
NOTICE: This is the author’s version of a work that was accepted for publication in
Computers and Operations Research. Changes resulting from the publishing
process, such as peer review, editing, corrections, structural formatting, and other
quality control mechanisms may not be reflected in this document. Changes may
have been made to this work since it was submitted for publication. A definitive
version was subsequently published in Computers and Operations Research, Vol.
39, Issue 12 (2012). doi: 10.1016/j.cor.2012.04.004

A Stochastic Fleet Composition Problem

Ryan Loxton, Qun Lin, Kok Lay Teo

Department of Mathematics and Statistics, Curtin University, Perth, Western Australia

Abstract

In this paper, we consider the problem of forming a new vehicle fleet, consisting of multiple vehicle types, to cater

for uncertain future requirements. The problem is to choose the number of vehicles of each type to purchase so that

the total expected cost of operating the fleet is minimized. The total expected cost includes fixed and variable costs

associated with the fleet, as well as hiring costs that are incurred whenever vehicle requirements exceed fleet capacity.

We develop a novel algorithm, which combines dynamic programming and the golden section method, for determining

the optimal fleet composition. Numerical results show that this algorithm is highly effective, and takes just seconds to

solve large-scale problems involving hundreds of different vehicle types.

Keywords: Fleet Composition, Dynamic Programming, Golden Section Method, Convex Optimization

1. Introduction

Many companies rely on a private vehicle fleet to trans-

port goods, equipment, and personnel. The size and com-

position of such a fleet must be carefully chosen to meet

the company’s operational requirements. If the fleet is too

small and cannot meet the company’s requirements, then

many additional vehicles will need to be hired, resulting

in excessive hiring costs. On the other hand, if the fleet

is too large, then some vehicles will be idle for long pe-

riods of time, resulting in a significant opportunity cost.

This tradeoff leads to an optimization problem—the so-

called fleet composition problem—in which the number of

vehicles in the fleet needs to be chosen to minimize total

cost.

Kirby [6] was one of the first researchers to investigate

the fleet composition problem. Kirby considered a very

simple problem in which the vehicle fleet is homogeneous—

that is, all vehicles are of the same type. More complicated

models, some of which incorporate vehicle routing, have

since been developed; see [4, 5, 10, 11] for more details.

Ghiani, Laporte, and Musmanno [3] have considered

a homogeneous fleet composition model in which the cost

function is the sum of fixed, variable, and hiring costs. We

have extended this model to cater for heterogeneous fleets

(fleets with multiple vehicle types) in our previous work [7].

Both the model in [3] and our extended model in [7] assume

that future vehicle requirements are known—an unrealistic

assumption. In practice, it is usually impossible to predict

future vehicle requirements exactly.

In this paper, we extend the models in [3, 7] to the

more realistic case where future vehicle requirements fol-

low a given probability distribution. The resulting fleet

composition problem is much more complicated than those

in [3, 7]. We develop an efficient algorithm, which uses the

golden section method to solve a dynamic programming re-

currence equation, for determining the optimal fleet com-

position. As we show in Section 5, combining dynamic

programming and golden section search in this way yields

excellent results. This combined approach is a major im-

provement over the algorithm in [7].

2. Problem Formulation

Consider a company or organization that needs to pur-

chase a vehicle fleet to operate over a future time horizon.

Let m denote the number of vehicle types to be included

in the fleet, and let n denote the number of periods in the

time horizon.

Let qij denote the number of type-i vehicles required

during period j. We assume that qij is a discrete random

variable with probability function

P (qij = k) = θijk, k = 0, . . . , Ni,

Preprint submitted to Computers & Operations Research April 10, 2012

where Ni is a given integer and θijk, k = 0, . . . , Ni are

given real numbers such that

θijk ≥ 0, k = 0, . . . , Ni,

and
Ni∑

k=0

θijk = 1.

Let pi be a decision variable representing the number of

type-i vehicles to be included in the fleet. Note that pi

remains fixed throughout the planning horizon—we do not

allow the fleet size to change from period to period. We

impose the following constraint on the total fleet size:

m∑

i=1

pi ≤ pmax, (1)

where pmax is a given integer.

Consider an arbitrary period j. If pi < qij , then the

number of type-i vehicles required during period j exceeds

the number of type-i vehicles in the fleet, and thus an ad-

ditional qij−pi type-i vehicles will need to be hired during

this period. On the other hand, if pi ≥ qij , then there is

no need to hire type-i vehicles during period j. Thus, the

total number of type-i vehicles hired during period j will

be equal to max(qij − pi, 0). Let γi denote the cost of hir-

ing a type-i vehicle for one period. Then the total hiring

cost for type-i vehicles is

Ch
i (pi) = γi

n∑

j=1

max(qij − pi, 0).

Let αi denote the fixed cost per period of a type-i vehicle.

Fixed costs include the initial purchase cost (minus the

salvage value), registration fees, insurance premiums, and

other costs that do not depend on how often the vehicle is

used. The total fixed cost for type-i vehicles is

Cf
i (pi) = nαipi.

Let βi denote the variable cost incurred when a type-i

vehicle is used for one period. Variable costs are generally

due to maintenance. If pi ≥ qij , then only qij of the fleet’s

type-i vehicles will be used during period j, but if pi < qij ,

then all of the fleet’s type-i vehicles will be used during

period j. Thus, the number of owned type-i vehicles used

during period j will be equal to min(qij , pi). It follows

that the total variable cost for type-i vehicles is

Cv
i (pi) = βi

n∑

j=1

min(qij , pi).

By summing the fixed, variable, and hiring costs, we obtain

the total cost of purchasing pi vehicles of type i:

Ci(pi) = Cf
i (pi) + Cv

i (pi) + Ch
i (pi)

= nαipi
︸ ︷︷ ︸

Fixed costs

+ βi

n∑

j=1

min(qij , pi)

︸ ︷︷ ︸

Variable costs

+ γi

n∑

j=1

max(qij − pi, 0)

︸ ︷︷ ︸

Hiring costs

.

Note that the cost of maintaining an owned vehicle for one

period must be less than the cost of hiring the same vehicle

for one period—otherwise, there would be no reason to

purchase vehicles. Thus, we assume that βi is less than γi.

The key question that now arises is: what values of pi,

i = 1, . . . ,m minimize the total expected cost subject to

the fleet size constraint (1)? We formulate this question

as the following stochastic programming problem:

Minimize
p1,...,pm

E

{ m∑

i=1

Ci(pi)

}

subject to

m∑

i=1

pi ≤ pmax

p1, . . . , pm ∈ Z
+ ∪ {0}

(2)

The parameters in Problem (2) are summarized in Table 1.

