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Analysis of Multicomponent Polynomial
Phase Signals
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Abstract—While the theory of estimation of monocomponent
polynomial phase signals is well established, the theoretical and
methodical treatment of multicomponent polynomial phase sig-
nals (mc-PPSs) is limited. In this paper, we investigate several
aspects of parameter estimation for mc-PPSs and derive the
Cramér-Rao bound. We show the limits of existing techniques
and then propose a nonlinear least squares (NLS) approach. We
also motivate the use the Nelder-Mead simplex algorithm for
minimizing the nonlinear cost function. The slight increase in
computational complexity is a tradeoff for improved mean square
error performance, which is evidenced by simulation results.

Index Terms—High ambiguity function (HAF), Nelder-Mead al-
gorithm, nonlinear least squares, nonstationary, polynomial phase
signals.

1. INTRODUCTION

N a large number of signal processing applications such as
I those in synthetic aperture radar (SAR) or in radio commu-
nications where the phase is continuously modulated, the signal
of interest is nonstationary. The most common model used in
parametric analysis of analytic and nonstationary signals is the
polynomial phase signal (PPS) model, which is motivated by
Weierstrass’ theorem. This theorem implies that for a finite du-
ration of observations, an arbitrary time-varying phase can be
well approximated by a polynomial of sufficient order.

Results in the literature on estimation of PPS parameters are
limited to the monocomponent case such as fast maximum like-
lihood (ML) [1], fast instantaneous frequency (IF) estimation
[18], the dechirping algorithm [7], the nonlinear instantaneous
least squares (NILS) [3], the well-known high ambiguity func-
tion (HAF) [19], [21]-[24], and its numerous extensions to time-
varying and random amplitudes [8], [10], [11], [15], [16], [29],
[31]. Other issues relating to monocomponent polynomial phase
signal (mono-PPS) analysis include aliasing [2], nonuniform
sampling schemes [13] and bootstrap model selection [32].
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However, in a number of practical situations such as anal-
ysis of a nonstationary signal in the presence of another non-
stationary jamming signal, the multicomponent model is more
relevant.

While some theoretical aspects of mc-PPSs have been inves-
tigated (see [8] and [9]), practical algorithms for mc-PPSs seem
to be absent from the literature. The main mc-PPS problems are
twofold. First, the interactions between the components, which
are often called cross-terms, give rise to undesired sinusoids in
the high-order instantaneous moment (HIM), which strongly af-
fects algorithms based on frequency estimation. Secondly, the
principle of demodulation of monocomponent PPSs no longer
works with mc-PPSs. In [20], an extension of the monocompo-
nent case was presented for mc-PPSs. However, this does not
solve the two main issues mentioned above. In [3], outlines of
an extension of the NILS algorithm to the multicomponent case
were given, but this method is computationally inefficient and
the optimal choice of the parameters is unknown. Motivated by
the Wigner—Hough transform, the integrated generalized ambi-
guity function was introduced in [5] to generalize the method in
[4]. This method estimates two successive phase order coeffi-
cients at once, as opposed to conventional HAF-based methods.
However, the algorithm is computationally demanding due to
the need to form a two-dimensional grid search for every pair of
phase coefficients. The most recent result for mc-PPSs is the
product high-order ambiguity function (PHAF) introduced in
[6] and [27]. This method exploits the property of the multilag
HIM, that is, the autoterms are complex sinusoids with frequen-
cies proportional to the product of lags. This property is not seen
by any other cross-term. Hence, using multiple sets of lags and
proper scaling, the autoterms can be enhanced which helps im-
prove the identification of highest order polynomial phase coef-
ficients. This method addressed the first issue in mc-PPS anal-
ysis, that is, cross-terms suppression. However, the estimation
of the lower order phase coefficients and the amplitudes has not
been successfully achieved. Besides, the analysis was given only
for the monocomponent case and the technique in the original
form can produce noticeable errors even in a noise-free condi-
tion.

