to be dynamic and should be efficiently duplicated
without loss of semantics. This presents an opportunity to
investigate how to utilize the XML conceptual, schema and
instance views to design e-Sol at a higher level of abstractions
to support changing business, environments, and data formats.

In this paper, we gradually build our concepts and notions
using the example described above. A context diagram of the
system is given in Fig. 2, followed by detailed WMS model
in Fig. 6 - 7.

IV. THE LAYERED VIEW MODEL (LVM)

The Layered View Model (LVM) for XML is comprised of
three different levels of abstraction, namely, conceptual level,
logical or schema level, and document or instance level. Fig.
4 outlines this view model. The layered view model is based
on the following two postulates about the real world.

Postulate I: The term context refers to the domain that
interests an organization as a whole. It is more than a measure
[70], [71], and implies a meaningful collection of objects,
relationships among these objects, as well as some constraints
associated with the objects and their relationships, which are
relevant to its applications.

For example, people, order, and bounded-
customer can be examples of context in the e-Sol
system.

Postulate 2: The term view refers to a certain perspective
of the context that makes sense to one or more stakeholders
of the organization or an organization unit at a given point in
time.

A. Conceptual Level

The top conceptual level describes the structure and seman-
tics of XML views in a way which is more comprehensible
to human users. It hides the details of view implementation
and concentrates on describing objects, relationships among
the objects, as well as the associated constraints upon the
objects and relationships. This level can be modeled using
some well-established modeling language such as UML [72],
or our developed XML-specific XSemantic net [17], etc. Thus,
the modeling primitives include object, attribute, relationship,
and constraint. The output of this level is a well-defined valid
conceptual model in UML, XSemantic net, or even OMG’s

RAJUGAN ET AL.: MODELING VIEWS IN THE LAYERED VIEW MODEL FOR XML USING UML 103

a@xtendss
Manage Logistics).

O

Staff

.

Warehouse Booking
Cutomer
Goods Delivery
i Logstics Staff
wincludes o
ainclude» goods Transfer Q
aingludes
Check Lot-Balance
4 Check Lot-Movement Warehouse-Staff
Manage Accounts Q
AN
Bind Customers
«extandss

Fig. 3. A simplified e-Sol use-case diagram.

Meta-Object-Factory (MOF) [72], which can be either visual
(such as UML class diagrams) or textual (in the case of
UML/XMI models).

Definition 1: An XML conceptual view V¢ is a 4-ary tuple
Ve = (meme’ ngj’ Viel’ Vgonstraint)s where meme is the
name of the XML conceptual view V¢, V¢,. is a set of
objects in V¢, V¢, is a set of object relationships in V¢, and
Vionstraine 18 @ set of constraints associated with V¢, and
V¢, in Ve

Context is presented in UML using modeling primitives like
object, attribute, relationship and constraint in this study. To
enable the construction of a valid conceptual view from a
context, we introduce the notion of conceptual operator X .
These conceptual level operators are comparable to relational
operator in the relational model, but they operate on conceptual
level objects and relationships.

Conceptual operators are grouped into set operators, namely

Add Transporter
Manage Staff

Site-Manager

Warahouse Manager

union, difference, intersection, Cartesian product and unary
operators namely projection, rename, restructure, selection and
joins, and can facilitate systematic construction of conceptual
views from context. These conceptual operators can be eas-
ily transformed into query segments, user-defined functions
and/or procedures for implementation. By doing so, they help
the modeler to capture view construct at the abstract level
without knowing or worrying about query/language syntax.
The set of binary and unary operators provided here is a
complete or basic set; i.e. other operators, such as division
operator and compression operators can be derived from these
basic set of operators.

Definition 2: Let C = (Cname» Cobj» Crel» Cconstraint)
denote a context which consists of a context name C,,4me,
a set of objects C,p;, a set of object relationships C,.¢;, and a
set of constraints associated with its objects and relationships
Ceonstraint). Let A be a set of conceptual operators. V¢ =

104

Abstraction Layers Layer Primitives

Classes, Relationships, OCL expressions

{Conceptual Level

1 | Objects Relationships,
Constraints

XSemantic Net

Nodes, Edges, Labels, Constraints

I

[Schema Level } XML Sch

1 | Simple/Complex element
types, Schema constraints

1..*

[Document Level

Query segments and
document trees

1N

5

=

g

¢

logy Extacton Methoddogylgarithms

Fig. 4. The Layered View Model for XML (context diagram).

(Viames Vobjs Viers Veonstraing) 18 called a valid conceptual
view of the context C, if and only if the following conditions
satisfy:

@) For any object o € Vg,;, there exist objects
J01,02,....0, € Cop;, such that 0 = A Az Ay (01,
02,....0,) Where A1 As....\,, € A. That is, 0 is a newly
derived object from existing objects 01, 02,....0, on
in the context via a series of conceptual operators
A1 s Ay like select, join, etc.
For any constraint ¢ € V¢,,,;rqins there exists a
constraint ¢’ € Cionstraint OF @ New constraint ¢”
constraints associated with V¢, or VI .

For any hierarchical relationship rh € V¢, there
does not exist a relationship between one or more
and ngj and Cop;.

For any association relationship/dependency relation-
ships ra € V¢, there may exist a relationship

rel>
between one or more Vi, . and Cop;.

(i)

(iii)

(iv)

B. Logical Level

The middle scheme level Fig. 4 describes the schema of
XML views for the view implementation, using the XML
Schema language. Views at the conceptual level are mapped
into the views at the schema level via the transformation
mechanism developed in previous works such as; (i) UML to
XML Schema [18] and (ii) XSemantic nets to XML Schema
[17]. The output of this level will be in either textual (such as
XML Schema language) or some visual notations that comply
from the schema language (such as graph).

Formally, let denote the transformation mechanism which
can translate a set of objects, their relationships and constraints
into a set of simpleType/complextType definitions for XML
elements/attributes and associated element/attribute constraints
in the XML Schema language.

Definition 3:A schema view V® is a 4-ary tuple V*

— s s s s
- (Vname’ VsimpleType’ VcomplexType’ Vconstraint)’ where

5 3 : 5 5
Viame is the name of the schema view V*, Vi, p..,

A . m
complesType ar¢ simple and complex type definitions for

J. WEB. INFOR. SYST. 2 (2), JUNE 2006. © TROUBADOR PUBLISHING LTD

XML elements/attributes, and VI, . ;..in: 1S @ set of con-
straints upon the defined XML elements/attributes. Here,
ViimpleType’ VzomplexType and Vzonstraint are expressed in
the XML Schema Language, and V; . is also the name
of the resulting XML schema file, i.e., a valid W3C XML

document name.

Definition 4: Given a conceptual view V¢ = (V7 .., V5,

¢ ¢ s _ s s s

rel? constraint)’ V= (Vname’ simpleType> VcomplexType’
Vi onstraine) 18 @ valid schema view of V¢, if and only if V*
is transformed from V¢ by RS, That is, NS: V¢ — V&,

C. Document Level

In Fig. 4, the bottom instance level implies a fragment of
instantiated XML data, which conforms to the corresponding
view schema defined at the upper level. Here, the conceptual
operators are mapped to query expressions (e.g. XQuery
[12]), which are syntax specific. An XML instance view is
an instantiated imaginary XML document which conforms
to the XML schema view defined at the schema level. An
instance view can be used for many purposes such as database
views, materialised semantic Web-views, etc., and can be
generated from simple projection of selected document tags
to provide dynamic window into complex heterogenous docu-
ments. Based on how these documents are constructed/behave,
we classify XML instance views into three categories [39],
namely, derived instance views, constructed instance views,
and triggered instance views.

The document/instance views can be constructed via a
native XML query language (e.g. XQuery, SQL 2003) or some
specific algorithms such as Ontology Extraction Methodology
(OEM) (the MOVE [66] system), which can be achieved by
the transformation of conceptual operators A defined at the
conceptual level [73] into a language-specific query fragment
Aquery, say FLWOR expressions in XQuery etc.

Formally, we can have the following definition for XML
instance views.

Definition 5: Given an schema view V* and a set of XML
source documents S, V¢ is called a valid instance view of V*
over S, if and only if, V¢ is a well-formed XML document
extracted from S by certain query operators in Agyery, and
conforming to the XML schema V*.

D. XML Views in the LVM

Thus, we can show that a view in the layered view model as
a view that composes of three sub-view components, namely
conceptual, logical and instance views. Thus we can define a
an XML view in the LVM for XML (VX1 as;

Definition 6:An XML view in the LVM VXML g 4 triple
VXML — (e Ve V4), where V¢ is the conceptual view of
the XML view in VXMLV is the schema (or logical) view
of the XML view in VXML V4 5 the instance (or document)
view of the XML view in VXME,

Here V¢ provides the (conceptual) view definition, V¢
provides the schema and V¢ provides the query expression
for the layered view.