The expected cost function in Problem (2) can be sim-

plified as follows. First, since expectation is a linear oper-

ator,

E

{ m∑

i=1

Ci(pi)

}

=
m∑

i=1

E{Ci(pi)}

and

E{Ci(pi)} = nαipi + βi

n∑

j=1

E{min(qij , pi)}

+ γi

n∑

j=1

E{max(qij − pi, 0)}.
(3)

2

m Number of vehicle types

n Number of periods in the time horizon

αi Fixed cost per period of a type-i vehicle

βi Variable cost per period of a type-i vehicle

γi Hiring cost per period of a type-i vehicle

θijk Probability that k type-i vehicles will be required during period j

Ni Maximum number of type-i vehicles required during a single period

pmax Maximum fleet size

Table 1: Parameters in Problem (2).

Furthermore, it follows from basic probability theory that

E{min(qij , pi)} =

Ni∑

k=0

min(k, pi)P (qij = k)

=

Ni∑

k=0

θijk min(k, pi)

and

E{max(qij − pi, 0)} =

Ni∑

k=0

max(k − pi, 0)P (qij = k)

=

Ni∑

k=0

θijk max(k − pi, 0).

Substituting these two equations into equation (3) gives

E{Ci(pi)} = nαipi + βi

n∑

j=1

Ni∑

k=0

θijk min(k, pi)

+ γi

n∑

j=1

Ni∑

k=0

θijk max(k − pi, 0).

(4)

Thus, Problem (2) can be rewritten as follows:

Minimize
p1,...,pm

m∑

i=1

{

nαipi + βi

n∑

j=1

Ni∑

k=0

θijk min(k, pi)

+ γi

n∑

j=1

Ni∑

k=0

θijk max(k − pi, 0)

}

subject to

m∑

i=1

pi ≤ pmax

p1, . . . , pm ∈ Z
+ ∪ {0}

For notational simplicity, we have assumed that the per

period fixed, variable, and hiring costs are the same in

each period. This is not a major restriction, as all of our

subsequent results can be easily extended to the case where

αi, βi, and γi depend on j, provided of course that the

variable cost in each period is less than the hiring cost.

3. Preliminary Results

The aim of this section is to show that E{Ci(·)} given

by (4) is a convex function on R. For simplicity, we will

drop the i subscripts and write E{Ci(pi)} as

E{C(p)} = nαp+ β

n∑

j=1

N∑

k=0

θjk min(k, p)

+ γ

n∑

j=1

N∑

k=0

θjk max(k − p, 0).

Our first result is given below.

Lemma 3.1. Let f : [0,∞) → R be a function satisfying

f(x) = f(⌊x⌋) + (x− ⌊x⌋) ·
{
f(⌊x⌋+ 1)− f(⌊x⌋)

}
. (5)

Then f is convex if and only if {f(ξ)− f(ξ − 1)}∞ξ=1 is a

non-decreasing sequence.

Proof. Suppose that f is convex. Then for each integer

ξ ≥ 1,

f(ξ) ≤ 1
2f(ξ − 1) + 1

2f(ξ + 1).

Thus,

f(ξ)− f(ξ − 1) ≤ f(ξ + 1)− f(ξ).

This shows that {f(ξ)− f(ξ− 1)}∞ξ=1 is non-decreasing, as

required.

To prove the opposite implication, suppose that the

sequence {f(ξ)−f(ξ−1)}∞ξ=1 is non-decreasing. Let x > 0

and choose ǫ > 0 sufficiently small so that ⌊x + ǫ⌋ = ⌊x⌋.

3

Then by equation (5),

f(x+ ǫ) = f(⌊x⌋) + (x+ ǫ− ⌊x⌋) ·
{
f(⌊x⌋+ 1)− f(⌊x⌋)

}

= f(x) + ǫ
{
f(⌊x⌋+ 1)− f(⌊x⌋)

}
.

Hence,

f(x+ ǫ)− f(x)

ǫ
= f(⌊x⌋+ 1)− f(⌊x⌋).

Taking the limit as ǫ → 0+ yields the right-derivative of f :

D+f(x) := lim
ǫ→0+

f(x+ ǫ)− f(x)

ǫ
= f(⌊x⌋+ 1)− f(⌊x⌋).

Now, suppose that 0 ≤ y < z. Then 0 ≤ ⌊y⌋ ≤ ⌊z⌋, and
thus since {f(ξ)− f(ξ − 1)}∞ξ=1 is non-decreasing,

D+f(y) = f(⌊y⌋+ 1)− f(⌊y⌋)
≤ f(⌊z⌋+ 1)− f(⌊z⌋) = D+f(z).

Hence, D+f is non-decreasing. It’s also clear from (5) that

f is a continuous function. Thus, we have shown that f

is continuous, right-differentiable, and its right-derivative

is non-decreasing. These three conditions are sufficient for

convexity (see Chapter 5 of [9]).

Equation (5) implies that f in Lemma 3.1 is continuous

and piecewise linear. Note also that f can only change

slope at the integer points x = 1, 2, 3, . . .

Our goal is to use Lemma 3.1 to prove that E{C(·)}
is a convex function. To do this, we need to show that

E{C(·)} satisfies equation (5).

Lemma 3.2. The expected cost E{C(·)} can be written as

E{C(p)} = E{C(⌊p⌋)}+ (p− ⌊p⌋)
×
{
E{C(⌊p⌋+ 1)} − E{C(⌊p⌋)}

}
,

for all p ∈ [0,∞).

Proof. Note that {0, . . . ,min(N, ⌊p⌋)} and {⌊p⌋+1, . . . , N}
form a partition of {0, . . . , N}. Hence, for each p ∈ [0,∞),

E{C(p)} = nαp+ β

n∑

j=1

N∑

k=0

θjk min(k, p)

+ γ
n∑

j=1

N∑

k=0

θjk max(k − p, 0).

Therefore,

E{C(p)} = nαp+ β

n∑

j=1

min(N,⌊p⌋)
∑

k=0

θjkk

+ β
n∑

j=1

N∑

k=⌊p⌋+1

θjkp

+ γ
n∑

j=1

N∑

k=⌊p⌋+1

θjk(k − p).

(6)

It follows that

E{C(⌊p⌋)} = nα⌊p⌋+ β

n∑

j=1

min(N,⌊p⌋)
∑

k=0

θjkk

+ β
n∑

j=1

N∑

k=⌊p⌋+1

θjk⌊p⌋

+ γ
n∑

j=1

N∑

k=⌊p⌋+1

θjk(k − ⌊p⌋).