In this paper, we quantitatively analyze the weakness of ex-
isting techniques when they are applied to mc-PPSs. Then we
propose an NLS approach for estimating mc-PPSs which we
believe is the most viable approach. When the noise is com-
plex circular white Gaussian, the NLS estimates are also ML.
Note that an ML method was also introduced in [9]. Our work
differs from that in several aspects. First, we introduce an im-
proved initialization technique which is more flexible and robust
than the original HAF-based technique. Secondly, we propose
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to use Nelder—Mead’s simplex algorithm to search for the solu-
tion of the highly nonlinear augmented NLS cost function. This
algorithm is more robust than the quasi-Newton method used in
[9]. Thirdly, we consider practical aspects such as implemen-
tation, numerical accuracy, and complexity of the algorithms.
The numerical examples given here are only for second- and
third-order mc-PPSs. However, extensions to higher orders are
straightforward.

II. SIGNAL MODEL AND THE CRAMER RAO BOUND

Consider a complex-valued K -component polynomial phase
signal embedded in complex circular white Gaussian noise with
variance o2

K

> s

=1

K
Qg eXp
k=1

The problem is as follows: given N samples of the received
signal y(t) at time instances %o, . . ., ,tn—1, find estimates of the
amplitudes a and the polynomlal phase coefficients wk, for
s K,m=0,1,..., M. We assume that all PPS com-
ponents have the same order M and that both M and K are
known due to the physical modelling of the problem, otherwise
a model selection procedure similar to [32] can be developed.
The results given subsequently can also be easily altered to cater
for the more general case.

Ed

Zw tm}—l—l/ t), teR. (1)

m=0

Denote w; = [w(’)“,...,wﬁ/j]T, t = [t(] ,In— 1]T,
y = [ylto),-- - y(ty1)]", @ = [Oél;----aK]T =
[’/(t0>~,"'7’/(t1\771)]T’ sk(t7wk = eXp{J Zm metm}
sk(t,wk) = [sk(to,wk),....s (tN 1,wk)] = sk(wk) 1
w = (w1,...,wk), and S(w) = [sl(wl),....sK(wK)] We
can rewrite (1) as

y=[s1(t,w1),...,sk(t,wk)]a+v
=S(w)a +v. 2)

The objective is to estimate w, &, and 2. Denote the unknown
parameter set ¥ = (a,w, o2). The pdf of the noise is given by

1)N exp {_(y ~Swa)"

(ro? o2

p(y;9)=

(v - Swa) } |

The log-likelihood function is

L#®) = -Nlr-Nlno’—— (y - Sw)a)” (y - Sw)a).
o
3
The (4, j)th element of Fisher’s information matrix is given by
2L ()
5 =—E . 4
Jii {81%81%} @

IThe parameter t is omitted for notational simplification.

It can be shown that the structure of Fisher’s information matrix
is

Joa Jaw 0
J=1Jua Juw O . 5
0 0 Jo2p2

Recall that

OR_ _, OR o op
1 1 1
Jij = {R TR 819}+2§}‘E{819R (%]} (©6)

where R = ¢21 is the covariance matrix of the noise and

S

—

n w)a

I
M=

sk(wg)ay,. @)

>
Il
—

It can be easily shown that

o 9 &
Tak = Tak ]; Sk(wk)ak
:sk(wk). (8)

Therefore
2
Joa = ;%{S(w)HS(w)} : )
Now, for the block J,,, we note that

0 0
s —Sk(t, wr)ag

Owk, - Owk,
: M k gm'
Q €xp {j Ym0 W t0 }

o [Tt
=jo, T™sp(wi)

- Owk,
(10)

where T = diag{to,...,tn_1}. Hence, the element of Fisher’s
information matrix that is due to the interaction between w¥ and

7.
wk, is

C ! 2 m m,
Jow (wfmwfn,) = ;% {akak:sk(wk)HT T (wk,)} )
(11)

Using the same notation, it follows from (8) and (11) that
k 2 e m
Jwa (wm7ak/) = ﬁ\s{aksk(wk)T sk:(wk/)}. (12)
From the likelihood function (3), it can be shown that
J,202 = N/o*. (13)

