©2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists,
or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

A Novel Approach to Minimizing the Risks of Soft
Errors in Mobile and Ubiquitous Systems

Muhammad Sheikh Sadi, D. G. Myers, Cesar Ortega
Sanchez

Department of Electrical and Computer Engineering
Curtin University of Technology, Australia

Abstract—A novel approach to minimizing the risks of soft erors

at modeling level of mobile and ubiquitous systemss outlined.

From a pure dependability viewpoint, critical compaments, whose
failure is likely to impact on system functionality, attract more

attention of protection/prevention mechanisms (agaist soft
errors) than others do. Tolerating soft errors canbe much
improved if critical components can be identified & an early
design phase and measures are taken to lower theiriticalities at

that stage. This improvement is achieved by preseng a
criticality ranking (among the components) formed ty combining

a prediction of soft errors, consequences of themand a
propagation of failures at system modeling phase;ral pointing

out the ways to apply changes in the model to miniize the risks
of degradation of desired functionalities. Case stly results are
given to illustrate and validate the approach.

Keywords-Criticality Analysis; Soft Errors; Reliability Risks,
Mobile and Ubiquitous Systems; UML Model; Metrics

l. INTRODUCTION

The demands on embedded mobile and ubiquitousrsysiee
increasing along with more complex functionalitisch as
pervasive computing, mobile computing, and highespe
wireless networking [1], [2]. Continuous improvemeaof
wireless networks has created different types ofeless
systems, such as Bluetooth for personal areas)é8&d ANs
(WLANS) for local areas, Universal Mobile

Telecommunications System (UMTS) for wide areasd an

satellite networks for global networking. These teyss
require to co-ordinate with each other to providequitous
high-data-rate services to mobile users [3]. Hera@bility is
a high requirement in these systems. The relighbdft these
systems is affected by both permanent and transaarits.
Permanent faults such as nodes stuck-at-1/0, stansiopen,
shorted transistors and so forth, arise duringid¢akion or
result from aging, and destroy the intended fumctid the
circuit [4]. Transient faults, in contrast, are nibe result of
physical damage to a chip but can be catastropictte
desired functionalities of the system [5], [6]. Sketransient
faults create soft errors when they are executdtdrsystem.
Soft errors are of particular concern as system ptexity,
reduction in operational voltages, exponential dlowf the
number of transistors per chip, increases in cloeguencies
and device shrinking significantly increase thaier[7], [8].
Prior research to cope with soft errors mostly f@msuon post-
design phases such as circuit level solutions,cldgvel

978-1-4244-4547-9/09/$26.00 ©2009 IEEE

Jan Jurjens

Department of Computer Science
TU Dortmund
Dortmund, Germany

solutions, spatial redundancy, temporal redundaacyj/or
error correction codes. Early detection and coimacdf such
problems during the design phase is much moreylitelbe

successful than detection once the system is opeaht[9].

Estimating reliability (or at least identifying fare-prone
components) early in the life-cycle of a designthisrefore
preferable [10], [11]. Ideally, this should be datehe system
design level so that the designer can create rdjpirevention
or detection mechanisms in the detailed design fiblbdws.

From a pure dependability viewpoint, critical compats
attract more attention of protection/prevention hasdsms
than others do since reliability of a system isrelated with
the criticality of the system [12], [13]. Hence, approach is
needed at the design stage to highlight those coemie
where transient faults are critical.

This paper examines the use of metrics to idertifyical

components of a system model. It also investigates to

encourage the designer to explore changes thatl teumade
in the existing model. Case studies illustrate effectiveness
of this approach in determining components’ critiga
rankings and then lowering their criticalities. eTmodel is
expressed in Unified Modeling Language (UML) sirtbés

allows the modeler to describe different views osyatem,
including the physical layer [14], [15]. The papeiorganized
as follows. Section 2 describes related work. $actB

outlines the methodology to measure and reduce coerg’'s

criticality employed in this research. This methiody is

applied to a real-life case study in Section 4.aln in

Section 5, conclusions are drawn.