RAJUGAN ET AL.: MODELING VIEWS IN THE LAYERED VIEW MODEL FOR XML USING UML 105

V. MODELING CONCEPTUAL VIEWS

The conceptual views are views that are captured at the
conceptual level with conceptual semantics and constraints.
To the best of authors’ knowledge, there exists no notation
to specify or define such high level views or view semantics
using exiting OO modelling languages. Even in the ORA-
SS view model [32], the views are only represented (in
contrast to defining) using a diagrammatic notation. Thus,
in the layered view model, to define and specify views at
the conceptual level (conceptual views), new set of notations
needed to be developed. These include; (a) a notation to
represent conceptual views, visually, at the conceptual level,
(b) a set of notations to represent conceptual view properties,
(c) a notation to represent view constructs and (d) a notation
to represent conceptual view constraints.

A. Class Vs. Types

For the purpose of this work, it is important to clarify the
notion of types and classes. In the OO, there are some few
distinctions between classes and types.

A type can be described as [19]; (a) it corresponds to a
notion of Abstract Data Type (ADT) and in programming
languages variables are declared or defined using such types,
(b) some examples of typed based languages include C++
(Stroustrup et al. ’86), O2 (Atkinson et al. ’89), SIMULA 67
(Dahl ’68) etc. In these languages, the type definition of the
variables indicates to the system, the structure of the type and
the operations that are allowed on the values of the variables at
run time. Also, variable type checking is done at the compile
to time to ensure program correctness and do not change
during the execution (or runtime) of the program and (c) types
are referred during the compile time and not during runtime,
thereby ensuring program safety and runtime efficiency, but
reducing program flexibility and user-friendliness.

Conversely, a class can be described as [19]; (a) a class
consists of data structure and operations that are applicable
to the class describing the states and behaviour that may
be associated with its objects, (b) a template for creating
new instance objects and (c) some examples of class based
languages include SMALLTALK (Goldberg ’83), Java (Sun
Microsystems ’96) Gemstone (Maier et al. ’86). Unlike type
based languages, a class is refereed during runtime than during
compile time, thus providing programming flexibility, unifor-
mity and user-friendliness at the cost of runtime efficiency.

It is apparent that, in the context of programming, there
are differences between a class-based language and a type-
based language. But in the context of modelling [19] [20] (such
as in our work), there are more similarities than distinctions
between the two. In OO modelling, both classes and types are
notationally identical (in almost all OO modelling languages)
and are capable of being a template for creating, manipulating
and grouping objects. Though semi-structured data and their
associated schemas (e.g. XML) exhibit strong characteristics
of type-based systems in the context of programming, in the
context of modelling, such difference do not matter as, at a
higher level of abstraction, semi-structured data models ex-
hibits strong similarities to both types and classes. Therefore,

in our work with conceptual views, we do not distinguish types
and classes.

B. Conceptual Views and Conceptual Constructs

To model conceptual views at the conceptual level, we adopt
a specialized notation, which is similar to the notion of a class
in OO modelling languages. A (conceptual) view class is a
class with attributes, and optional methods [75] and constraints
associated with its attributes and methods.

The modeling of conceptual views can be done using UML,
plus a set of stereotypes [39] and newly introduced conceptual
operators. In addition, to make view constraints more explicit
and visible, we use OMG’s Object Constraint Language (OCL)
[76].

As our conceptual view mechanism is defined at a higher-
level of abstraction, we can provide an explicit view constraint
specification model, as most high-level OOCM languages
(such as UML, XSemantic nets, E-ER) provide some form
constraint specification. In the case of XSemantic nets, con-
straints are provided as part of the model elements [17].

Example 1: for example, staff, order and customer
can be some of the context examples in the e-Sol system.

Example 2: processed-order and overdue-order
are two contrasting conceptual views in the context of order
of the e-Sol system.

C. Specifying Conceptual View Constraints

In data modeling, specifications often involve constraints. In
the case of views, it is usually specified by the data language
in which they are defined in. For example, in the relational
model, views are defined using SQL and a limited set of
constraints that can be defined using SQL [21], [22], namely,
(a) presentation specific (such as display headings, column
width, pattern order etc), (b) range and string patterns for
aggregate fields, (c) input formats for updatable views, and (d)
other DBMS specific (such view materialization, table block,
size, caching options etc).

In Object-Relational and OO models, views had similar
constraints but they are more extensive and explicit due to the
data model. The views here are constructed and specified by
DBMS specific (such as OQL [34]) and/or external languages
(such as C++, Java or O2C [47]). It is a similar situation
in views for semi-structured data paradigm, where rich set
of view constrains are defined using languages such as OQL
based LOREL [35]. But the work by authors of [32] provides
some form of higher-level view constraints (under ORA-SS
model) for XML views, while the work in [28] provides some
form of logical level view constraints to be defined in views
for in SW/RDF paradigm. Here, for our view formalism, we
look into using UML/OCL as our view constraint specification
language. Also, our work should not be confused with work
such as [77], where authors use OCL to “specify” relational
views, which utilizes OCL as a declarative view specification
language than a for view constraint specification.

Constraint specification for conceptual views can be explicit
and extensive in comparison to relational or OO view con-
straints as, the conceptual views are designed at a higher-level.

106

Here, the constraint specifications are restricted only by the
modeling language semantics and not by the view definition
language as in the case of relational (e.g. SQL) and/or OO (e.g.
OQL) views. In addition, further constraints can be defined
for conceptual views that includes; (a) unique constraints,
(b) referential constraints, (c¢) ordered composition, (d) ex-
plicit homogenous composition/heterogeneous compositions,
(e) adhesion and/or dependencies, (f) exclusive disjunction,
(g) cardinality constraints, (h) domain constraints (range of
values, min, max, pattern etc) and (i) constructional contents
(set, sequence, bag, ordered-set).

Therefore, conceptual view constraints V¢, ;yq,; may be

described as a collection of various types of constraints and
shown as a set, such that;

Vionstraine = { unique (), reference (), order (),
homogenous (), exclusive (), <adhesion>,
<domain-constraints>,<cardinality-constraint>,
constructional () }

1) Unique Constraint: In an OO system, an Object has a
unique system-wide identifier that is independent of the values
of its attribute/(s), called Object Identifier or OID [19] [78].
When created, an object will be referred to using its system
assigned OID during its entire existence. In DBMS systems,
OIDs can be either logical or physical depending on it nature.
In a DBMS environment, physical OID may contain physical
object address while a logical OID points to a logical ID which
may get mapped to the object’s physical object address using
some algorithm (B+ tree, hash table etc).

In many OO conceptual models and diagrams, though the
concept of OID is assumed to be an implicit concept (unlike
primary keys in E/ER), in conceptual views, there is a need
to explicitly state OIDs, and available to be visualized at the
conceptual level. This is mainly due to the nature of key-
independent XML trees. Here, OIDs provide a means of using
them for the purpose of IDs, similar to that of primary/foreign
key constraints available in the ER models. We argue that,
just utilizing OID (a unique concept to OO systems) in
our conceptual model provides additional semantics such as
providing Id/keys, referential and integrity constraints that are
visually lacking in many OO conceptual modelling technique.
For example, a unique constraint for an attribute may be
specified as;

VC

Constraint = 1 UNique (<attribute-name>) }

Example 3: In the e-Sol, staffID, customerID are
unique, which can be described as;

Vgonstraint = { unique (StaffID) }
gonstraint = { unique (customerID) }

2) Referential Constraint: The referential constraint re-
quires that, to have a valid referential constraint, there exists
a (view) class or (view) attribute content that is equal or same
in value to another (view) class or (view) attribute. Referential
constraints help to maintain referential integrity of a domain.