The Cramér—Rao bound on the covariance of the estimate
is found by taking the inverse of Fisher’s information matrix
cC=J1
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There are some observations on the Cramér—Rao bound for
mc-PPSs.
¢ Compared with the results for monocomponent PPSs [22],
[23], the Cramér—Rao bound for mc-PPSs also depends on
the parameters themselves. This suggests that, depending
on the values of the parameters, the bound of each param-
eter may change significantly, such as when there are con-
siderable crossings between components.
¢ Since the Cramér—Rao bound depends on the parameters,
it is likely that the SNR thresholds of nonlinear techniques
for mc-PPSs will depend on each specific case, which is
different from many known results for the monocomponent
case.
¢ The Cramér-Rao bound is fully specified and can be nu-
merically evaluated.
The two component case is of theoretical and practical interest
and can be found, for example, in the removal of a nonstationary
jamming signal mentioned above. For this case, some special
properties of the Cramér—Rao bound are observed in the fol-
lowing results.
Corollary 1: Consider the mc-PPS model (1). When K = 2:
* the Cramér-Rao bounds on the estimates of the amplitudes
a1 and ai, i.e., the diagonal elements of C that correspond
to av; and ap are the same

CRB{o } = CRB{a5} (14)

regardless of the values of all other parameters.
 furthermore, if the amplitudes of the two components are

the same, i.e., ;1 = as = «, the Cramér—Rao bounds of

the polynomial phase parameters of the two components

are the same, i.e.,

CRB{w} =CRB{w2}, m=0,1...,M. (15
The proof of these results is given in Appendix A. The results
suggest that the asymptotic accuracy of the amplitude estimate
of a weaker component is the same as the other regardless of
their powers and vice versa. If they have the same power, es-
timating one component is of the same difficulty as estimating
the other.

III. ESTIMATION TECHNIQUES FOR mc-PPSs

A. Product High-Order Ambiguity Function

The PHAF method [6] is a generalized version of the HAF
method originally introduced by Peleg and Porat [21]. We define
the multilag high-order instantaneous moment (ml-HIM) of y(¢)
as follows:

yi(t) =y(t) (16)
Ya(t; 1) =y (t + 70)ya(t — 11)" (17)
(13)

ym(t;Tar—1) =ym—1(t + Tar—1:Tar—1)
X yp—1(t = Tar—1;Tar—1)" (19)

where T; = [11, T2, . .., Ti—1]. One can see that the original HIM
introduced by Peleg and Porat is a special case of this definition
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where the lags are the same, i.e., 7y = ... = 7py—1 = 7. The
multilag HAF is defined as the finite Fourier transform of the
ml-HIM

t=tn—1

Yo (fiTa-1) = Z yM(t;TMfﬂe_ﬂ”ft.

t=tg

(20)

In the case of a mono-PPS y(t) = aexp{j Z%:O Wmt™}, it
is true that the Mth-order HIM contains only a single sinusoid
whose frequency is linearly proportional to the highest phase
coefficient wjs. Hence, one can perform peak picking over the
discrete Fourier transform (DFT) of the HIM and estimate wj;.
The lower order phase coefficients can be estimated in a similar
fashion based on the demodulated signal. For details, see, for
example, [19].

In the case of a K component M th-order PPS, one can show
by direct evaluation that the ml-HIM contains K sinusoids that
correspond to K autoterms, each having a frequency propor-
tional to the highest order phase coefficient w%,. However, the
ml-HIM also contains a large number of cross-terms which are
also Mth-order PPSs and spurious sinusoids. With the ml-HAF,
the spectrum of the cross-terms spreads over all frequencies and
can affect the peak picking procedure that we use with mono-
PPSs. Except for second-order mc-PPSs in which the spectrum
of the cross-terms spreads evenly over frequencies, it is known
[26] that the spectrum of one particular cross-term of order M is
the convolution of M spectra of orders fromm =1 — M, and
each has a nonlinear power behavior f’((m*Q)/(m’l)) ,m > 2.
The cross-terms, therefore, can introduce location shift of the
peaks or incorrect peak picking, leading to significant errors of
the estimates.