(7)

Replacing p in (6) by ⌊p⌋+ p− ⌊p⌋ gives

E{C(p)} = nα⌊p⌋+ nα(p− ⌊p⌋) + β
n∑

j=1

min(N,⌊p⌋)
∑

k=0

θjkk

+ β

n∑

j=1

N∑

k=⌊p⌋+1

θjk⌊p⌋

+ β

n∑

j=1

N∑

k=⌊p⌋+1

θjk(p− ⌊p⌋)

+ γ

n∑

j=1

N∑

k=⌊p⌋+1

θjk(k − ⌊p⌋)

− γ

n∑

j=1

N∑

k=⌊p⌋+1

θjk(p− ⌊p⌋).

Hence, by equation (7),

E{C(p)} = E{C(⌊p⌋)}+ (p− ⌊p⌋)

×
{

nα+ (β − γ)

n∑

j=1

N∑

k=⌊p⌋+1

θjk

}

.
(8)

4

Furthermore,

E{C(⌊p⌋+ 1)} = nα+ nα⌊p⌋

+ β

n∑

j=1

N∑

k=0

θjk min(k, ⌊p⌋+ 1)

+ γ

n∑

j=1

N∑

k=0

θjk max(k − ⌊p⌋ − 1, 0),

from which we have

E{C(⌊p⌋+ 1)}

= nα+ nα⌊p⌋+ β

n∑

j=1

min(N,⌊p⌋)
∑

k=0

θjkk

+ β

n∑

j=1

N∑

k=⌊p⌋+1

θjk(⌊p⌋+ 1)

+ γ

n∑

j=1

N∑

k=⌊p⌋+1

θjk(k − ⌊p⌋ − 1)

= E{C(⌊p⌋)}+ nα+ (β − γ)
n∑

j=1

N∑

k=⌊p⌋+1

θjk.

Thus,

E{C(⌊p⌋+ 1)} − E{C(⌊p⌋)}

= nα+ (β − γ)

n∑

j=1

N∑

k=⌊p⌋+1

θjk.
(9)

Combining (8) and (9) completes the proof.

On the basis of Lemmas 3.1 and 3.2, we now show that

E{C(·)} is a convex function.

Theorem 3.1. The expected cost E{C(·)} is convex on

the interval [0,∞).

Proof. It follows from (9) in the proof of Lemma 3.2 that

for each integer ξ ≥ 1,

E{C(ξ+1)}−E{C(ξ)} = nα+(β−γ)

n∑

j=1

N∑

k=ξ+1

θjk (10)

and

E{C(ξ)} −E{C(ξ − 1)} = nα+ (β − γ)

n∑

j=1

N∑

k=ξ

θjk. (11)

Recall that the probabilities θjk are non-negative. Also

recall that β < γ. Thus,

(β − γ)

n∑

j=1

N∑

k=ξ

θjk ≤ (β − γ)

n∑

j=1

N∑

k=ξ+1

θjk.

Combining this inequality with (10) and (11) yields

E{C(ξ)} − E{C(ξ − 1)} ≤ E{C(ξ + 1)} − E{C(ξ)}.

The convexity of E{C(·)} then follows immediately from

Lemmas 3.1 and 3.2.

4. Solving the Fleet Composition Problem

In this section, we will develop an algorithm for solv-

ing the fleet composition problem introduced in Section 2.

This algorithm is based on a novel combination of two

classical optimization tools—dynamic programming and

golden section search.

For fixed l ∈ {1, . . . ,m} and ξ ∈ Z
+∪{0}, consider the

following subproblem of Problem (2):

Minimize
p1,...,pl

l∑

i=1

E{Ci(pi)}

subject to
l∑

i=1

pi ≤ ξ

p1, . . . , pl ∈ Z
+ ∪ {0}

(12)

Let gl(ξ) denote the optimal cost of Problem (12). Then

clearly,

g1(ξ) = min
p1∈{0,...,ξ}

E{C1(p1)}. (13)

If l ≥ 2, then it follows from the well-known principle of

optimality (see [2]) that

gl(ξ) = min
p1,...,pl∈Z

+∪{0}
p1+···+pl≤ξ

{ l∑

i=1

E{Ci(pi)}
}

= min
pl∈{0,...,ξ}

min
p1,...,pl−1∈Z

+∪{0}
p1+···+pl−1≤ξ−pl

{ l∑

i=1

E{Ci(pi)}
}

= min
pl∈{0,...,ξ}

{

E{Cl(pl)}

+ min
p1,...,pl−1∈Z

+∪{0}
p1+···+pl−1≤ξ−pl

l−1∑

i=1

E{Ci(pi)}
}

= min
pl∈{0,...,ξ}

{

E{Cl(pl)}+ gl−1(ξ − pl)
}

. (14)

5

We define g0 := 0. Then equation (14) reduces to equa-

tion (13) when l = 1.

Starting with g0 = 0, we can use equation (14) with

l = 1 to calculate g1(ξ) for each ξ = 0, . . . , pmax. Then

we can use (14) with l = 2 to calculate g2(ξ) for each

ξ = 0, . . . , pmax. Continuing in this way, we will eventu-

ally obtain gm(pmax), the optimal cost of Problem (2). Our

algorithm for solving Problem (2) is based on this idea. A

key part of our algorithm is an efficient method for per-

forming the minimization on the right-hand side of (14).

We now prove several fundamental results.

Theorem 4.1. For each integer l = 0, . . . ,m, the sequence

{gl(ξ)− gl(ξ − 1)}∞ξ=1 is non-decreasing.

Proof. Since g0 = 0, the result is clearly true for l = 0.

Suppose now that {gl(ξ)−gl(ξ−1)}∞ξ=1 is non-decreasing

for some l ∈ {0, . . . ,m−1}. We will show that the sequence

{gl+1(ξ)− gl+1(ξ − 1)}∞ξ=1 is also non-decreasing.

Let ξ ≥ 1 be a fixed integer. From the recurrence

equation (14), we have

gl+1(ξ − 1) = min
p∈{0,...,ξ−1}

{

E{Cl+1(p)}+ gl(ξ − 1− p)
}

.

Let p∗ ∈ {0, . . . , ξ − 1} denote the minimizing element on

the right-hand side of this equation. Then

gl+1(ξ − 1) = E{Cl+1(p
∗)} + gl(ξ − 1− p∗).