VC

constraint — { <A> reference }

A=V, B=V;, where (V, V§) € V© and V¢ # V5§

J. WEB. INFOR. SYST. 2 (2), JUNE 2006. © TROUBADOR PUBLISHING LTD

3) Ordered Composition: In a real-world scenario, in an ag-
gregation relationship (i.e. in conceptual view hierarchy), there
may exists a “whole” object that is made of “part” or compos-
ite objects that occur in a predefined order. This signifies an
important OO concept, ordered composition. For example in
XML Schema construct such as with <xs:sequence>, we
regularly observe that the tag <xs : sequence> signifies that
the embedded elements are not only a simple assortment of
components but these have a specific ordering. For example,
ordering of a finite set of “part-of” conceptual views V¢, (V§
€ V¢) can be shown as;

Vgonstraint = order (VC’ g’ g”Vfl)
Example 4: As shown in Fig. 7, The composition relation-
ship between Goods-Transaction and (Lot-Master,
Goods-Items) is ordered. This can be described as;

C

constraint = order (Lot-Master, Goods-Items)

4) Homogenous Composition: In a real-world scenario, in
an aggregation relationship (i.e. in conceptual view hierar-
chy), there may exists a “whole” object that is made of
“part” or composite objects that are of the same type as
the “whole” object. This kind of whole-part relationship is
referred to as homogenous composition. From a modeling
point of view, explicitly stating homogenous compositions in
modeling conceptual views is beneficial in designing better
schema or programming structures. For example, homogenous
composition of a finite set of “part-of” conceptual views V¢,
(V§ € V) is described as;

c _ ¢ ¢ c
Vconstraint - homogenous (Vlv 11>V 1250

Example 5: For example, (Fig. 7) there exists homoge-
nous composition between Goods-Type and Goods-Sub-
Type, which can be described as;

\% . = homogenous (Goods-Type,

Goods-Sub-type)

c
constrain

5) Exclusive Disjunction: Exclusive disjunction constraint
may be applied to both aggregation and association type rela-
tionships between conceptual views. It implies that only one
conceptual view class exclusively connected in a relationship.
For example, exclusive disjunction of a finite set of conceptual
views V¢, (V{ € V°) is described as;

c _ : c ¢ YJ¢ c
Vconstraint - eXCluSlve (V sV 2 3»""’Vn)

Example 6: For example, (Fig. 7) an exclusive disjunction

between Internal-Lot-Movement and External-
Lot-Movement is shown below;

C

Constraint = €Xclusive (Internal-Lot-Movement,

External-Lot-Movement)

Example 7: Another example (Fig. 7) is the exclusive
disjunction between LMS (sub-system) and the Customer-
Logistics, which can be shown as;

c _ .
constraint — exclusive (LMS,

Customer-Logistics)

RAJUGAN ET AL.: MODELING VIEWS IN THE LAYERED VIEW MODEL FOR XML USING UML 107

6) Cardinality Constraint: The cardinality constraint shows
the number of instances of one view class that may relate to
single instance of another. This is similar to that of relational
and OO data models. Cardinality constraints include one-to-
one (1..1), one-to-many (1..*), zero-or-one (0..1), zero-or-more
(0..*), and many-to-many (*..*). This can be shown as;

C

Constraint = 1 <cardinality-constraint> }

where, <cardinality-constraint> :=[1..1] | [1..N] |
[0..1] | [0..N] | [N..M]

7) Dependency / Adhesion Constraint: Adhesion (or de-
pendency) constraint indicates if participants of a relationship
(aggregation, association, dependency, instance etc.) should
coexist and hold fast to each other. Also, in the case of
class-attribute relationships, this constraint may be used to
indicate optional or compulsory attributes, while in most
semantic relationships (aggregation, association) the adhesion
relationships is always of type strong adhesion. Adhesion
relationship is described as;

VC

constraint — { <adhesion> }

where, <adhesion> := strong-adhesion() | weak-
adhesion()

Example 8: For example, in the e-Sol, there exists
a strong adhesion between Warehouse-Manager and
Warehouse-Staff (Fig. 6), as a warehouse staff entry
should be there to have a warehouse manager. This can be
described as;

Vgonstraint = Strong—adhesion(
Warehouse-Manager, Warehouse-Staff)

Example 9: In the e-Sol, there exists a strong adhesion
between Income and Salary and Benefit packages (Fig.
6), which can be described as;

. = strong-adhesion((Income, Salary)
AND (Income, Benefit))

c
constrain

Example 10: Another example, adhesion relationship
between External-Lot-Moment and Customer-
Logistics as such entry is optional (Fig. 7). This can be
described as;

c — .
constraint — weak-adhes J.on(

External-Lot-Moment, Customer-Logistics)

8) Domain Constraints: The notion of domain constraints
include a wide range of constraint properties that can applied
to the data values (and types) in a given domain. For example,
the domain constraints for conceptual views include; (a) re-
striction of values, range of values and lengths of data types,
(b) enumerated and/or pre-specified (default) values, (c) pre-
defined patterns (e.g. date formats) etc. These constraints can
be shown as;

C

constraint = <domain-constraints>

where, <domain-constraints> := [Val v] | [MinVal
v] | [MaxVal v] | [Len v] | [MinLen n] | [MaxLen n]

| [Val s] | [Pattern s]and v is a numerical value and s
is a string.

Example 11: In the e-Sol,
- Maximum length of the customerID field is 10;
Constraint = CustomerID (MaxLen = 10)

- Lot-Movement date should include week no, in
addition to the standard date format;
Vionstraint = LotMovement-Date (MaxLen =
10, Pattern dd-mm-yyyy, nn)

- Staff (and customer) access code/password should
have minium 6 characters;
Vionstraint = Password (MinLen = 6)

9) Constructional Constraints : Constructional constraints
are constraints associated with constructional data types and
values such as set, list, bag and union. Conceptual views can
be defined based on one (or more) stored type and constructs
set, list, bag etc. of that type.

o List: A list is a sequence of atomic types composed to
represent one type. Further more, additional restrictions
may be specified as part of the list constructional con-
straints, namely; (a) total length of the list, (b) minimum
length allowed, (c) maximum length allowed, and (d)
enumeration.

Example 12: In the e-Sol, the Goods-Sub-Type (Fig.
6) has an attribute which is Categories that may
contain 1 to 5 Sub-Categories.
constraint = Categories := list (Sub-
Categories)
o Union: A union constructional constraint allows one type
to be constructed using union of one or more atomic and

list types [17].

Example 13: In the e-Sol, the Internal-Lot-
Movement (Fig. 7) date may be specified using typical
date format or using week numbers.

Constraint = Lot-Movement-Date
(date, number (99))

A detailed discussion on constraint specification for (stored)
XML domains in UML can be found in the work [18], while
detailed discussion on XSemantic net constraints in [17].
Specifying these constraints in UML/OCL or XSemantic nets
for conceptual views is similar to that of stored domain object
constraints.

:= union

VI. MODELING CONCEPTUAL VIEWS USING UML/OCL

In UML, the Object Constraint Language (OCL) [78], which
is now a part of the UML 2.0 standard [73], can support
unambiguous constraints specifications for UML models in-
cluding specification of static and dynamic (e.g. messages
constraints) model elements . Here, in our conceptual view
model, we incorporate OCL (in addition to built-in UML
constraint features such as cardinality constraints [18], [19])
as our view constraint specification language to explicitly state
view constraints. It should be noted that, we do not use OCL
to define or specify views, rather state additional constraints
using OCL. OCL supports defining derived classes [78], [81],
which is close to a view concept [79].

108

constraints {<attributes=>} constraints {<constructor}
~
SN /1
Cli) ! constraints {<attributes>}
/
<
-7 S mons}fucl»

~
-

-
- ~
. ~1 _-
\ Sae aviews
constraints {<methods>} \ il V)
\
constraints {<context>} P \
e \
4 \

-
- \
« A

constraints {<methods>} ﬁ

Modeling conceptual views using UML/OCL.

constraints {<conceplual-views=>} B‘

Fig. 5.

OCL also supports specifying derived values and attributes
in already existing views (and stored classes) and specified in
the form of;

context Typename::assocRoleName: Type

derive: --some expression representing
the derivation rule

A. Conceptual Views

Conceptual views are modelled in UML/OCL using the
<<view>> stereotype. A view stereotype (Figs. 5-13) is a
stereotyped class with (conceptual) view class definition, a
set of view attributes (from one or more stored classes or
derived via query constructs), a view constructor specification,
optional view methods (e.g. derived attribute definitions etc.),
and optional view constraints.

B. Conceptual Constructs

The show the relationship between a conceptual view and
the stored class/(es) from which it is constructed, we use
directed-dashed line with <<construct>> keyword shown
above the line (Fig. 5). This is to avoid confusion with the
built-in UML dependency relationship and other stereotypes.

To model our conceptual views, we show view classes
visually, with the <<view>> stereotypes and the relationship
between the stored class and the view as <<construct>>
stereotype. Therefore, we do not require non-visual OCL view
specification as shown above, but may be used to show some of
the derivations rule for the attributes and/or operations to make
the view definition more explicit and precise. For example, as
shown in Fig. 5, where a view V; is constructed from a stored
class C;, the relationship is as <<construct>> relationship;
the relationship that exists between a conceptual view and its
stored class/(es). If a conceptual view is constructed over an
existing conceptual view (view of a view), same relationship
is used show the hierarchy (the base conceptual view and the
new conceptual view).

Example 14: In Fig. 6 - 7, staff, warehouse, and
customer can be some of the context examples in the e-
Sol system.

Example 15: Conceptual views, for example, Warehouse-
Manager and Warehouse-Staff are two conceptual
views in the context of staff of the e-Sol system.