To reduce the effects of cross-terms, the PHAF was proposed
in [6] after observing that only the autoterms have the peculiar
property that they are single sinusoids and their frequencies are
proportional to w%, and the product of lags. Hence, by using dif-
ferent sets of lags and after proper scaling and multiplications of
scaled ml-HAFs, the autoterms are always enhanced more sig-
nificantly than the cross-terms, which strengthen the discrimi-
nant ability. Mathematically, suppose that we have L sets of lags

1 2 L
Tklfl = [TS\I)—I*,TS\/[)—D s 775\[)—1}
T
TS\I}—I = I:Tl(l)77—2(l)7-~-77—]$/l[)—lj| (21)
The PHAF is defined as follows:
L
l
Vi (fi i) = H Yu (ﬂ(l)fé TS\}—I) (22)
=1
where the scale factor is
M—1 ()
T
() _ O] n \ _ ( k=1 "k )
B = Py (TJ\I—I*,TM—I) = ( 1 (1)>- (23)
k=1 Tk

The introduction of the scale factor is to align the autoterms
from different sets of lags. It is noted that the mechanism
of the PHAF is analogous to integration along the curve of
YL (f;T% ) in the ambiguity domain whose two axes are
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T’;;Iil and f. Like many nonlinear techniques, the PHAF
method is strongly affected by finite sample effects in which
the noise-free error is caused by interference from the other
components. In what follows, we give a quantitative error anal-
ysis of this method. For simplicity, consider a two-component
second-order discrete-time PPS in the absence of noise with
uniform sampling such that ¢,, = n

y(n) = g exp {j (wg + win +wyn?)}

+a exp {_] (w% +win + w%nQ)} . (24)

Suppose that the first component is of interest. We shall describe
a perturbation analysis on the estimate of w3 using the PHAF
method. Note that the PHAF is essentially similar to the HAF
method. Lag diversity is to suppress spurious peaks. Here we
perform perturbation analysis about the true parameter. Hence,
it is reasonable to consider only one lag, which reduces to the
HAF method indeed. The discrete version of the high-order in-
stantaneous moment with a lag k& is

ya(n) = y(n+ k)y(n — k)" (25)
The HAF is
N—-1
Ya(w) = ya(n) exp{—jwn}. (26)
n=0
Let wg = 4kwi. When there is only one component, i.e.,

as = 0, it is true that the peak of |Y3(w)| occurs at wy.
However, in the presence of the second component, it can be
shown (see Appendix B) that the displacement of the peak
is approximately given by (34), where all the sums are taken
fromn = 0to N—1, p(n) = R{y2(n)exp{—jwo}}, and
q(n) = S{y2(n) exp{—jwo}}. Note that this error has nothing
to do with the accuracy of the computer; it is the nature of the
PHAF algorithm.

By using similar arguments, it can be shown that for higher or-
ders and when there are more components, the error does exist.
The error on PHAF estimates of the highest order coefficients
will propagate to other lower order coefficients with standard
techniques. However, this error propagation effect can be sup-
pressed if one further performs a fine search. That motivates the
nonlinear least squares (NLS) approach to be described next.

B. Nonlinear Least Squares

To overcome the fundamental problem with PHAF, we pro-
pose an NLS approach to estimating the parameters @ and w in

2

(6,.6) = argmin (y - S@)a)” (v - Sw)a). @)

To reduce the number of unknowns in (27), we further split
the polynomial phase parameters into wj, = (wk, @), k =
1,..., K, and introduce # = (64, ...,0x). Essentially, 8 con-

sists of M polynomial phase parameters with orders ranging

from one to M. Introduce 1 = [w},w?, ..., w{]T and decom-
pose
S(w)a = H)c(n,a) o8)
where
c(n,a) = [al exp {jwé} yee., QU €XP {jwé(}]T e Ccl
(29)
H(6) = [hy(6:), ..., hg(Bx)] € CV*K (30)

and hk(Ok) € CV is a column vector whose nth element is
exp{Jj Zﬁ;:l wk t™ 1. Note that, when the noise is complex
circular yvhite Gaussian and if the estimate of @, which we de-
note by 6, is available, then 7 and « are estimated from

e=H()'y (1)
a=|e (32)
(33)

|

1 =/{¢}
where H(8)! = (H(8)"H(8))"H(8)” denotes the pseu-
doinverse of H(#). It then follows that the nonlinear optimiza-
tion problem (27) can be solved more conveniently by consid-
ering the following equivalent optimization problem on the aug-
mented NLS cost function:

6 = arg msin f(9)

= arg ngn {—yHPH(o)y} (35)
where Py () = H(f) (H(Q)HH(ﬂ))_lH(G)H denotes the pro-
jection matrix onto the subspace of H(6). Asymptotic theory of
NLS estimation can be found in, for example, [30]. Note than
when the noise is complex circular white Gaussian, the NLS
estimates are ML; hence desirable properties such as unbiased-
ness and asymptotic efficiency are attained. In [3], the so-called
NILS was proposed. The intuitive idea gives very good results
but suffers the heuristic choice of parameters for it to perform
well. Also, the examples shown in [3] are limited to two param-
eters of a mono-PPS. For mc-PPSs, such conclusions cannot be
made directly. Besides, statistical properties of the NILS are un-
known and an additional computational cost is introduced.