Hence,

gl+1(ξ + 1) + gl+1(ξ − 1)

= min
p∈{0,...,ξ+1}

{

E{Cl+1(p)}+ gl(ξ + 1− p)
}

+ E{Cl+1(p
∗)}+ gl(ξ − 1− p∗)

= min
p∈{0,...,ξ+1}

{

E{Cl+1(p)}+ gl(ξ + 1− p)

+ E{Cl+1(p
∗)}+ gl(ξ − 1− p∗)

}

= min{Γ1,Γ2,Γ3}, (15)

where

Γ1 := min
p∈{0,...,p∗}

{

E{Cl+1(p)}+ gl(ξ + 1− p)

+ E{Cl+1(p
∗)} + gl(ξ − 1− p∗)

}

,

Γ2 := E{Cl+1(p
∗ + 1)}+ gl(ξ − p∗)

+ E{Cl+1(p
∗)} + gl(ξ − 1− p∗),

Γ3 := min
p∈{p∗+2,...,ξ+1}

{

E{Cl+1(p)}+ gl(ξ + 1− p)

+ E{Cl+1(p
∗)}+ gl(ξ − 1− p∗)

}

.

Now, for each p = 0, . . . , p∗, we have ξ + 1 − p > ξ − p∗.

Thus, by our inductive hypothesis,

gl(ξ + 1− p)− gl(ξ − p) ≥ gl(ξ − p∗)− gl(ξ − 1− p∗),

for each p = 0, . . . , p∗. Rearranging this inequality gives

gl(ξ + 1− p) + gl(ξ − 1− p∗) ≥ gl(ξ − p) + gl(ξ − p∗).

Thus,

Γ1 = min
p∈{0,...,p∗}

{

E{Cl+1(p)}+ gl(ξ + 1− p)

+ E{Cl+1(p
∗)} + gl(ξ − 1− p∗)

}

≥ min
p∈{0,...,p∗}

{

E{Cl+1(p)}+ gl(ξ − p)

+ E{Cl+1(p
∗)} + gl(ξ − p∗)

}

≥ min
p∈{0,...,ξ}

{

E{Cl+1(p)} + gl(ξ − p)
}

+ min
p∈{0,...,ξ}

{

E{Cl+1(p)}+ gl(ξ − p)
}

= 2gl+1(ξ). (16)

For Γ2, we have

Γ2 = E{Cl+1(p
∗ + 1)}+ gl(ξ − p∗)

+ E{Cl+1(p
∗)}+ gl(ξ − 1− p∗)

= E{Cl+1(p
∗ + 1)}+ gl(ξ − (p∗ + 1))

+ E{Cl+1(p
∗)}+ gl(ξ − p∗)

≥ min
p∈{0,...,ξ}

{

E{Cl+1(p)}+ gl(ξ − p)
}

+ min
p∈{0,...,ξ}

{

E{Cl+1(p)}+ gl(ξ − p)
}

= 2gl+1(ξ). (17)

Recall from Theorem 3.1 that E{Cl+1(·)} is convex. Hence,
it follows from Lemmas 3.1 and 3.2 that for each integer

p ≥ 1,

E{Cl+1(p)} − E{Cl+1(p− 1)}
≤ E{Cl+1(p+ 1)} − E{Cl+1(p)}.

6

Thus, if p ≥ p∗ + 1, then

E{Cl+1(p
∗ + 1)} − E{Cl+1(p

∗)}
≤ E{Cl+1(p)} − E{Cl+1(p− 1)}

and so

E{Cl+1(p)}+E{Cl+1(p
∗)}

≥ E{Cl+1(p− 1)}+ E{Cl+1(p
∗ + 1)}.

Consequently,

Γ3 = min
p∈{p∗+2,...,ξ+1}

{

E{Cl+1(p)}+ gl(ξ + 1− p)

+ E{Cl+1(p
∗)}+ gl(ξ − 1− p∗)

}

≥ min
p∈{p∗+2,...,ξ+1}

{

E{Cl+1(p− 1)}+ gl(ξ + 1− p)

+ E{Cl+1(p
∗ + 1)}+ gl(ξ − 1− p∗)

}

= min
p∈{p∗+1,...,ξ}

{

E{Cl+1(p)}+ gl(ξ − p)

+ E{Cl+1(p
∗ + 1)}+ gl(ξ − (p∗ + 1))

}

≥ min
p∈{0,...,ξ}

{

E{Cl+1(p)}+ gl(ξ − p)
}

+ min
p∈{0,...,ξ}

{

E{Cl+1(p)}+ gl(ξ − p)
}

= 2gl+1(ξ). (18)

Combining inequalities (16)-(18) with (15) gives

gl+1(ξ + 1) + gl+1(ξ − 1) ≥ 2gl+1(ξ),

and so

gl+1(ξ)− gl+1(ξ − 1) ≤ gl+1(ξ + 1)− gl+1(ξ).

Since ξ ≥ 1 was chosen arbitrarily, this shows that the

sequence {gl+1(ξ)−gl+1(ξ−1)}∞ξ=1 is non-decreasing. The

result then follows by induction.

We have already defined gl(ξ) for each non-negative

integer ξ. We now extend the domain of gl to [0,∞) as

follows:

gl(x) = gl(⌊x⌋) + (x− ⌊x⌋) ·
{
gl(⌊x⌋+1)− gl(⌊x⌋)

}
, (19)

for each x ∈ [0,∞). This extended function is clearly

piecewise linear and satisfies condition (5) in Lemma 3.1.

We now show that it is also convex.

Theorem 4.2. For each l = 0, . . . ,m, the extended func-

tion gl is convex on [0,∞).

Proof. Recall from Theorem 4.1 that {gl(ξ)−gl(ξ−1)}∞ξ=1

is non-decreasing. Hence, it follows from equation (19) and

Lemma 3.1 that gl is convex.

Recall the recurrence equation (14):

gl(ξ) = min
pl∈{0,...,ξ}

{
E{Cl(pl)}+ gl−1(ξ − pl)

}

. (20)

To calculate gl(ξ) using this equation, we need to solve the

minimization problem on the right-hand side. This can be

done by simply evaluating E{Cl(pl)}+gl−1(ξ−pl) at each

pl = 0, . . . , ξ and then identifying the optimal solution.

However, this brute force approach is very inefficient when

ξ is large. We will now describe a superior approach.