J. WEB. INFOR. SYST. 2 (2), JUNE 2006. © TROUBADOR PUBLISHING LTD

Example 16: In Fig. 6, Warehouse-Manager is a valid
conceptual view in the LVM, named in the context of Staff.
Its constructed using the conceptual SELECT operator, which
can be shown as;

Owarehouse—Staff.Role="manager” (warehouse — Staff)

Example 17: If a new domain requirement exists to
add new conceptual view Management-Memo send to all
Warehouse-Manager (Fig. 6), we can do that using Carte-
sian Product conceptual operator, where x = Warehouse-
Manager and y = Management-Memo;

X(z,y) = XY

Example 18: In the case of conceptual view Income
(shown in Fig. 7), the conceptual construct is a conceptual
JOIN operator with join conditions, where x = Staff, y =
Salary-Pkg and z = Benefit-Pkg:

T —(g.staffID=y.staff1D) Y AND
T —>(z.staf fID=z.staf fID) %

C. Conceptual View Constraints

1) Unique Constraint: To visually model OID in UML
class diagram, we define a stereotype OID, shown in Figs.
6-7 as an attribute. Together with attribute name and optional
type definition, stereotype <<OID>> can be used in UML to
indicate that the attribute that is a unique OID.

Example 19: In the case of conceptual view Warehouse-
Manager (Fig. 6), we indicate the unique staffID by the
following OCL expression;

context Staff

inv : self->isUnique(self.staffID)

2) Exclusive Disjunction: To visually show exclusive dis-
junction,

Example 20: In the case of Lot-Movement, the exclusive
disjunction between Internal-Lot-Movement (stored
goods change owners) and External-Lot-Movement
(goods shipped outside the warehouse) can be show via the
OCL statement “OR” between the relationships (as shown in
Fig. 7).

Example 21: In the case of LMS (sub-system) and
Customer-Logistics exclusive disjunction can be shown
the OCL statement “OR” between the relationships (as shown
in 7).

Example 22: In the case of conceptual views Warehouse-
Manager and Warehouse-Staff, in the context of

Staff (Fig. 6), we indicate the adhesion relationship between
them using the following OCL statements given below.

context Warehouse-Staff :: managedBy : ID
derive:Warehouse-Manager.staffID

context Warehouse-Manager
inv: self.responsibleFor :=
Set (Warehouse-Staff.staffID)

context ManageStaff

RAJUGAN ET AL.: MODELING VIEWS IN THE LAYERED VIEW MODEL FOR XML USING UML 109

context Customer
inv : self->is Unique (self.customerlD)

1
| context Warehouse-Staff :: managedBy : ID B
| derive : Warehouse-Manager.staffiD
|
| Ay
1 \ context ManageStaff
Customer ‘\ inv : Warehouse-Staff->managedBy (Warehouse-Manager.staffiD)
[«OID» -globallD \ —
«OID» -customerCode \ -
[-contactPerson \ -7
FepntactNOs \\ e "
lcontactFax N - Benefit-Pkg |- wconsiructs wviewn
l-contactE-Mail wviewn T e——— Income
customerGrade 1 Warehouse-Staff i ==~ samp |
streetAddress «l» -managedBy 0 -7 Fyear
Hocation warehouselLocation [e Fmonth
ity Cp department ~ —2 totalDeductions
Fpostcode aconstructs (X = (x 2Dy ey V) AND (X =z 2Dz o) 2) «/» -benefits
country T \‘\ Staff 1 o Lhonous
| RN «OID» -slaan“ > riax
1 -7 ~ DOB ~ 7 |ut» -totalSalary
- ~ \«constructs, ~
~ HirstName Ny ph
o-u'aum‘srq?‘.l\pe-"wanm “ (Smﬁ) =}lastName N, T
I Initials - 1
| Role Salary-Pkg e /
marage | Duties M e !
Individual Company | 1 - /
[«OID» -compnaylD weonstructs _ : 1 I,
isticsProvider N _ 1 «constructs
[T v arsious- Staff Reis= mamger{ W ShOUE =S)™ aconstnicts . !
(PamerOrganization " /’ AN context Income < Staff : ID
discountCode | / \ derive : Staff staffiD
I /) “views , benefits - Rel
wCOnstructs | Logistics-Staff context Income :: benefits : Real
i | e T e derive : Benefit-Pkg.totalBenefits
| | n o ;
| I '%?g::'CSmeuer context Income :: baseSalary : Real
uvi;w» 0. !’ :warehuuseLacanon derive : Salary-Pkg.baseSalary
G Partner L prv=vm context Income :: totalSalary : Real
FassignedWarehouses derive : totalSalary =
LassignedStoragelocations -manageAco Warehouse-Manager (self baseSalary - self tax) + benefits —
kstoageCapacity seff totalDeductions.

«/ -assignedStaff

I
I
|
|

context Collaborative-Partner :: assignedStaff : OID
derive : Warehouse-Staff. staffiD

1
Ij context Staff
inv : self->is Unique (self staffiD)

aviews
Site-Manager

Fig. 6. e-Sol domain model (users) in UML/OCL.

inv : Warehouse-Staff->managedBy
(Warehouse-Manager.staffID) context Goods-Sub-Type
inv: Categories->length () := 5
Union A union constructional constraint allows one
type to be constructed using union of one or more
atomic and list types [17].

Example 25: In the e-Sol, the Internal-Lot-
Movement date may be specified using typical date
format or using week numbers.
context Internal-Lot-Movement
inv: self.Lot-Movement-Date:
(date, integer)

Example 23: In the case of conceptual view Income (Fig.
7), the following OCL statements hold true;

context Income :: Staff : ID

derive : Staff.staffID

context Income :: benefits : Real
derive : Benefit-Pkg.totalBenefits i
union

context Income :: baseSalary : Real

derive : Salary-Pkg.baseSalar
b 9 y VII. TRANSFORMATION OF CONCEPTUAL VIEWS TO

Real LoGICAL VIEWS

context Income :: totalSalary :
derive : totalSalary =
(self.baseSalary - self.tax) +

benefits - self.totalDeductions

In his section we look as some of the transformation of
conceptual views to logical views. Here we only outline
the constructs that require unique transformation formalism
to address the view properties. A detail transformation of
common mappings between UML and XML Schema (XSD)
can be found in [18].

3) Constructional Constraints:
- List

Example 24: As described in example 12, the
Goods-Sub-Type attribute Categories may be
stated using UML/OCL (Fig. 7) as follows;
context Goods-Sub-Type
inv: self->Categories :
(self.Sub-Categories)

listOf

4) Unique Constraint: In order to transform unique con-
straints (namely OID) to view schema, there are 3 options,
namely (a) our own transformation, (b) generic transforma-
tion methodologies proposed in such works as to enforce
unique constraints and (c) the new W3C recommendation of
<xml:ID> [82].

110

Fig. 7.

J. WEB. INFOR. SYST. 2 (2), JUNE 2006. © TROUBADOR PUBLISHING LTD

Internal-Lot-Movement

0. / {OR} - .
~\

Customer
WMS-Logistics «OID» -globallD
OID» -customerCode
-contactPerson]
cpntactNOs
Logistics-Company] ©0.* * fcontactFax wcallw usubsystems
L contactE-Mail] e-WMS (e-
FcustomerGrade Commerce)
FstreetAddress T
1 Hocation I
0. R 1 I
-postcode | I
 country #CoNsiruct» | |
1.7 | I
L
Logistics-Staff Warehouse | wcalls
- N | .
ja/» -managedBy 1.7 1 LOID» -warehouselD ; | !
HogisticsProvider | = & ocations Requesf | I
- Task . L mainOffice i I !
lwarehouselocation L o ae avignwn | I
LFax Customer-History {set} :
-e-Mail =" |
<k thddress
Inval 0. E!l'ee 1
nvolves [wm H
:mntry © wconstructs \L
wvigws
N T T T T T Rent-Warehouse-Space-History
0.* |
N7
1.* 1 Rent-Warehouse-Space
Goods-Tr: i PN
-new DCESS -
o «constructs HVIEWR
Charge-Master-History
4] i‘ ___________ wsats -lotChargeAmaount
N
Customer-Goods-Charge
w/w -cust
. -writes-to * -of-ty 1 N 1
~ #CONSIFUCE |
Lot-Master Goods-ltems = I
<> <> context Collaborative-Partner :: customer : ID :
derive : Customer,customer|D |
T~ I
| * I
“constructs -of-lype . 0.7 !
| avigws - I
I Goods-Sub-Type !
! usaly -goodsDescription -{set} :
: «listr -categories 1 |
aviewn I
Lots-Movement econstructs Goods-Type I
I
______________ I
K I
wviews :
1 Lot-Movement-History Y
hipment \ Lot-Master-Charge-History
goods{ransfer {OR} "~ "~
.) wselfs \
0.+ aviews «postconditions /o wselfy
o0 J{set) External-Lot-Movemant {materialize(Lot-Movement-History)} /
/
avisw

«postcondition»
{matenzlize(Lot-Master-Charge-History)}

Customer-Logistics

«subsystems
e-Sol_LMS

e-Sol domain model (WMS) in UML/OCL.