Il. RELATED WORK

Researchers have evolved several measures to preofn
errors. Much less attention has been dedicated, now, to
the integration of design processes with reliapiierification
techniques. Rather, a “fix-it-later” approach igl stominant
[16]. At a system level, duplicating hardware [1[d8] and
then comparing the results, and/or executing secerzes of
software by using the same hardware [19] to deteftterrors
are the most common approaches. Then, differerivesy
approaches are employed to recover from the saftserAt
the circuit level, the solution is mainly to incseathe critical
charge of a circuit node [20]. Logic level solutsofb] mainly
propose detection and recovery in combinationaludis by
using redundant or self-checking circuits. Goldakt [21]
proposed distributed shared memory multi-proceésatures

TENCON 2009

that incorporate computation and memory storagareancy
to detect and recover from a single point of transior
permanent failure. Mohamed et al. [22] shows clepel
redundant threading with recovery, where the bakga is to
run each program twice, as two identical threads, a0
simultaneous multithreaded processor. These postiinal
design phase approaches are costly as well as erntpl
implement. Moreover, they can increase time delaysl
power overhead without offering any performancengai
Timing and synchronizing issues are also mattergreft
concern in these approaches.

Few approaches [23], [24] dealt with the static ptaxities of
the system as a risk assessment methodology tonimithe
risks of faults. However, these static approaches\at deal
with the matter of how a module functions in itseenting
environment. A fault may not manifest itself intcfalure if
never executed. Cortellessa et al. [9] and Yacdual.€13]
defined dynamic metrics that include dynamic comipfeand
dynamic coupling metrics to measure the qualitysoftware
architecture. To assess the severity of the comysnihey
have defined only three levels of system failurewidver, in
real life scenarios, only three severity levels @ok sufficient
to represent several possible failure modes.

I1l. A METHODOLOGY TO MEASURE AND REDUCE

COMPONENTS CRITICALITY

Complexity is taken as a measure of the likelih@bda
component to be affected by soft errors. Seveffitfaiture of
components is taken as a measure of the impactgftam’s
functionality being affected by a component suffgria soft
error. The methodology presented here is to meathge
complexity and severity of each component,
propagation of failure from that component, anchtteke the
product as a measure of criticality. The modelxianeined by
refactoring to lower component criticality by maiming
constraints. The details of these steps are odtksdollows.

A. Measuring the Complexities of the Components
There is a correlation between the likelihood df sorors

method of measuring ET during simulation (to perfoan
operation by a component) can be shown as follows.
Component state S is a function of time: S (t) whtedenotes
time. An external function F () is required to beseuted to
perform the operation F (S)ft— S (1)): where S { is the
state of a component at and S () is the state of that
component at.t Hence, ET, to execute the function F () that
changes the state of the pth component from) $(6 (f), can

be shown as (1).

n
ET, (F(S(t) - S(t)) =) d,, (1)

j=L

Where n is the total number of state changes inpthe

component’s behaviour execution anglisl the duration in the
jth slot of changing states of pth component. Sidb&. does
not specify how to simulate the architecture mgd&delogic
Rhapsody [27] is used to gain execution data wviaukition.
The model is executed in tracing mode. Severalingac
commands are used to execute the model. The statgtion
times for the components are saved to a log fiteha& end of
the simulation, that log file is analyzed to ca#talthe total ET
of the components to perform a selected operation.

2) Message-In-and-Out Freguency

In a model-based system, components are often
interdependent. They communicate with each othenéssage
passing among them. Number of messages from ana to
component shows the measure of dependence withr othe
components. Components with more dependence casity e
manifest themselves into a failure of the systencabse
services of these components are frequently aatdssether
components [14]. To figure out this fault proneness

plus the&omponent’'s MIO, which is the ratio of number ofgsages

from and to a component in a scenario and total baunof
messages in that scenario is calculated. Defii®; as the
MIO for ith component in kth scenario. B is the message

between component i and component j (where j=1,..,.,m
i # j, and m is the number of messages from ith comgdoen

other components) in kth scenario, amdis the total number

proneness and the complexity of a system [12], .[25]0f messages, communicating among all the componierttsat
Complexity analysis does not measure the impact o$cenario. ThenMIO; can be derived as shown in (2).

components in system functionality, but it shows tank of
likelihood of soft error proneness among the conepds
Complexity is measured, in this paper, by an assess of
execution time (ET) during simulation and Messayeshd-
Out frequency (MIO).