Suppose that we relax the integer constraint on the

right-hand side of equation (20). Then we obtain the fol-

lowing optimization problem:

Minimize
p

hl(p, ξ) := E{Cl(p)}+ gl−1(ξ − p)

subject to 0 ≤ p ≤ ξ
(21)

We have the following important result.

Theorem 4.3. Let ξ ≥ 0 in Problem (21) be an integer.

If p∗ is a solution of Problem (21), then ⌊p∗⌋ and ⌈p∗⌉ are

also solutions of Problem (21).

Proof. If p∗ ∈ Z, then p∗ = ⌊p∗⌋ = ⌈p∗⌉ and the result

follows immediately. Hence, we assume that p∗ /∈ Z. This

means that p∗ ∈ (ς − 1, ς), where ς = ⌈p∗⌉ = ⌊p∗⌋+ 1 and

ς − 1 = ⌊p∗⌋.
By Lemma 3.2, we know that for p ∈ [ς − 1, ς],

E{Cl(p)} = E{Cl(ς − 1)}+ (p− ς + 1)

×
{
E{Cl(ς)} − E{Cl(ς − 1)}

}
. (22)

If p ∈ (ς−1, ς), then ξ−ς < ξ−p < ξ−ς+1, so ⌊ξ−p⌋ = ξ−ς

(recall that ξ is an integer). Thus, by equation (19),

gl−1(ξ − p) = gl−1(ξ − ς) + (ς − p)

×
{
gl−1(ξ − ς + 1)− gl−1(ξ − ς)

}
(23)

for p ∈ [ς − 1, ς]. Combining equations (22) and (23) gives

hl(p, ξ) = E{Cl(p)}+ gl−1(ξ − p) = µp+ω, p ∈ [ς − 1, ς],

7

where

µ := E{Cl(ς)}−E{Cl(ς−1)}−gl−1(ξ− ς+1)+gl−1(ξ− ς)

and

ω := E{Cl(ς)}+ gl−1(ξ − ς) + ς ·
{
E{Cl(ς − 1)}

− E{Cl(ς)}+ gl−1(ξ − ς + 1)− gl−1(ξ − ς)
}
.

This shows that hl(·, ξ) is a linear function with slope µ

on [ς − 1, ς].

Now, since p∗ ∈ (ς − 1, ς) is a minimizer of hl(·, ξ), we
must have µ = 0. Hence,

hl(p
∗, ξ) = hl(⌊p∗⌋, ξ) = hl(⌈p∗⌉, ξ) = ω.

Since p∗ is a solution of Problem (21), this shows that ⌊p∗⌋
and ⌈p∗⌉ are also solutions.

Theorem 4.3 ensures that Problem (21) has an integer

solution whenever ξ is an integer. Hence, for each non-

negative integer ξ ≥ 0,

gl(ξ) = min
p∈{0,...,ξ}

{
E{Cl(p)}+ gl−1(ξ − p)

}

= min
p∈{0,...,ξ}

hl(p, ξ) = min
p∈[0,ξ]

hl(p, ξ).

It follows that the integer constraint on the right-hand side

of equation (20) is redundant, and thus we can compute

gl(ξ) by solving Problem (21).

We now show that hl(·, ξ) is a convex function. This

is an important result that will enable us to solve Prob-

lem (21) in an efficient manner.

Theorem 4.4. For each l ∈ {1, . . . ,m} and ξ ∈ Z
+∪{0},

the objective function hl(·, ξ) in Problem (21) is convex on

the interval [0, ξ].

Proof. Recall from Theorems 3.1 and 4.2 that E{Cl(·)}
and gl−1(·) are convex. Thus, if y ∈ [0, ξ] and z ∈ [0, ξ],

then for each λ ∈ [0, 1],

E{Cl(λy + (1− λ)z)} ≤ λE{Cl(y)} + (1− λ)E{Cl(z)}

and

gl−1(ξ − λy − (1− λ)z) = gl−1(λ(ξ − y) + (1− λ)(ξ − z))

≤ λgl−1(ξ − y) + (1− λ)gl−1(ξ − z).

Therefore,

hl(λy + (1− λ)z, ξ)

= E{Cl(λy + (1− λ)z)}+ gl−1(ξ − λy − (1− λ)z)

≤ λE{Cl(y)}+ (1 − λ)E{Cl(z)}
+ λgl−1(ξ − y) + (1− λ)gl−1(ξ − z)

= λhl(y, ξ) + (1− λ)hl(z, ξ).

This shows that hl(·, ξ) is convex on [0, ξ], as required.

It follows from Theorem 4.4 that Problem (21) is a one-

dimensional convex optimization problem. Such problems

can be solved efficiently using the golden section method

(see [1, 8]).

The golden section method works by gradually reduc-

ing the interval of uncertainty—a known interval that con-

tains at least one optimal solution. This is done by eval-

uating the cost function at certain test points and then

exploiting convexity.

Let I = [a, b] be a given interval of uncertainty for

Problem (21) (initially, we have a = 0 and b = ξ). In the

golden section method, we define two test points τ1 and τ2

as follows:

τ1 = b− r|I| = b− r(b − a)

and

τ2 = a+ r|I| = a+ r(b − a),

where r is the golden ratio defined by

r :=

√
5− 1

2
≈ 0.618.

Note that τ1 < τ2 and r2 + r = 1.

There are two cases to consider:

• Case 1: hl(τ1, ξ) < hl(τ2, ξ)

• Case 2: hl(τ1, ξ) ≥ hl(τ2, ξ)

Recall from Theorem 4.4 that hl(·, ξ) is convex. Thus, if

Case 1 occurs, then any optimal solution of Problem (21)

must lie in the interval [a, τ2]. This means that the interval

of uncertainty can be reduced to

I ′ = [a′, b′] = [a, τ2].

The test points for this new interval of uncertainty are

τ ′1 = b′ − r|I ′| = τ2 − r(τ2 − a)

8

and

τ ′2 = a′ + r|I ′| = a+ r(τ2 − a) = a+ r2(b− a)

= a+ (1 − r)(b − a) = b− r(b − a) = τ1.

Since τ ′2 coincides with τ1, we only need to compute τ ′1.

Now, if Case 2 occurs, then the interval of uncertainty

can be reduced to

I ′ = [a′, b′] = [τ1, b].

The new test points are

τ ′1 = b′ − r|I ′| = b− r(b − τ1) = b− r2(b− a)

= b− (1− r)(b − a) = a+ r(b − a) = τ2

and

τ ′2 = a′ + r|I ′| = τ1 + r(b − τ1).

In this case, τ ′1 coincides with τ2, so we only need to com-

pute τ ′2.