1) Our first proposal to map OID constant to XML schema

is to use XML Schema “unique” element in combination
with the XSD “key” construct. The XSD unique element
only assured the uniqueness when a key or data exists.
This is in different from the XSD “key” constructs were
an entry must always exist. Thus we use both constructs

to map the conceptual view OIDs. For example, in XSD
unique and key constructs are declared, as shown below;
<unique name= "<unique-constraint-name>">

<selector xpath="<element-name"

<field xpath="<attribute-or-element-
/>

name>"

</unique>

RAJUGAN ET AL.: MODELING VIEWS IN THE LAYERED VIEW MODEL FOR XML USING UML 111

<key name= "<key-name>">
<selector xpath="<element-name" />
<field xpath="<attribute-or-element-
name>" />
</key>
2) Another option to map OID like unique constraints to
XML Schema was proposed by Pardede et al. [83],
where they proposed to map unique constraints from
UML like modelling languages to XML Schema. A
detailed discussion on their work can be found in [83].
3) A detailed discussion on the new W3C recommendation
to deal with IDs and unique constraints in XML schema
can be found in [82]. This is one of the new approaches
to transform conceptual view OIDs to logical view
elements.

5) Referential Constraints: In transforming conceptual
view referential constraints to logical view, two alternative
solutions exists. They are (a) using XSD ID/IDREF constructs
and (b) XSD KEY/KEYREF constructs. One of the major
advantages of using KEY/KEYREF is that, it enable one
to specify scope within which the uniqueness applies and it
allows to create KEY (and KEYREF) from combination of any
(simple, attribute or complex) content. The XSD declaration
of KEY/KEYREEF is similar to that of the unique constraints.

<key name= "key-name">
<selector xpath="element-name-1" />
<field xpath="attribute-or-element-name-
1" />
</key>

<keyref name= "keyref-name" refer="key-name" >
<selector xpath="element-name-2" />
<field xpath="attribute-or-element-name-
1" />
</key>

Example 26: The unique constraint shown in Figs. 6-7, (e.g.
the <<OID>> in Staff) can be mapped to the view schema
as shown in the code fragment (Code listing 1).

6) Ordered Composition: The ordered composition is

mapped to logical view using the XSD sequence construct.
The following XSD code fragment demonstrates this.

<xs:complexType name =
name" >
<xXs:sequence>
<!- Additional nesting ->
<xs:element name="part-
namel" type="part-typel" />
<xs:element name="part-
name2" type="part-type2" />

"whole-complextype-

</xs:sequence>
</xs:complexType>

Example 27: The ordered/unordered compositions (e.g. in
Fig. 7, Lot-Master and Goods-Items), shown using
the stereotype (<<1>>, <<2>>,...) are mapped using the
<xs:sequence> construct. The code fragment in Code
listing 2 demonstrates this.

7) Exclusive Disjunction: The conceptual view exclusive
disjunction is mapped to logical views using the XSD choice
constructor. For example the following code fragment demon-
strates this.
<xs:complexType name =

<xs:choice>
<!- Additional nesting ->

"complextype-name" >

</xs:choice>
</xs:complexType>

Example 28: As shown in Example 9, the exclu-
sive disjunction constraint (Fig. 4) between Internal-
Lot-Movement and External-Lot-Movement can be
mapped XML Schema using the <xs:choice> schema
construct, as shown below in Code listing 3.

8) Constructional Constraints: The transformation of the
constructional constraints to logical view schema is straight
forward in the case of list and union types, while transforma-
tion of others such as set and bag needs to improvise as at
the moment, XML Schema does not provide native support
for these types.

- List:

XML Schema has a built-in list types (IDREFS,
NMTOKENS etc.) which is a sequence of atomic
types. Also, one also can map derived (or user-
defined) list types to derived list types by using the
XSD 1list constructs. In addition, XSD offer few
facet mechanism to refine the list constructs, namely
[17] [18]; (a) length, (b) minLength, (c) maxLength
and (d) enumeration. A simple XSD list declaration
is shown below.
<xs:simpleType name="list-name" >
<xs:list itemType = "XDS-base-
types" />
</xs:simpleType>

Example 29: In the e-Sol, the Goods-Sub-Type
has an attribute which is Categories that may contain
1 to 5 Sub-Categories. Code listing 4 demon-
strates this.

- Union:
XML Schema provides support for union
constructional constraint using the union construct.

<xs:simpleType name="union-data-name" >
<xs:union memberTypes= "xs-base-

type" />

</xs:simpleType>

Example 30: In the e-Sol, the Internal-Lot-
Movement date may be specified using typical date
format or using the week number of the year. The
code fragments in Code listing 5 demonstrates this.

VIII. POTENTIAL APPLICATIONS OF THE VIEW MODE

Designing software constructs using views are an inex-
pensive way of defining architectural frameworks in tradi-
tional data engineering approach. Some popular approaches
include: application wrappers, data models, data description
wrappers, application programming interfaces etc. [25], [26].

112 J. WEB. INFOR. SYST. 2 (2), JUNE 2006. © TROUBADOR PUBLISHING LTD

<!-- additional nesting --> <xs:complexType name="staffType">
<xXs:sequence>
<xs:element name="staffID" type="OIDType"/>
<!-- additional nesting -->
<xs:element name="managedBy">
<xs:key name="manager">
<xs:selector/>
<xs:field xpath="staffID"/>
</xs:key>
</xs:element>
</xs:sequence>
</xs:complexType>
<!-- additional nesting -->
<!-- additional nesting -->
<xs:complexType name="OIDType">
<xXs:sequence>
<xs:element name="ID">
<xs:unique name="OID">
<xs:selector xpath="OIDType"/>
<xs:field xpath="ID"/>
</xs:unique>
</xs:element>
</xs:sequence>
</xs:complexType>
<!-- additional nesting -->

Fig. 8. Code Listing 1.

<!-- additional nesting --> <xs:complexType
name="Goods-TransactionType">
<xs:complexContent>
<xs:extension base="Goods-TransactionType">
<!-- additional nesting -->
<xXs:sequence>
<xs:element name="Lots-Master" type="Lots-MasterType"
minOccurs="1" maxOccurs="unbounded" />
<xs:element name="Goods-Items" type="Goods-ItemsType"
minOccurs="1" maxOccurs="unbounded"/>
</xs:sequence>
<!-- additional nesting -->
</xs:extension>
</xs:complexContent>
</xs:complexType>

<!-- additional nesting --> <xs:complexType name="Lots-MasterType">
<!-- additional nesting -->
</xs:complexType>

<!-- additional nesting --> <xs:complexType name="Goods-ItemsType">
<!-- additional nesting -->
</xs:complexType> <!-- additional nesting -->

Fig. 9. Code Listing 2.

Since the view definitions are not expensive from a storage application modules, it is well suited for defining virtual
point of view and easier (and flexible) to maintain (and in data architectures and/or framework. Also, the conceptual
reflecting schema and data changes) than externally maintained and logical extensions provided in the LVM provide layered

RAJUGAN ET AL.: MODELING VIEWS IN THE LAYERED VIEW MODEL FOR XML USING UML 113

<!-- additional nesting --> <xs:element name="Lot-Movement">

<xs:complexType> <xs:complexContent>

<xs:extension base="LotMovementType">

<!-- additional nesting -->
<xs:choice>
<xs:element name =
type="InternallLotMovementType" />
<!-- additional nesting -->
<xs:element name=
type="ExternallLotMovementType" />

<!-- additional nesting -->
</xs:choice>
<!-- additional nesting -->

</xs:extension>
</xs:complexContent>

"Internal-Lot-Movement"

"External-Lot-Movement"

</xs:complexType> </xs:element> <!-- additional nesting -->

Fig. 10. Code Listing 3.

<!-- additional nesting -->
<xs:simpleType name="Sub-Categories">
<xs:list itemType="xs:string"/>
</xs:simpleType>
<!-- additional nesting -->
<!-- additional nesting -->
<xs:simpleType name="Categories">

<xs:restriction base="Sub-Categories">

<xs:length value="5"/>
</xs:restriction>
</xs:simpleType>
<!-- additional nesting -->
Fig. 11. Code Listing 4.

<!-- additional nesting -->

<xs:simpleType name="Lot-Movement-DateType">
<xs:union memberTypes="xs:date xs:integer"/>

</xs:simpleType>
<!-- additional nesting -->

Fig. 12. Code Listing 5.

abstraction, data semantics, and constructs (Fig. 13) that can be
utilized in a systematic manner, similar to the MDA initiatives.