1) Execution Timeduring Smulation

The Failure-In-Time (FIT) of a system due to safoeis
proportional to the fraction of time in which thgsem is
susceptible to soft errors if the circuit type,ns&stor sizes,
node capacitances, temperature etc. are kept atacri26].
The longer duration to perform the selected opamaitnplies
that the component is being used more frequenttifoarit is
experiencing many state changes. A soft error gcatirany

access point and/or in any behavioral change ofethe
communicatin

components can spread towards all
components through the large number of behaviingbgies
until the soft error affected component is in exeEcu The

m
|ZM(i,j) [1#]
_ =1

i Ny

)

MIO

For each component, Total MIO (TMIO) in all possibl
different scenarios can be calculated using (3)IQNbr ith
component is:

o
TMIO; =)" P(S)MIO;
k=1
wheren' is the total number of scenarios in the system,
(Scy) is the probability of kth Scenario in that systeand
MIG; is the MIO for ith component in kth scenario.

®3)

TENCON 2009

3) Overall Complexity

The Overall Complexity of the ith Component (OLCG
the summation of different complexity factors fohat
component. The equation to derive Q&Ghown in (4).

OCC, =ET, +TMIO,)

where ET; andTMIO, are Execution Time, and Message-

In-and-Out frequency for the itkomponent. SinceET; and
TMIG; are independent on each oth@CG is calculated using

the summation of these two factors. For simpliditg weights
of ET and TMIO in measuring total value of comptis are
assumed as equal.

B. Measuring the Severity of the Failure of the
Components

A single soft error in a particular component cobhltve a
greater effect than multiple soft errors in anotbera set of
components. For this reason, the effects of safirgern the
whole system need to be analyzed by injecting ieahsaults
(which will create soft errors if activated) intagh component.
These results are merged with the component’s @xitj@s to
obtain a better measure of their impact on sysfethely are
affected by soft errors. The severity of failurdscomponents
is determined by the Failure Mode and Effects Asialy
(FMEA) method [28]. FMEA is a procedure for the lgs#s of
potential failure modes within a system by classifyseverity
or determination of the failure’s effect upon thgstem.
Hosseini et al. [28] suggested evaluation critarid a ranking
system for the severity of effects for a design AVHS shown
in TABLE I. Transient faults are injected at eachmponent,
into one bit at a time. The reason is that trandeuts change
the value of one bit at a time and the probabiitychanging
two bits and/or two transient faults are almosbzer

TABLE I. EVALUATION CRITERIA AND RANKING SYSTEM OF FMEA

Linguistic terms for severity of a failure mode | Rark
Hazardous 10
Serious 9
Extreme 8
Major 7
Significant 6
Moderate 5

Low 4
Minor 3
Very minor 2
No effect 1

C. Measuring Propagation of Failure fromthe
Components

Before measuring the component’s propagation dfirii
its complexity and severity are multiplied togetbh@measure
there combined impact (if there is any soft erar)the whole
system. Measuring the propagation of failure refirtbis
impact to obtain a clearer picture of the impactriticality of
each component. The method of measuring the prtipagat

failure is shown in Fig. 1, which is a scenario aofsystem

model showing three components; C,, and G.

Fig. 1. An Example Scenario of a System Model toadlee the
Propagation of failure

ENV denotes the environment communicating with the
system. The product of complexity and severityhafse three
components are;,sS, and g respectively. In Fig. 1,:1X...,%0
indicate the severity in corresponding messagesenhdexing
is made according to their time of occurrenceshia whole
scenario. Failures due to soft errors may be prateagvia
message communication. The propagation of failuown for in
the environment is not considered. To measure padjzn of
failure through message passing involves findirgiticrease
in the level of consequences of each message.t&sof in G
(before it passes a second message) sees an eurdagel of
consequences in,Go §x, since soft errors may propagate
from C, to G through the passed message.

After passing the 2nd message, there is an inciedseel
of consequences in,Cs;x, and after passing the 3rd message,
there is an increase in level of consequences:igGSXs,

Similarly, after passing the 9th message, theam isicrease
in the level of consequences in :C

S1X2$,X33X4S2XsS2(X6+X7) $1XgS1Xg
The total consequences in the system can be defased
CONCy, (= SiXzSpX3S3XaS,X5S2(X6+ X7)S1XS1X)

If the soft error occurs in Cwithin the 2nd and 8th
messages then the consequen@SNC,, = siXgsiXg) can be

propagated in the system after passing the 8thagess

If the soft error occurs in Gafter passing the 8th message
then the consequence€QNC, = sxg) can be propagated in

the system with the 9th message. In the same Wsgftierrors
occur in G, and/or in G then the increase in level of
consequences can be checked at different stagesesdage
passing. The consequences in the system can beiregas
follows.