As with any nonlinear optimization problem, the major issues
of (35) are initialization and a robust numerical algorithm for
finding its solution. In what follows, we discuss initialization
and a numerical approach for solving the nonlinear optimization
(35).

dw ~

(X np(n) (2 g(n) = (32 ng(n)) (3 p(n))
(X ng(n)* + (S np(n)* = (S n2p(n)) (2 p(n) (3 n2q(n)) (3 q(n))

(34)
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TABLE 1
EXAMPLE OF A SECOND ORDER mc-PPS

True values

PHAF estimates

Component 1 Component 2 Component 1 Component 2
o 1 1 0.99821699938630 0.99821699938624
@0 0 0 -0.07853902562474 0.07853944287279
® | 2.19911485751286 1.25663706143592 2.20308214445873 1.25266976100833
w2 | 0.00490873852123 | -0.00490873852123 0.00487309553696 -0.00487309553697

1) Initialization: The PHAF method can be used to ini-
tialize the estimates with some modifications. After estimating
the highest order phase coefficients w¥,, & = 1,... K, we
adopt the demodulation strategy to obtain the lower order
phase coefficients for each component. Note that due to the
augmented NLS cost function (35), we do not need to estimate
the amplitudes and initial phases. It can be seen that, due to the
presence of the other components, the demodulated sequence
for component k at order m also contains K —1 components
of order M. It can be inferred that except for the case M = 2,
where the contribution from the other components spreads
approximately evenly over the spectrum, the estimates of lower
order phase coefficients based on Fourier analysis of the HIM
of the demodulated sequence are subject to incorrect peak
picking.

2) Numerical Algorithm: There are numerical algorithms
available to solve the unconstrained optimization problem (35)
(see, for example, [14] and [25]). In [9], the quasi-Newton
method was used and the derivatives of the cost function were
analytically derived. However, since the problem is highly
nonlinear, it has been shown in practice that this approach is not
robust and there is a great chance that the estimates get trapped
in an undesirable local minimum. To illustrate this, consider
the following example: a two-component second-order PPS
with the same amplitudes in a noise-free environment. The
parameters and their initial PHAF estimates are given in Table I.
Fig. 1 plots the value of the cost function at each iteration for
both algorithms. Because there is no noise, one would expect
the value of the cost function to be zero at the true values.
It can be seen from Fig. 1 that the quasi-Newton algorithm
seems to be trapped in a local minimum. On the other hand, the
Nelder—Mead algorithm attains better computer accuracy.

In what follows, we propose to use the robust Nelder—Mead
simplex (NM) algorithm [12], [17] to find the NLS solution.
The augmented NLS cost function f(#), 8 € R™ is to be min-
imized with a starting point fy. The kth iteration of the NM
algorithm for solving this problem is summarized in Table II,
where the parameters are reflection p = 1, expansion xy = 2,
contraction v = 1/2, and shrinkage o = 1/2 [12]. One can
see that if the initial simplex encloses the convergence region,
then it is likely that the algorithm will reach the global solution.
For strictly convex problems, the quasi-Newton method may
be faster. However, for general problems, the NM algorithm
is more robust and suitable, especially when these are highly
nonlinear. The simplex algorithm is more suitable for a small
number of parameters rather than a large one.

10 T T T T T T T

---+ Quasi-Newton algorithm
—— Nelder—Mead algorithm

* Cost . =6.7515E-5

vvvvv min S YT ]

Cost function

10|

Cost = 1.4548E-15
min_ .

L . . .
0 50 100 150 200 250 300 350 400
Iterations

Fig. 1. Comparison between the quasi-Newton and Nelder—-Mead algorithms
for a second-order mc-PPS.