Since the introduction of Model-Driven Architecture (MDA)
[84] initiative by OMG, platform independent models play a
vital role in system development and data engineering. Under
the MDA initiative, first the model of a system is specified via
an abstraction notation that is independent of the technical or
deployment specifications (i.e. Platform Independent Model
or PIM) and then the PIM is mapped or transformed into
a deployment model (i.e. Platform Specific Model or PSM)
by adding platform or deployment specific information. To
support MDA initiatives in data engineering, data semantics,
constraints and model requirements have to be specified pre-
cisely at a higher level of abstraction.

In the context of MDA solutions for XML domains, it is
still a challenging task to produce PIMs despite the flexibility

and the semantic richness of the semi-structured schema
languages. This is mainly due to OO modelling languages
such as OMG UML, E-ER etc. provide insufficient modelling
constructs for utilizing XML schema like data descriptions and
constraints, while XML Schema lacks the ability to provide
higher levels of abstraction (such as conceptual models, visual
constraints, etc.) that are easily understood by humans. This is
due to the fact that models are often abstract representations
which only keep so much of the detail as is relevant to the
particular problem being considered [19], [20]. In this context,
XML Schema generally is too low a representation to permit
users to interact, visualize or understand it. To rectify this
situation, many researchers in works such as [17], [18], [83],
have applied intuitive techniques, notations and transformation
methodologies to capture XML (and other semi-structured
data) semantics at the conceptual level. This presents an

114

XML Layered View Model
« Views for XML data
+ Views for XML documents

Semantic Web
* Ontology Views

Fig. 13. Application of LVM views in real-world scenarios.

opportunity to investigate data views as a means of providing
data abstraction and semantics in PIMs for data intensive
MDA solutions, such as XML document warehouses. Here, we
briefly present some of the potential real-world applications of
our LVM for XML in the context of EIS and e-solutions.

A. Views for XML Databases and Repositories

In relational DBMS systems, views are used in the context
of access control, query refinement, performance enhancement
and providing data perspectives for complex aggregate data. In
the Enterprise Content Management (ECM) [84] framework, is
a data intensive task, especially when handling large volumes
of distributed heterogeneous data, such as data warehousing.
Yet, with increasing heterogeneous database schemas (rela-
tional, XML and other formats) and contents challenge the
traditional database and view techniques. Therefore for XML
database and repository designers can develop their platform
independent view formalism using higher-level modeling lan-
guages and use automated tools to implement such views
in their multi-site, multi-platform DB/Repository systems. In
doing so, the view definitions are not coupled to a specific
query syntax and/or specification where they are exposed rapid
to changes.

B. XML-View based UAC Middleware Design

The proposed growth for XML repositories in the ECM
framework and their use in either to store data or as an
interoperability layer for legacy applications provides the need
to investigate user access control in such repositories [85].
The widespread use of XML highlights the need for high-
level, flexible and expressive access control models for XML

{Document Level}

{Logical Level}

{Conceptual Level}

Real World
(Domain)

Conceptual Views
(UNML. E-ER, XSemantic nets
etc)

Logical (or Schema) Views
(XML Schema)

Document (or Instance) Views
(e.g. XQuery)

J. WEB. INFOR. SYST. 2 (2), JUNE 2006. © TROUBADOR PUBLISHING LTD

XML Data Warehouse Model

« XDW Conceptual Model

+View-Driven (Virtual) Dimensions (VDim)
+ View Driven FACTs (gxFACT)

User Access
Control (UAC)

+« UAC Middleware
* UAC for XML
Repositories

Web Engineering
* xXWeb
* xPortal

documents to protect sensitive and valuable information from
unauthorized access (both by humans and machines/agents).
Traditionally, views provided user access control mechanism
in many DBMS. In the work [85], authors present an XML
view-based access control model, which supports access con-
trol for both human (and agent) users. The design methodology
proposed is based on the LVM views and support conceptual
level design of UAC constraints and acts as a middleware layer
for XML repositories and the databases alike.

C. XML Document Warehouse Design

As stated before, ECM is a data intensive task, especially
when handling large volumes of distributed heterogeneous
data, such as in data warehouse environments. To address
such an issue, the authors of the work [86] proposed a view-
driven design methodology for modeling and designing XML
document warehouses (XDW), using our LVM for modeling
dimensional (XML) data. Later they extended their work
to accommodate warehouse user requirements in [87]. The
proposed XDW model consists of: (a) user requirement level,
(b) conceptual level, (c) logical level and (e) instance level.

D. Collaborative Web Engineering

The increase in enterprise web content in XML and storage
of data in XML document format will provide greater semantic
clarity and enable easier access and evaluation of the semanti-
cally rich web contents. For example, in an Industrial setting,
a web solution may comprise of partner companies/franchise,
where they have similar web content but varying user interface
design and/or design. In order to keep the web content descrip-
tive among business partners, yet discrete, where a particular

RAJUGAN ET AL.: MODELING VIEWS IN THE LAYERED VIEW MODEL FOR XML USING UML 115

user/staff may want to get an appropriate view of the data
(for e.g. warehouse storage information, bookings, supplier
information, storage capacity etc). One way to handle such a
complex task is to model and build semantic-aware enterprise
websites [88] and web portals [89], using LVM views, where
the web content and their associated user interface definitions
are captured at the conceptual level (using conceptual views)
and mapped to logical view schemas and documents where,
additional presentation constraints (such as local company
web styles/formats) are locally applied depending on the
requirements.

E. Views for Semantic Web (SW) Paradigm

Views for SW requires some form of abstraction, as SW
documents and querying are done at the logical level or with
logical syntaxes to handle heterogeneous schemas such as in
multi-site ontology bases [38], [90]. Therefore, we argue that
a view formalism for SW requires 2-Es (data Extraction and
Elaboration) [90]. Though there exists some work in regards
to a logical view formalism for SW [28], [64], most of them
are tied to SW language specific schema/syntaxes that do not
provide conceptual extensions. In related work [38], [90], our
view formalism provide support for ontology extraction in the
form of materialised ontology views in Ontology Extraction
Methodology (OEM) [29], [66]. In the work, authors inves-
tigated how our LVM can be applied to sub-ontology design
and extraction under the OEM framework.

IX. CONCLUSION AND FUTURE WORK

In this paper, we presented a Layered View Model (LVM)
for XML with conceptual and schemata extensions. First we
presented semantics of the LVM followed by a visual view
constraint specification model using UML/OCL. Later we
highlighted some of the high level modeling issues associated
with the LVM. Later we presented how conceptual views in the
LVM are mapped to its schema and document level equivalent,
with illustrated case study examples.

For future work, some issues deserve further investigation.
First, the automation of the mapping between the conceptual
operators to various XML query language expressions (such as
XQuery or SQL/X). Second is the investigation into specifying
dynamic perspectives of the conceptual views, which then can
be applied to traditional data, Semantic Web and web service
domains.

REFERENCES

[1] Abiteboul, S., P. Buneman et al. (1999) Data on the Web : from relations
to semistructured data and XML. London, UK, Morgan Kaufmann.

[2] Chan, S., T. S. Dillon, et al. (2002) Applying a mediator architecture
employing XML to retailing Inventory Control. The Journal of Systems
and Software 60: 239-248.

[3] Do, H. H. and E. Rahm (2004) Flexible integration of molecular-
biological annotation data: The genmapper approach. Proceedings of
the 9th International Conference on Extending Database Technology
(EDBT ’°04), Heraklion, Crete, Greece.

[4] Abiteboul, S., B. Amann et al. (1999) Active Views for Electronic
Commerce. Proceedings of the 25th International Conference on VLDB,
Edinburgh, Scotland.

[5] Abiteboul, S., R. Goldman et al. (1997) Views for Semistructured Data.
Workshop on Management of Semistructured Data, USA.

[6] W3C-WWW (1997) World Wide Web (WWW), http://www.w3.org/,

The World Wide Web Consortium (W3C).

W3C-HTML (1997) HyperText Markup Language (HTML), Rel

4.01 (http://www.w3.org/MarkUp/), The World Wide Web Consortium

(W30C).

[8] W3C-XML (2004) Extensible Markup Language (XML) 1.0,
(http://www.w3.0org/XML/), The World Wide Web Consortium
(W3C).

[9] W3C-XSD (2001) XML Schema (http://www.w3.org/XML/Schema),
W3C. 2004.

[10] W3C-RDF (2004) Resource Description Framework (RDF),
(http://www.w3.0org/RDF/), The World Wide Web Consortium (W3C).

[11] W3C-OWL (2004) OWL: Web Ontology Language 1.0 reference
(http://www.w3.0rg/2004/OWL/), W3C.

[12] W3C-XQuery (2004) XQuery 1.0: An XML Query Language
(http://www.w3.org/TR/xquery). XML Query Language (XQuery), The
‘World Wide Web Consortium (W3C).