CONC,, = $;X353X4SoXsS(Xe+X7)S1XgS1Xg
CONG, = s;Xs52(Xe+X7)S1XeS1Xo

TENCON 2009

CONC23 = Sz(X6+X7)S]_X8$1X9
CONC24 = $X751XgS1 X9

CONC; = SgXaSpXsSx(Xe+X7)S1XgS1Xg

The total propagation of failure from each compadr(ene
to a soft error in that component) can be derivetbiows.

3
CONC,, =) CONC;
i=1

4
CONC, =) CONC,

i=1
CONC; = CONC;,

If the values of § $, and §; and x,..., Xo are known then
the above propagations can be derived. The tad@igoation of
failure in the whole system (due to a soft error dny
component) can be shown as follows:

o
CON(C,) = z P(Sc,) X CON(C,) ®)

k=1
where n is the total number of scenarios in theesys
P(Sc,) is the probability of the kth scenario, a@®DNC; is

the propagation of failure from the ith componemtthie kth
scenario.

D. Measuring Criticalities of the Components

For each component, criticality is the product ofmplexity,
severity, and the propagation of failure. The combiimpact
of complexity and severity is used to calculateghgpagation
of failure. Criticality is calculated by taking thgroduct of
complexity, severity, and the propagation of falutf the
criticality of the ith component is Cthen the equation to
derive it can be shown as:

Cr, = |‘| (OCC;,CON(C;), S&(C))) ©)

good candidate for this type of approach. UML model
refactoring re-structures the model, at the conwdgevel, to
improve quality factors such as maintainabilityfjeééncy and
fault tolerance without introducing any new behavi¢29].
Once the criticality ranking is returned, a modelncbe
refactored with the goal of reducing the critidgakt of the
components. Lowering the criticalities can be aabie by
reducing any of the multiplying factors: complexisgverity or
propagation of failure. Fig. 2 details the methodgyl of
lowering component criticality by refactoring.

v

Requirement Specification for
Embedded Systems

Abstract Model in UML

Criticalities measured for the
Components in the Model

Change The
Methodology

Refactor the Model

Constraints
Maintained

[Yes]

Terminate [Yes] Criticalities INo]
Reduced

Fig. 2. Methodology to lower the criticalities dfiet Components by
Refactoring

Apply Metrics

ritical Components
Exist?

IV. CASESTUDIES

Real-life case study: A wireless telephony Han@settem
illustrates the application of the metrics. It isosen, as it is
illustrative of a broad class of systems that mheste high
reliability. Handset System has three sub-systefos this

where, OCC; is the overall complexity of the component, example, sub-systems represent components): (@nae@tion
CON(C,) is the propagation of failure from the component,Management (CM) system to handle the receptiompseind

N transmission of incoming and outgoing call requgg)sa Data
and S(C;) is the the i Link (DL) system to handle the registration andakian of
OCC;,CON(C;), S&(C;) are dependent on each other; i.e. forysers, and (i) a Mobility Management (MM) systetm

severity of component.

any increase in complexity there is a high proligbihat the
severity will increase, and if the product of comyty and
severity increases then the probability of propagatf failure
will increase too. Hence, criticality is taken &g tproduct of
overall complexity, severity, and propagation dfufie.

E. Lowering the Criticalities of Components

Component criticality suggests to the designersrevtie
the system design changes are necessary or helpfuhimize
soft errors risk. These changes can be done byyiagph
suitable approach where he/she may change theeutthie or
behavioral model of the component to lower its claxipy,
and/or severity, and/or propagation of failure. &Réfring is a

monitor registration.

A. ET Analysis of the Handset System

The ‘Call Control' Statechart diagram of CM in the

Handset system is used for ET analysis and is shiowig. 3.
If it receives a confirmation, the call connectad aemains
connected until it receives a message to disconibien
operation succeeds, the time of executing the &Gall’ event
at ‘ldle’ state, and the time when the system redclat
‘Connected’ state of ‘Call Control’ statechart weeeorded to
calculate the ET of these sub-systems. The secolothn of
TABLE Il shows the normalized values of ET of thebs
systems.