By repeating these steps with I replaced with I ′, we

can further reduce the interval of uncertainty. The golden

section method keeps iterating in this way until the length

of the interval of uncertainty is sufficiently small. The

question that immediately arises is: How small is “suffi-

ciently small”? That is, how many golden section iter-

ations are needed to solve Problem (21)? The following

result answers this question.

Theorem 4.5. Let ξ in Problem (21) be a positive integer,

and let M be any integer such that

M > − ln ξ

ln r
. (24)

Furthermore, let [aM , bM] denote the final interval of un-

certainty after M golden section iterations are applied to

Problem (21). Then ⌈aM⌉ is a solution of Problem (21).

Proof. It’s easy to prove that

|I ′| = b′ − a′ = r(b − a).

Thus, each golden section iteration reduces the length of

the interval of uncertainty by a factor of r. Since the initial

interval is [0, ξ],

bM − aM = rMξ.

From (24), we obtain

rM <
1

ξ
.

Therefore,

bM − aM = rM ξ < 1. (25)

Now, let p∗ denote a solution of Problem (21) in the inter-

val of uncertainty [aM , bM]. We know from Theorem 4.3

that both ⌊p∗⌋ and ⌈p∗⌉ are also solutions of Problem (21).

Thus, to complete the proof, we just need to show that ei-

ther ⌈aM⌉ = ⌊p∗⌋ or ⌈aM⌉ = ⌈p∗⌉.
Since aM ≤ p∗ ≤ bM , we have

⌈aM⌉ ≤ ⌈p∗⌉.

Thus, either ⌈aM⌉ = ⌈p∗⌉ or ⌈aM⌉ < ⌈p∗⌉. If ⌈aM⌉ = ⌈p∗⌉,
then the proof is complete. Therefore, we assume that

⌈aM⌉ < ⌈p∗⌉. By (25),

p∗ ≤ bM < aM + 1 ≤ ⌈aM⌉+ 1 (26)

and so

⌈aM⌉ < ⌈p∗⌉ ≤ ⌈aM⌉+ 1.

Hence, we must have

⌈p∗⌉ = ⌈aM⌉+ 1. (27)

Now, if p∗ is an integer, then

p∗ = ⌈p∗⌉ = ⌈aM⌉+ 1,

which contradicts (26). Thus, p∗ cannot be an integer.

This implies that

⌈p∗⌉ = ⌊p∗⌋+ 1. (28)

Combining (27) and (28) yields ⌈aM⌉ = ⌊p∗⌋.

Let

σl(ξ) := argmin
p∈{0,...,ξ}

{
E{Cl(p)}+ gl−1(ξ − p)

}

= argmin
p∈{0,...,ξ}

hl(p, ξ).

Then clearly,

gl(ξ) = hl(σ(ξ), ξ).

9

The following result is an immediate consequence of The-

orems 4.3 and 4.5.

Corollary 4.1. Let ξ in Problem (21) be a positive inte-

ger, and let M be any integer such that

M > − ln ξ

ln r
.

Furthermore, let [aM , bM] denote the final interval of un-

certainty after M golden section iterations are applied to

Problem (21). Then σl(ξ) = ⌈aM⌉ and

gl(ξ) = hl(⌈aM⌉, ξ).

Proof. It follows from Theorems 4.3 and 4.5 that

gl(ξ) = min
p∈{0,...,ξ}

hl(p, ξ) = min
p∈[0,ξ]

hl(p, ξ) = hl(⌈aM⌉, ξ).

Furthermore,

σl(ξ) = argmin
p∈{0,...,ξ}

hl(p, ξ) = ⌈aM⌉.

This completes the proof.

Let l ∈ {1, . . . ,m} and suppose that gl−1(ξ) is known

for each ξ = 0, . . . , pmax. Then the value of gl−1 at non-

integer points can be computed using equation (19). On

the basis of Corollary 4.1, we propose the following algo-

rithm for computing gl(ξ) and σl(ξ).

Algorithm 4.1. (Computes gl(ξ) and σl(ξ).)

1. If ξ = 0, then return σl(ξ) = 0 and

gl(ξ) = hl(0, 0) = E{Cl(0)}+ gl−1(0).

Otherwise, go to Step 2.

2. Set

M =

⌊

− ln ξ

ln r

⌋

+ 1. (29)

3. Apply the golden section method to Problem (21) for

M iterations. Let [aM , bM] denote the final interval

of uncertainty.

4. Return σl(ξ) = ⌈aM⌉ and

gl(ξ) = hl(⌈aM⌉, ξ) = E{Cl(⌈aM⌉)}+gl−1(ξ−⌈aM⌉).

ξ M + 2

10 7
102 12
103 17
104 22
105 26

Table 2: When ξ > 0, Algorithm 4.1 performs M + 2 expected cost
evaluations, where M is given by equation (29).

Step 3 of Algorithm 4.1 involves evaluating the cost

function hl(·, ξ) at various test points. Since hl(·, ξ) de-

pends on gl−1, Algorithm 4.1 will only work correctly if

gl−1(ξ) is known for each ξ = 0, . . . , pmax. Thus, Algo-

rithm 4.1 must be applied recursively: first for l = 1, then

for l = 2, and so on until l = m.

If ξ = 0, then Algorithm 4.1 only needs to compute

hl(0, 0) = E{Cl(0)}+ gl−1(0). This requires a single eval-

uation of E{Cl(·)} at p = 0. In this case, we say that

Algorithm 4.1 performs 1 expected cost evaluation.

If ξ > 0, then Algorithm 4.1 applies M golden section

iterations to Problem (21). The first golden section it-

eration requires two expected cost evaluations, and every

subsequent iteration requires one expected cost evaluation

(recall that one of the new test points coincides with an

old test point). Thus, Algorithm 4.1 will perform M + 1

expected cost evaluations in Step 3, and 1 expected cost

evaluation in Step 4. This amounts to M+2 expected cost

evaluations in total. Note that M +2 is small even when ξ

is extremely large; see Table 2.

The next result shows that gl(ξ) can sometimes be com-

puted without invoking Algorithm 4.1.

Theorem 4.6. If gl(ξ
′) = gl(ξ

′ − 1) for some positive

integer ξ′ > 0, then gl(ξ) = gl(ξ
′) and σl(ξ) = σl(ξ

′) for

each integer ξ > ξ′.

Proof. Let l ∈ {1, . . . ,m} be fixed. It’s clear that replac-

ing ξ with ξ+1 in Problem (12) enlarges the feasible region.