[13] W3C-RDQL (2004) RDQL - A Query Language for RDF,
(http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/), W3C.

[14] W3C-XSL (2003) Extensible Stylesheet Language (XSL)
(http://www.w3.org/Style/XSL).

[15] W3C-WS (2002) Web Services Activity, (http://www.w3.0rg/2002/ws/),
W3C.

[16] W3C-SW (2005) The Semantic Web (http://www.w3.0rg/2001/sw/),
W3C.

[17] Feng, L., E. Chang et al. (2002) A Semantic Network-based Design
Methodology for XML Documents. ACM Transactions on Information
Systems (TOIS) 20(4): 390 - 421.

[18] Feng, L., E. Chang et al. (2003) Schemata Transformation of Object-
Oriented Conceptual Models to XML. International Journal of Com-
puter Systems Science and Engineering 18, No. 1(1): 45-60.

[19] Dillon, T. S. and P. L. Tan (1993) Object-Oriented Conceptual Modeling,
Prentice Hall, Australia.

[20] Graham,I., A. C. Wills et al. (2001) Object-oriented methods : principles
and practice. Harlow, Addison-Wesley.

[21] Date, C. J. (2003) An introduction to database systems. New York,
Pearson/Addison Wesley.

[22] Elmasri, R. and S. Navathe (2004) Fundamentals of database systems.
New York, Pearson/Addison Wesley.

[23] Chang, E. and T. S. Dillon (1994) Integration of User Interfaces with
Application Software and Databases Through the Use of Perspectives.
Ist International Conference on Object-Role Modeling (ORM °94),
Australia.

[24] Rafanelli, M. (Ed) (2003) Multidimensional Databases: Problems and
Solutions, 1dea Group Inc.

[25] Gopalkrishnan, V., Q. Li et al. (1999) Star/Snow-flake Schema Driven
Object-Relational Data Warehouse Design and Query Processing Strate-
gies. Ist First International Conference on Data Warehousing and
Knowledge Discovery (DaWaK ’99), Florence Italy, Springer.

[26] Mohania, M. K., K. Karlapalem et al. (1999) Data Warehouse Design
and Maintenance through View Normalization. 10th International Con-
ference on Database and Expert Systems Applications (DEXA °99),
Florence, Italy, Springer.

[27] Gupta, A., I. S. Mumick et al. (1999) Materialized views: techniques,
implementations, and applications, MIT Press.

[28] Volz, R., D. Oberle et al. (2003) Views for light-weight Web ontologies.
Proceedings of the ACM Symposium on Applied Computing (SAC °03),
USA, ACM Press New York, NY, USA.

[29] Wouters, C., T. S. Dillon et al. (2004) Ontologies on the MOVE. 9th In-
ternational Conference on Database Systems for Advanced Applications
(DASFAA °04), Jeju Island, Korea, Springer-Verlag GmbH.

[30] Codd, E. E. (1990) The Relational Model for Database Management:
Version 2, Addison Wesley Publishing Company.

[31] Blanken, H. M. (2003) Intelligent search on XML data: applications,
languages, models, implementations, and benchmarks. Berlin ; London,
Springer.

[32] Chen, Y. B., T. W. Ling et al. (2002) Designing Valid XML Views. Pro-
ceedings of the 21st International Conference on Conceptual Modeling
(ER °02), Tampere, Finland, Springer-Verlag London, UK.

[33] Abiteboul, S. (1999) On Views and XML. Proceedings of the eighteenth
ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems (PODS ’99), Philadelphia, Pennsylvania, USA, ACM Press New
York, NY, USA.

[34] Cattell, R. G. G., D. K. Barry et al. (Eds) (2000) The Object Data
Standard: ODMG 3.0, Morgan Kaufmann.

[7

—

116

(351

[36]

(371

(38]

(391

[40]
[41]

[42]

[43]

[44]

[45]

[46]

(471

(48]

[49]

[50]

(511

[52]

(53]

(541

[55]

[56]

(571

[58]
[591

[60]

[61]

Abiteboul, S., J. Quass et al. (1997) The Lorel Query Language for
Semistructured Data. International Journal on Digital Libraries 1(1):
68-88.

SPARQL (2004) SPARQL Query Language for RDEF
(http://www.w3.0rg/TR/2005/WD-rdf-sparql-query-20050217/), W3C.
ANSI/ISO (2003) ANSI - SQL 2003. ISO-ANSI Working Draft. J.
Melton, ANSI / ISO.

Rajugan,R., E. Chang et al. (2005) Modeling Ontology Views: An
Abstract View Model for Semantic Web. Ist International IFIP WG
12.5 Working Conference on Industrial Applications of Semantic Web
(IASW °05), Jyvaskyla, Finland, Springer IFIP Book Series.
Rajugan,R., E. Chang et al. (2005) A Three-Layered XML View Model:
A Practical Approach. 24th International Conference on Conceptual
Modeling (ER °05), Klagenfurt, Austria, Springer-Verlag.

W3C-DTD (2001) XML Schema (http://www.w3.org/, W3C. 2005.
Zhuge, Y. and H. Garcia-Molina (1998) Graph structured Views and
Incremental Maintenance. Proceeding of the 14th IEEE Conference on
Data Engineering (ICDE 98), USA, IEEE.

Goldman, R., J. McHugh et al. (1999) From Semistructured Data to
XML: Migrating the Lore Data Model and Query Language. Proceed-
ings of the 2nd International Workshop on the Web and Databases
(WebDB ’99), Philadelphia, Pennsylvania.

Abiteboul, S., O. Benjelloun et al. (2002) Active XML: A Data-Centric
Perspective on Web Services, BDA ’02.

Aguilera, V., S. Cluet et al. (2002) Views in a Large-Scale XML
Repository. The International Journal on Very Large Data Bases 11(3):
238-255.

Wouters, C. (2006) A Formalization and Application of Ontology Ex-
traction. School of Engineering and Mathematical Sciences Faculty of
Sciences, Technology and Engineering. Melbourne, La Trobe University,
Melbourne, Australia: 299.

Cluet, S., P. Veltri et al. (2001) Views in a Large Scale XML Repository.
Proceedings of the 27th VLDB Conference (VLDB ’01), Roma, Italy.
Abiteboul, S. and A. Bonner (1991) Objects and Views. ACM SIGMOD
Record, Proceedings of the International Conference on Management of
Data (ACM SIGMOD ’91), ACM Press New York, NY, USA.
W3C-XPath (1999) XML Path Language (XPath) Version 1.0
(http://www.w3.org/TR/xpath/). XML Path Language, The World Wide
‘Web Consortium (W3C). November 1999.

Chang, E., T. Dillon et al. (2003) A Virtual Logistics Network and an e-
Hub as a Competitive Approach for Small to Medium Size Companies.
2nd International Human.Society@Internet Conference, Seoul, Korea,
Springer-Verlag.

Xyleme: A Dynamic Warehouse for XML Data of the Web. Interna-
tional Database Engineering and Applications Symposium (IDEAS °01),
Grenoble, France, IEEE Computer Society 2001.

Xyleme (2001) Xyleme Project (http://www.xyleme.com/). Lucie-
Xyleme (2001).

Chen, Y. B., T. W. Ling et al. (2002) A Case Tool for Designing XML
Views. Second International Workshop on Data Integration over the Web
(DiWeb ’02), Toronto, Canada, University of Toronto Press.

Braga, D., A. Campi et al. (2005) XQBE (XQuery By Example): A
visual interface to the standard XML query language. ACM Transactions
on Database Systems (TODS) 30(2): 398-443.

Braga, D. and A. Campi (2003) A Graphical Environment to Query
XML Data with XQuery. 4th International Conference on Web Infor-
mation Systems Engineering (WISE ’03), Rome, Italy, IEEE Computer
Society.

Augurusa, E., D. Braga et al. (2003) Design and Implementation of a
Graphical Interface to XQuery. ACM Symposium on Applied Computing
(SAC ’03), Melbourne, USA, ACM.

Ludaescher, B., Y. Papakonstantinou et al. (2000) Navigation-Driven
Evaluation of Virtual Mediated Views. Extending DataBase Technology
(EDBT °00), Springer.

Ludaescher, B., Y. Papakonstantinou et al. (1999) View Definition and
DTD Inference for XML. Post-ICDT Workshop on Query Processing
for Semistructured Data and Non-Standard Data Formats.

Benjelloun, O. (2004) Active XML: A data centric perspective on Web
services. Paris XI University. Orsay, France, Paris XI University: 189.
Abiteboul, S., J. Quass et al. (1997) Lore: A Database Management
System for Semistructured Data. SIGMOD Record, ACM.

Baru, C., B. Ludscher et al. (1998) Features and Requirements for
an XML View Definition Language: Lessons from XML Information
Mediation. W3C’s Query Language Workshop (position paper).
Munroe, K. and Y. Papakonstantinou (2000) BBQ: A Visual Interface for
Integrated Browsing and Querying of XML. Visual Database Systems
(VDB ’00).