TENCON 2009

—

TABLE lIl.

THE SEVERITY OF THE SUBSYSTEMS INHANDSET SYSTEM

Sub- Failure Mode Effect of Failure SOF SR
Idle Systems
< CM Failed to trigger| Could not complete the | Serious 9
the Connection connection and
Bisconnect | | Call event Connection went back to|
PlaceCal -
OUT_Port(cc_mm)->GEN(Disconnect) OUT_Port(cc_rrrn)->GR£l.(\yl(D'soonnecI) idle stage
DL Failed to Could not initiate the Extreme 8
Adive 1m(3000) respond to registration and
Registration Connection went back to|
request idle stage
.\\ MM Failed to update| Connection was held in| Major 7
ConnectionConfirm Location Location Update state an
could not confirm the
connection
] ConneatConirm E. Measuring Propagation of Failures from the Sub-
' systemsin Handset System
Gonnected At first, the failure propagation is calculated feeich sub-
system and for the three different scenarios. Tthentotal
failure propagation for each sub-system is caledlatising

equation (5). The second column in TABLE IV showe t
calculated failure propagation (normalized) dusedtfi errors in
these three scenarios. Fault propagations arelagduusing
only participating components.

Fig. 3. Call Control statechart diagram at the fwigig of execution

B. MIO and TMIO of the Sub-systems in the Handset
System

There are three scenarios in the Handset systeRlage TABLE IV.

THE PROPAGATION OF FAILURE AND CRITICALITIES OF THE

Call Request Successful, i) Network Connect, afiyl i < Sysfsg]‘SSYSTEMSrg“pLSEE&NEfSET52:(ﬁtTiCEa’Vl'ity e
Conne(.:tllc.)n Management Place Call Request.Succé'ﬂ;te failure Components
probabilities of the occurrences of three scenaiesassumed M 10 819
as 0.45, 0.30, and 0_.25 respegtively. The assurrqp&oe made DL 0.00027 0.0017064
with respect to their usage in real life scenarigdO and MM 0.123 0.6888

TMIO for three different sub-systems are calculdiadthree
different sequence diagrams using (2) and (3). vAlues of
TMIO for the three sub-systems are shown in thel tbdlumn
of TABLE II.

F. Measuring Criticalities of the Sub-systemsin
Handset System

The criticalities of the sub-systems are shownhia tast
column of TABLE IV. The results show that CM is theost
critical sub-system in the Handset system and llsvied by

C. Overall Complexities of the Sub-systemsin the
MM, and DL.

Handset System

Overall complexities of three sub-systems are ¢aed
using (4), and the last column in TABLE Il showsithoverall
complexities. Overall complexity is the summatioh BT
during simulation, and Message-in-and-out-frequenaf the
sub-systems. Though MM has the highest value ofdad@,DL differences with the other sub-systems. This p#pen targets
has the same for TMIO, considering both of the dexifles to reduce the criticality of the sub-systems adogydo their
CM is the most complex sub-system in Handset systentriticality order. The behaviour models of all tarsub-systems
Overall complexities of DL and MM are almost equal. are carefully examined to be refactored. The fonetity is
being affected for any change made in the behaaiour

G. Lowering the Criticalities of the Sub-Systems of
Handset System

As shown in TABLE IV, CM has large criticality

TABLE Il. THE COMPLEXITY OF THE SUBSYSTEMS INHANDSET SYSTEM .
Sub-Systems | Normalized | TMIO Overall diagrams of CM, and DL sub-systems. The MMCallCaintr
values of ET Complexities activity diagram of MM sub-system is able to bringder
CM 0.29 0.62 0.91 refactoring by maintaining the constraints. Thecualzted
DL 0.05 0.74 0.79 normalized ET of the sub-systems of refactored rheahel
MM 0.67 013 080 existing model (to establish a handset conneci®shown in
D. Measurement of the Severity of the Failure Sub- TABLE V.
systemsin the Handset System TABLEV. COMPARISON OFET OF THE COMPONENTS BETWEEN