IV. SIMULATION RESULTS

In the first example, we consider a two-component second-
order PPS embedded in complex circular white Gaussian noise.
The parameters of the signal are oy = a = 1, (wg,wi,ws) =
(0,207, —0.227/N), (w3, w?,w3) = (0,0.807, —0.317/N),
where N is the number of observations and the sampling in-
terval is A = 1. Suppose component 1 is of interest. It is noted
that for these settings, the instantaneous frequencies of the two
components cross each other (see Fig. 2). For the PHAF, the set
of lags are (16,14,13,11), in which the first lag is optimized in
the HAF sense. Note that for a second order mc-PPS, we need
only one lag for each set. First, we fix the number of observa-
tions N = 64 and vary the SNR from —4 to 6 dB and measure
the MSEs of the parameters of component 1 obtained from each
method. The Cramér—Rao bound is numerically obtained and
included in the plots. The MSE performance for w3 is depicted
in Fig. 2, where the following can be seen.

* The PHAF method exhibits a strong finite sample effect,
i.e., there is an SNR point (2 dB) where the MSE cannot
be decreased further. This agrees with the analysis given
earlier.

» The proposed NLS approach achieves a smaller MSE than
the PHAF method. It has an SNR threshold about 3 dB.
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TABLE II
SUMMARY OF THE NELDER-MEAD SIMPLEX ALGORITHM

(k)

go to Step 4.
otherwise accept @, and go to the next iteration.
an inside contraction.

then accept €., otherwise go to Step 5.

then accept .., otherwise go to Step 5.

7

be sorted and selected in the next iteration.

o Step 1 (Order). Sort and label the vertices 8;", ... ,05321 that constitute a simplex such that

1(617) < £(O7). .. < (810

For the first iteration, the other n vertices can be chosen by perturbing 8 in each dimension: 8y +e€e;,i = 1,...,n, where ¢ < 1.
« Step 2 (Reflect). Compute the reflection point ") = (1+p) >0, oL —pgfﬂl. If £(8) < £(8F) < f£(85), the reflection
point 8" is accepted and proceed to the next iteration. Otherwise, if f (05’“)) > f (Bﬁk)) then go to Step 3. If f (Gﬁk)) <f (05’“))
« Step 3 (Expand). Compute the expansion point ") = (I4+px)L>0 o — pxefﬂl. If £(8F) < £(8)) then accept o,

« Step 4 (Contract). If f(8)) < f(8F) < f (07(1’1)1) then perform an outside contraction. It f(O)) > f (0531)1) then perform

_ ; ; ; o (k) _ 1\ (k) _ (k) (k) (k)

Outside. The outside contraction point is computed as follow. 8. = (14+pv)= >0 On ' —pv0, ;. If f(0:7) < f(6:)

— Inside. The inside contraction point is computed as follows: 8% = 1-y)=>r, 0L + 70,(1}21. If f(ng)) < f(GiLk:)l)

« Step 5 (Shrink). Compute another extra n vertices v.*) = 05’“) + U(Oik) — ng)), i =2,...,n+ 1. These 2n + 1 vertices will

Wigner-Ville distribution plot

Normalized frequency
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Fig. 2. Example of a second-order mc-PPS. Top left: the Wigner-Ville distribution. Top right: MSE performance for w}. Bottom left: numerical accuracy for w;
with respect to IV in the absence of noise. Bottom right: numerical accuracy for w} with respect to N with noise at SNR = 5 dB. Legend: PHAF (—A—), NLS

(- O ), Cramér—Rao bound (--- & -+ -).

* In the simulation settings, we selected maximum computer
accuracy (i.e., the tolerance is 2.204 X 10719). It is found
that, on average, the convergence rate of the NLS is ap-
proximately 30%. The number of function evaluations is
about 140 for this accuracy.

With the same settings, we also investigated the MSE perfor-
mance of the estimators when [V varies significantly. In the first

scenario, we consider the mc-PPS without noise. The purpose
of this study is to analyze the variation of finite sample errors as
N becomes large. The results are given in Fig. 2 (bottom left).
As can be seen, while the NLS maintains the maximum com-
puter accuracy, the errors of the PHAF are relatively consider-
able when NN varies from 32 to 512. In the second scenario, we
maintain an SNR = 5 dB and investigate the MSE performance
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Fig. 3. Example of a third-order mc-PPS. Top left: the Wigner-Ville distribution. Top right: MSE performance for w3 . Bottom left: numerical accuracy for w3
with respect to IV in the absence of noise. Bottom right: numerical accuracy for w; with respect to N with noise at SNR = 20 dB. Legend: PHAF (—A—), NLS
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when N varies from 32 to 512. The results are depicted in Fig. 2
(bottom right). The MSEs mostly decrease with N. The sample
threshold for the NLS method is less than 100, while the PHAF
maintains a considerable loss from the Cramér—Rao bound over
the simulated range of V. This can be most relevantly explained
by the finite sample effect due to interference from the other
components.