—

[62]

[63]

[64]

[65]

[66]

[67]
[68]
[69]
[70]

(711
[72]

(73]

(741

(751

[76]

(771

(78]
(791

[80]

[81]

[82]

(83]

[84]

[85]

[86]

(871

(88]

(891

. WEB. INFOR. SYST. 2 (2), JUNE 2006. © TROUBADOR PUBLISHING LTD

W3C-SW (2005) The Semantic Web (http://www.w3.0rg/2001/sw/),
W3C.

Volz, R., D. Oberle et al. (2003) Implementing Views for Light-
Weight Web Ontologies. Seventh International Database Engineering
and Applications Symposium (IDEAS’03), Hong Kong, SAR, IEEE
Computer Society.

Uceda-Sosa, R., C. X. Chen et al. (2004) CLOVE: A Framework to
Design Ontology Views. 23th International Conference on Conceptual
Modeling (ER ’04), Shanghai, China, Springer-Verlag.

KAON (2004) KAON Project (http://kaon.semanticweb.org/Members/rvo/-
Folder.2002-08-22.1409/Module.2002-08-22.1426/view).

Wouters, C., T. S. Dillon et al. (2004) A Practical Approach to the
Derivation of a Materialized Ontology View. Web Information Systems.
D. Taniar and W. Rahayu. USA, Idea Group Publishing.

HyOntUse (2003) User Oriented Hybrid Ontology Development Envi-
ronments, (http://www.cs.man.ac.uk/mig/projects/current/hyontuse/).
Chang, E., W. Gardner et al. (2001) Virtual Collaborative Logistics and
B2B e-Commerce. e-Business Conference, Duxon Wellington, NZ.
ITEC (2002) iPower Logistics (http://www.logistics.cbs.curtin.edu.au/).
Golfarelli, M., D. Maio et al. (1998) The Dimensional Fact Model:
A Conceptual Model for Data Warehouses. International Journal of
Cooperative Information Systems 7(2-3): 215-247.

Trujillo, J., M. Palomar et al. (2001) Designing Data Warehouses with
OO Conceptual Models. IEEE Computer Society, ”Computer”: 66-75.
OMG (2003) UML 2.0 Final Adopted Specification
(http://www.uml.org/UML2.0), OMG. 2005.

Rajugan,R., E. Chang et al. (2005) A Layered View Model for XML
Repositories and XML Data Warehouses. The 5th International Con-
ference on Computer and Information Technology (CIT °05), Shanghai,
China, IEEE CS Press.

Rajugan, R. (2006) A Layered View Model for XML with Conceptual
and Logical Extension, and its Applications. Faculty of Information
Technology. Sydney, University of Technology, Sydney (UTS), Aus-
tralia: 460.

R.Rajugan, E. Chang et al. (2006) Modeling Dynamic Properties in the
Layered View Model for XML Using XSemantic Nets. International
Workshop on XML Research and Applications (XRA °06) to be held in
conjunction with APWeb ’06, Harbin, China, Springer-Verlag.
OMG-OCL (2003) UML 2.0 OCL Final Adopted specification
(http://www.omg.org/cgi-bin/doc?ptc/2003-10-14), OMG. 2005.
Balsters, H. (2003) Modelling Database Views with Derived Classes in
the UML/OCL-framework. The Unified Modeling Language: Modeling
Languages and Applications (UML ’03), USA, Springer.

Doorn, J. H., L. C. Rivero et al. (2002) Database Integrity: Challenges
and Solutions, Idea Group, Hershey, PA.

Warmer, J. B. and A. G. Kleppe (2003) The object constraint language
: getting your models ready for MDA. Boston, MA, Addison-Wesley.
W3C-xml:ID (2005) xml:id Version 1.0
(http://www.w3.0rg/TR/2005/REC-xml-id-20050909/), ~ The = World
Wide Web Consortium (W3C).

Pardede, E., J. W. Rahayu et al. (2005) Preserving Conceptual Con-
straints During XML Updates. International Journal of Web Information
Systems (IJWIS) 1(2): 65-82.

OMG-MDA (2003) The Architecture of Choice for a Changing World,
MDA Guide Version 1.0.1 (http://www.omg.org/mda/), OMG. 2005.
Gaevic, D., D. Djuric et al. (2004) Converting UML to OWL Ontologies.
Proceedings of the 13 th International World Wide Web Conference, NY,
USA.

AIIM (2005) The ECM Association (http://www.aiim.org/index.asp),
AIIM.

Steele, R., W. Gardner et al. (2005) Design of an XML View Based User
Access Control (UAC) Middleware. IEEE International Conference on
e-Technology, e-Commerce and e-Service (EEE-05), Hong Kong, IEEE.
Nassis, V., R. Rajugan et al. (2005) Conceptual and Systematic Design
Approach for XML Document Warehouses. International Journal of
Data Warehousing and Mining 1(3): 63-87.

Nassis, V., T. S. Dillon et al. (2006) An XML Document Warehouse
Model. The 11th International Conference on Database Systems for
Advanced Applications (DASFAA °06), Singapore, Springer.
Rajugan,R., W. Gardner et al. (2005) Designing Websites with EXtensi-
ble Web (xWeb) Methodology. International Journal of Web Information
Systems (IJWIS) 1(3): 179-191.

Gardner, W., Rajugan, R. et al. (2004) xPortal: XML View Based Web
Portal Design. 17th International Conference on Software and Systems
Engineering and their Applications (ICSSEA ’04), Paris, France.

RAJUGAN ET AL.: MODELING VIEWS IN THE LAYERED VIEW MODEL FOR XML USING UML 117

[90] Wouters, C., R. Rajugan et al. (2006) Ontology Extraction Using Views
for Semantic Web. Web Semantics and Ontology. D. Taniar and W.
Rahayu. USA, Idea Group: 01-40.

Rajugan Rajagopalapillai holds a bachelor’s degree in Information Systems
from La Trobe University, Australia. He has worked in the industry as
chief application/database programmer in developing sports planing and
sports fitness and injury management software and as database adminis-
trator. He was also involved in developing an e-Commerce solution for
a global logistics (logistics, cold-storage and warehousing) company as a
software engineer/architect. He is currently working as a research associate at
the Faculty of Information Technology, University of Technology, Sydney
(UTS) Australia. He has published research articles which have appeared
in international refereed conference and journal proceedings. His research
interests include Object-Oriented conceptual models, XML, Semantic Web,
data warehousing and database systems. He is a member of IEEE, member
of ACM and an Associate member of Australian Computer Society (AACS).

Professor Elizabeth Chang is the Director of Area Research Excellence
for Frontier Technology and the Centre Extended Enterprise and Business
Intelligence (CEEBI) and Professor of IT in School of Information Systems.
She has over 100 scientific conference and journal papers in IT and numerous
invited Keynote papers at International Conferences. All her research and
development work are in the area of IT Applications, Software Engineering
and Logistics Informatics. Her research interests include issues related to
the process of producing an IT application, methodologies, Software and
System Architecture, web services or Mediator based systems, Peer to Peer
Communications, Trust Management, XML, XQL, RDF and Ontology, Mobile
agents, Security and Privacy, Reliability and Fault Tolerance, Usability Metrics
and application areas such as Logistic Informatics and Bio-informatics.

Professor Tharam S. Dillon is the Dean of the Faculty of Information
Technology at University of Technology, Sydney (UTS) in Australia. His re-
search interests include data mining, internet computing, e-commerce, hybrid
neuro-symbolic systems, neural nets, software engineering, database systems
and computer networks. He has also worked with industry and commerce in
developing systems in telecommunications, health care systems, e-commerce,
logistics, power systems, and banking and finance. He is editor-in-chief of
the International Journal of Computer Systems Science and Engineering and
the International Journal of Engineering Intelligent Systems, as well as co-
editor of the Journal of Electric Power and Energy Systems. He is on the
advisory editorial board of Applied Intelligence published by Kluwer in the
US and Computer Communications published by Elsevier in the UK. He has
published more than 400 papers in international and national journals and
conferences and has written four books and edited five other books. He is
a fellow of the IEEE, fellow of the Institution of Engineers (Australia), and
fellow of the Australian Computer Society.

Dr Ling Feng is an associate professor at University of Twente in the
Netherlands, and was an assistant professor at Tilburg University in the
Netherlands (1999-2002), and a lecturer at Department of Computing in Hong
Kong Polytechnic University in China (1997-1999). Her research interests are
distributed object-oriented database management system, knowledge-based
information systems, data mining and its applications, data warehousing,
data/knowledge management issues in the Internet era, including the inte-
gration of database and web-based information technologies, XML databases,
knowledge-based digital libraries, and mobile databases.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