The severity of sub-systems are determined by MEA REFACTORED MODEL AND EXISTINGHANDSET MODEL

where the effects of soft errors in each sub-systeranalyzed Sub-systems R'g?ggg:gg‘,’wigeﬁ’f N°J?’§x"é§‘n’ ET
by injecting transient faults, and checking thdieets. TABLE Model 9
Il shows the results. To simplify the column narnmethe M 029 0228
TABLE Il, Severity of Failure, and Severity Rankrea MM 0.05 0.0393
abbreviated as SOF, and SR respectively. DL 067 067

TENCON 2009

Lower ET will result to lower complexity as well &swver
criticality of the sub-systems. TABLE V shows thafactoring
the model is able to lower the ET of the CM, and Mivb-
systems to a mentionable extent. The ET for DLasstant.
DL is the least critical sub-system in the Handystem and its
criticality is so low that it does not create anattar of
concern.

V. CONCLUSIONS

This paper develops metrics for complexity analybist
could be analyzed in the early system design pbhased on
UML artifacts, develops a severity assessment ndetbgy by
analyzing UML model simulation results, and devsldhe
methodology of measuring the propagation of fagurem the
components. This paper then integrates the thréfferefit
methods to rank the component’s criticality thaghtight the
variations of the impact of soft errors among tbmponents. It
then shows how possible changes can be made iexibting
design to lower the criticalities of the componeitsninimize
the risks of soft errors. In summary, the approa@sented in
this paper is effective in measuring the soft ermisks of the
components in a system and in lowering the critieal of
components to minimize the risks of functional deigtion.

REFERENCES

[1] H. Pao-Ann, L. Shang-Wei, H. Chin-Chieh, F. Jih-plinL. Chao-
Sheng, C. Cheng-Chi, C. Kuo-Cheng, L. Chun-Hsied, la Pin-Hsien,
"Real-time embedded software design for mobile arquitous
systems," in International Conference on Embedded @biquitous
Computing, EUC 2007, (Lecture Notes in Computeece vol. 4808),
pp. 718-729.

[2] S. Manzoni, F. Nunnari, and G. Vizzari, "Towardsn@del for
ubiquitous and mobile computing,” in Thirteenth EHnternational
Workshops on Enabling Technologies: InfrastructiareCollaborative
Enterprises, Los Alamitos, CA, USA, 2004, pp. 4284

[3] I. F. Akyildiz, S. Mohanty, and J. Xie, "A ubiquite mobile
communication architecture for next-generation togteneous wireless
systems," IEEE Communications Magazine, vol. 4329936, 2005.

[4] A. Timor, A. Mendelson, Y. Birk, and Suri, N, "Uginunder Utilized
CPU Resources to Enhance Its Reliability," Depeted@nd Secure
Computing, IEEE Transactions on, vol. 5, no. 4,200

[5] Zhang, M., Mitra, S., Mak, T.M., Seifert, N., Warlg.,J., Shi, Q., Kim,
K.S., Shanbhag, N.R., Patel, S.J., “Sequential EfenDesign With
Built-In Soft Error Resilience,” IEEE Transactioos Very Large Scale
Integration (VLSI) Systems, Vol. 14, pp. 1368-1372806.

[6] S. Mitra, N. Seifert, M. Zhang, Q. Shi, and K. SmK"Robust system
design with built-in soft-error resilience," Computvol. 38, pp. 43-52,
2005.

[7] G.P. Saggese, N. J. Wang, Z. T. Kalbarczyk, Batel, and R. K. lyer,
"An experimental study of soft errors in microprssers,” Micro, IEEE,
vol. 25, pp. 30-39, 2005.

[8] Y. Crouzet, J. Collet, and J. Arlat, "Mitigatingfserrors to prevent a
hard threat to dependable computing,” presentedl®h IEEE
International On-Line Testing Symposium, IOLTS, pp5-298, 2005.

[9] Cortellessa, V., Goseva-Popstojanova, K., Appukkul., Guedem,
A.R., Hassan, A., Elnaggar, R., Abdelmoez, W., AmribH., “Model-
based performance risk analysis,” |EEE Transastion Software
Engineering, Vol. 31, pp. 3-20, 2005.

[10] Jurjens, J., Wagner, S., “Component-based developofedependable
systems with UML,” Lecture Notes in Computer Scigneol. 3778, pp.
320-344, 2005.