Thus,

gl(ξ) = min
p1,...,pl∈Z

+∪{0}
p1+···+pl≤ξ

{ l∑

i=1

E{Ci(pi)}
}

≥ min
p1,...,pl∈Z

+∪{0}
p1+···+pl≤ξ+1

{ l∑

i=1

E{Ci(pi)}
}

= gl(ξ + 1).

This shows that the sequence {gl(ξ)}∞ξ=0 is non-increasing.

10

Now, suppose that gl(ξ
′) = gl(ξ

′ − 1) for some integer

ξ′ > 0. Then

gl(ξ
′)− gl(ξ

′ − 1) = 0. (30)

Furthermore, since {gl(ξ)}∞ξ=0 is non-increasing, we know

that for each integer ξ ≥ 1,

gl(ξ)− gl(ξ − 1) ≤ 0. (31)

Recall from Theorem 4.1 that {gl(ξ)−gl(ξ−1)}∞ξ=1 is non-

decreasing. Hence, it follows from (30) and (31) that for

each integer ξ > ξ′,

0 = gl(ξ
′)− gl(ξ

′ − 1) ≤ gl(ξ)− gl(ξ − 1) ≤ 0.

Therefore, gl(ξ) = gl(ξ− 1). Hence, gl(ξ) = gl(ξ
′) for each

integer ξ > ξ′.

Note that gm(pmax) is the optimal cost of Problem (2).

Furthermore, by the principle of optimality, it follows that

p∗m = σm(pmax) is the optimal number of type-m vehi-

cles, p∗m−1 = σm−1(pmax − p∗m) is the optimal number of

type-(m − 1) vehicles, p∗m−2 = σm−2(pmax − p∗m − p∗m−1)

is the optimal number of type-(m− 2) vehicles, and so on.

Thus, computing gl(ξ) and σl(ξ) is the key to solving the

fleet composition problem.

The algorithm described below is based on this idea.

The algorithm starts by invoking Algorithm 4.1 to com-

pute g1(ξ) and σ1(ξ) for each ξ = 0, . . . , pmax. If at any

stage the value of g1 is the same at two consecutive inte-

gers, then the remaining values of g1 and σ1 are recorded

immediately, as shown in Theorem 4.6. After computing

g1, the algorithm moves on to compute gl for l ≥ 2 in a

similar manner. Finally, the algorithm backtracks using σl

to determine the optimal number of vehicles for each ve-

hicle type.

Algorithm 4.2. (Finds an optimal solution p∗1, . . . , p
∗
m of

Problem (2).)

1. If m > 1, then set 0 → ξ and 1 → l. Otherwise, set

pmax → ξ and 1 → l.

2. Use Algorithm 4.1 to compute gl(ξ) and σl(ξ).

3. If 0 < ξ < pmax and gl(ξ) = gl(ξ − 1), then for each

integer κ = ξ + 1, . . . , pmax, set gl(ξ) → gl(κ) and

σl(ξ) → σl(κ) before going to Step 5. Otherwise, go

to Step 4.

4. If ξ < pmax, then set ξ+1 → ξ and return to Step 2.

Otherwise, go to Step 5.

5. If l ≤ m−2, then set 0 → ξ and l+1 → l and return

to Step 2. Otherwise, if l = m−1, then set pmax → ξ

and l + 1 → l and return to Step 2. Otherwise, go

to Step 6.

6. For each l = m, . . . , 1, compute

ξl = pmax −
m∑

κ=l+1

p∗κ

and

p∗l = σl(ξl).

7. Stop: p∗1, . . . , p
∗
m is a solution of Problem (2).

In Step 2 of Algorithm 4.2, we call Algorithm 4.1 to

compute gl(ξ) and σl(ξ). This step is performed for ev-

ery l = 1, . . . ,m and potentially for every ξ = 0, . . . , pmax.

Recall that Algorithm 4.1 performs 1 expected cost eval-

uation if ξ = 0, and M + 2 expected cost evaluations if

ξ > 0, where M is defined by equation (29). Hence, an

upper bound for the total number of expected cost evalu-

ations in Algorithm 4.2 is

M̄ : = m

[

1 +

pmax∑

ξ=1

(M + 2)

]

= m+ 3mpmax +m

pmax∑

ξ=1

⌊

− ln ξ

ln r

⌋

. (32)

As we will see in the next section, Algorithm 4.2 is far

more efficient than the brute force approach of evaluating

the cost function at every feasible point.

5. Numerical Results and Discussion

In this section, we present some numerical results from

using Algorithm 4.2 to solve various classes of random test

problems. We first consider problems in which the vehicle

requirements are deterministic; in this case, both Algo-

rithm 4.2 and the algorithm developed in [7] are applica-

ble. We compare the performance of these two algorithms

on different classes of deterministic problems. We then

consider more realistic problems in which the vehicle re-

quirements follow a binomial distribution. Such problems

cannot be solved using the algorithm in [7]. The results in

11

this section were produced on a MacBook Pro with 2.2GHz

Intel i7 CPU.

5.1. Deterministic Vehicle Requirements

Suppose that qij , the number of type-i vehicles required

during period j, is known. Then for each i = 1, . . . ,m and

j = 1, . . . , n,

θijk = P (qij = k) =







1, if k = qij ,

0, if k 6= qij .

In this case, Problem (2) is identical to the determinis-

tic fleet composition problem considered in reference [7].

Thus, the algorithm developed in [7] is applicable.

We wrote a Fortran program that applies Algorithm 4.2

and the algorithm in [7] to the same set of test problems.

The test problems are created by randomly choosing the

costs and vehicle demands as follows:

αi ∈ [0, 100],

βi ∈ [0, 100],

γi ∈ (αi + βi, 2αi + 2βi],

qij ∈ {0, . . . , pmax}.

Note that the problem dimensions m, n, and pmax are

fixed during each run of the program. Choosing γi to be

greater than αi + βi ensures that the cost of operating an

owned vehicle for one period is less than the cost of hiring

the same vehicle for one period—if this doesn’t hold, then

the optimal solution of the fleet composition problem is

p∗1 = · · · = p∗m = 0.

We ran the program with 10 different sets of problem

dimensions. During each run, the program generated and

solved 1000 random problems. In all cases, the optimal

cost from Algorithm 4.2 matched the optimal cost from

the old algorithm in [7]. The average number of expected

cost evaluations (AE) used by each algorithm is shown in

Table 3. Notice that, on average, Algorithm 4.2 uses about

75% fewer cost evaluations than the old algorithm. Thus,

Algorithm 4.2 is a major improvement.