[11] A. Bondavalli, M.D.C., D. Latella, I. Majzik, A. Raricza, and G.
Savoia: Dependability Analysis in the Early PhasésUML Based
System Design. Journal of Computer Systems SciandeEngineering
16 (2001) 265—275

Khoshgoftaar, J.M.a.T., “Software Metrics for Rbllay Assessment,”
Handbook of Software Reliability Eng., M. Lyu eChapter 12, pp.
493-529, 1996.

[13] Yacoub, S.M., Ammar, H.H., “A methodology for ar&uture-level
reliability risk analysis,” IEEE Transactions onf®are Engineering,
Vol. 28, pp. 529-547, 2002.

[14] S. K. Wood, D. H. Akehurst, O. Uzenkov, W. G. J.wds, and K. D.
McDonald-Maier, "A model-driven development appiodo mapping
UML state diagrams to synthesizable VHDL," IEEE figactions on
Computers, vol. 57, pp. 1357-1371, 2008.

Linzhang, W., Wong, E., Dianxiang, X.: A threat nebdriven approach
for security testing. IEEE, Minneapolis, MN, USAO() 64-70

Hiller, M., Jhumka, A., Suri, N., “EPIC: profilinthe propagation and
effect of data errors in software,” IEEE Transation Computers, Vol.
53, 2004.

Meaney, P.J., Swaney, S.B., Sanda, P.N., SpainhdwefiBM z990
soft error detection and recovery.,” IEEE Transaxtion Device and
Materials Reliability, Vol. 5, 2005.

[18] Austin, T.M., “DIVA: a reliable substrate for deepubmicron
microarchitecture design,” 32nd Annual Internatio®ymposium on
Microarchitecture, pp. 196 — 207, 1999.

[19] Xinping, Z., Wei, Q., “Prototyping a fault-tolerantultiprocessor SoC
with run-time fault recovery,” 43rd ACM/IEEE DesigAutomation
Conference, pp. 53 — 56, 2006.

[20] Cazeaux, J.M., Rossi, D., Omana, M., Metra, C.,t€heae, A., “On
transistor level gate sizing for increased robusgrte transient faults,
11th IEEE International On-Line Testing Symposiuop, 23 — 28,
2005.

B. T. Gold, J. Kim, J. C. Smolens, E. S. Chung,L\askovitis, E.
Nurvitadhi, B. Falsafi, J. C. Hoe, and A. G. Now#&iz "TRUSS: a
reliable, scalable server architecture," Micro, EERol. 25, pp. 51-59,
2005.

[22] A. G. Mohamed, S. Chad, T. N. Vijaykumar, and Rh/|r'Transient-
fault recovery for chip multiprocessors," IEEE Mi¢wvol. 23, pp. 76,
2003.

[23] T. J. McCabe, "A Complexity Measure," Software HEwgiring, IEEE
Transactions on, vol. SE-2, pp. 308-320, 1976.

[24] Chidamber, S.R., Kemerer, C.F., “A metrics suite dbject oriented
design,” IEEE Transactions on Software Engineerifg, 20, pp. 476-
493, 1994.

Harrison, R., Counsell, S., Nithi, R., “Coupling tmes for object-

oriented design,” IEEE Comput. Soc, Bethesda, MBAUpp. 150-157,

1998.

H. T. Nguyen, Y. Yagil, N. Seifert, and M. Reitsm&hip-level soft

error estimation method," Device and Materials &tslity, IEEE

Transactions on, vol. 5, pp. 365-381, 2005.

[27] http://www.telelogic.com/Products/rhapsody/indemcf

[28] S. M. Seyed-Hosseini, N. Safaei, and M. J. Asgharpo
"Reprioritization of failures in a system failureode and effects analysis
by decision making trial and evaluation laboratotgchnique,”
Reliability Engineering & System Safety, vol. 9p, 872-81, 2006.

[29] S. Gerson, P. Damien, T. Yves Le, J. Jean-Maanidzguel, "Refactoring UML
Models," in Proceedings of the 4th Internationahf@@nce on The Unified
Modeling Language, Modeling Languages, ConcepisTaqls: Springer-Verlag,
2001.

[12]

[15]

[16]

[17]

[21]

[25]

[26]

TENCON 2009