5.2. Stochastic Vehicle Requirements: Small Problems

We now consider problems in which the vehicle require-

ments are stochastic. For these problems, the algorithm

in [7] is not applicable. Thus, we will instead compare Al-

gorithm 4.2 to the brute force approach of evaluating the

cost function at every feasible point.

We suppose that the vehicle requirements qij follow a

binomial distribution:

θijk = P (qij = k) =

(
pmax

k

)

ρkij(1− ρij)
pmax−k, (33)

where k ∈ {0, . . . , pmax} and ρij ∈ [0, 1] is a given param-

eter.

For numerical testing, we wrote a Fortran program that

uses Algorithm 4.2 to solve a series of test problems with

binomial vehicle requirements (in each problem, qij is dis-

tributed according to (33)). The program uses brute force

to verify the solution obtained by Algorithm 4.2. The

problem dimensions m, n, and pmax are fixed during each

run of the program, but the other parameters αi ∈ [0, 100],

βi ∈ [0, 100], γi ∈ (αi + βi, 2αi + 2βi], and ρij ∈ [0, 1]

are chosen randomly to generate the different test prob-

lems. Since pmax is fixed, each random problem generated

by the program has the same number of feasible points

(FP). Hence, the total number of expected cost evalua-

tions needed for brute force verification is

AE (BF) = FP ×m.

We ran our program with 10 different sets of “small” prob-

lem dimensions (brute force is only practical for small

problems). During each run, the program generated and

solved 1000 random problems. For each problem, the so-

lution obtained by Algorithm 4.2 agreed with the solution

obtained by brute force. Our numerical results are sum-

marized in Table 4, where M̄ is the upper bound defined

by equation (32) and AE is rounded up to the nearest in-

teger. Note that Algorithm 4.2 easily outperforms brute

force, as expected.

5.3. Stochastic Vehicle Requirements: Large Problems

Problems of small dimension can be easily solved using

brute force. However, the brute force approach quickly be-

comes impractical when the problem dimensions increase.

To demonstrate Algorithm 4.2’s performance on large-scale

problems, we disabled the brute force verification proce-

dure in our program, and then ran the modified program

with 10 sets of “large” problem dimensions. Each run of

the program generated and solved 100 test problems. As

12

Dimensions

m n pmax AE (Alg. 4.2) AE (ref. [7]) AE (Alg. 4.2)/AE (ref. [7])

5 50 50 1,407 4,025 34.96%
5 50 100 3,260 15,526 21.00%
10 50 50 3,578 10,655 33.58%
10 50 100 8,301 41,281 20.11%
15 50 50 5,749 17,285 33.26%
15 50 100 13,344 67,036 19.91%
20 50 50 7,918 23,915 33.11%
20 50 100 18,382 92,791 19.81%
25 50 50 10,089 30,545 33.03%
25 50 100 23,423 118,546 19.76%

Table 3: Comparing Algorithm 4.2 with the old algorithm in [7]. Note that AE is rounded up to the nearest integer.

Dimensions

m n pmax AE (Alg. 4.2) M̄ FP AE (BF) AE (Alg. 4.2)/AE (BF)

1 20 30 10 231 31 31 32.2581%
1 50 50 11 435 51 51 21.5686%
2 20 30 112 462 496 992 11.2903%
2 50 50 199 870 1,326 2,652 7.5038%
3 20 30 305 693 5,456 16,368 1.8634%
3 50 50 565 1,305 23,426 70,278 0.8040%
4 20 30 534 924 46,376 185,504 0.2879%
4 50 50 988 1,740 316,251 1,265,004 0.0781%
5 20 30 761 1,155 324,632 1,623,160 0.0469%
5 50 50 1,418 2,175 3,478,761 17,393,805 0.0082%

Table 4: Numerical results from using Algorithm 4.2 to solve 1000 small-scale fleet composition problems. Note that AE is rounded up to
the nearest integer.

before, the test problems were created by randomly select-

ing the parameters αi, βi, γi, and ρij . Table 5 gives the

average computation time (ACT) for Algorithm 4.2. The

algorithm’s efficiency is clearly evident here: on average, it

takes just 13 seconds to solve a fleet composition problem

with m = 200. Solving the same problem using brute force

would require days of computation.

References

[1] BazaraaMS, Sherali HD, Shetty CM. Nonlinear Programming:

Theory and Algorithms. 3rd ed. New Jersey: John Wiley; 2006.

[2] BellmanR. Dynamic Programming. Dover ed. New York: Dover

Publications; 2003.

[3] GhianiG, LaporteG, MusmannoR. Introduction to Logistics

Systems Planning and Control. Chichester: John Wiley; 2004.

[4] Gould J. The size and composition of a road transport fleet.

Operational Research Quarterly 1969; 20:81-92.

Dimensions

m n pmax AE M̄ ACT (secs)

10 100 50 3,575 4,350 0.0325
10 200 100 8,292 10,090 0.2906
25 100 50 10,110 10,875 0.0897
25 200 100 23,491 25,225 0.8474
50 100 50 20,950 21,570 0.1962
50 200 100 48,615 50,450 1.9515
100 100 50 42,627 43,500 0.4412
100 200 100 99,027 100,900 3.9658
200 100 50 86,055 87,000 1.5289
200 200 100 199,886 201,800 13.7035

Table 5: Average computation time for Algorithm 4.2. Note that
AE is rounded up to the nearest integer.

13

[5] Hoff A, AnderssonH, ChristiansenM, HasleG, Løkketangen A.

Industrial aspects and literature survey: Fleet composition and

routing. Computers & Operations Research 2010; 37:2041-2061.

[6] KirbyD. Is your fleet the right size? Operational Research

Quarterly 1959; 10:252.

[7] Loxton R, Lin Q. Optimal fleet composition via dynamic pro-

gramming and golden section search. Journal of Industrial &

Management Optimization 2011; 7:875-890.

[8] Luenberger DG, Ye Y. Linear and Nonlinear Programming. 3rd

ed. New York: Springer; 2008.

[9] Royden HL. Real Analysis. 3rd ed. New Jersey: Prentice Hall;

1988.

[10] Salhi S, Rand GK. Incorporating vehicle routing into the fleet

composition problem. European Journal of Operational Re-

search 1993; 66:313-330.

[11] Simms BW, Lamarre BG, Jardine AKS, Boudreau A. Optimal

buy, operate and sell policies for fleets of vehicles. European

Journal of Operational Research 1984; 15:183-195.

14