Next, we consider a two-component third-order mc-PPS
embedded in complex circular white Gaussian noise. The pa-
rameters of the signal are a7 = ap = 1, (w§, wi, wi, wi) =
(0, 20w, —0.107/N, 0.307/N?), (v, w?, wi, w3) =
(0,0.707, 0.40w/N, —0.307/N?), N = 128. For these set-
tings, the instantaneous frequencies of the two components
cross each other (see Fig. 3). The MSE performance is shown
in Fig. 3. From this plot, the following observations are noted.

* When the SNR is small, NLS does not improve over the
PHAF (except for the estimate of w}). The SNR threshold
for these particular problem settings is 16 dB, which is
more significant than the example for a second-order
mc-PPS. This is best explained by the nonlinearities
introduced by higher order mc-PPS to the optimization
problem.

* After a 16 dB point where NLS attains the Cramér—Rao
bound, the PHAF exhibits finite sample error, which was
also observed in the previous example.

* In this simulation, we set the same tolerance as in the pre-
vious example. With NLS, it is found that, on average, the

convergence rate of NLS is approximately 20%, which is

less than the one in the other example. The average number

of function evaluations is about 200 for this accuracy.
Again, we also investigate the MSE performance when N varies
from 32 to 512. The results are plotted in Fig. 3 in the absence
of noise. As can be seen, both the PHAF and the NLS improve
the square error performance with large values of N. How-
ever, the gap between the PHAF and the NLS remains nearly
the same. Intensive simulations beyond this range also confirm
this. Results when noise with an SNR = 20 dB are indicated
in Fig. 3. It is shown that NLS significantly improves over the
PHAF method at large values of N. This implies that NLS only
performs well when both the SNR and V are larger than their
respective thresholds.

Based on the observations for second- and third-order
mc-PPSs, we can anticipate that for fourth and higher orders,
the SNR and N thresholds will be much higher. Since the
optimization problem is extremely nonlinear, it is likely that
convergence and numerical accuracy can only be satisfactory
at high SNR and large N.

V. CONCLUSION

We have presented an analytical study of mc-PPSs embedded
in complex circular white Gaussian noise. The Cramér—Rao
bound was derived and found to be dependent on the pa-
rameters of the underlying mc-PPS. We have shown that the
PHAFmethod suffers from a considerable finite sample error
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due to its nonlinearity when applied to multicomponent signals,
and this has been convincingly demonstrated via simulation
results. We have also proposed an NLS approach to estimate
the parameters of mc-PPSs, which overcomes the limitations of
existing techniques, with some increase in computational com-
plexity. The Nelder—-Mead algorithm is suggested to be used
with the NLS approach so as to achieve better performance,
especially at a high SNR and a large sample size. The per-
formance of the proposed NLS approach has been intensively
investigated for several cases and the numerical properties have
been identified.

APPENDIX A
PROOF OF COROLLARY 1

Proof: First, we prove the first part of the corollary. For
simplicity, the following assumptions and shorthand notations
are used.

* Assume (2/0?) = 1 so that the common factor of Fisher’s
information matrix can be ignored.

» Use s for s1(w) and ss for so(w-).

e Ignore J,2,2, as it does not affect subsequent results.

Hence, Fisher’s information matrix now becomes

Jaa Jaw
T= [Jm Jw} (%6)
The Cramér—Rao bound is therefore
C C
_ 71 __ aa aw
C=1"= {cm CMJ ©7

where, according to the partitioned matrix inverse theorem [28,
p- 53]

Caa = (Jaa — JawTobdwa) - (38)
It follows from (9) that
_ N R {S{{SQ}
Joo = | prefi,l N | (39)
Denote
Jwa = [1’1’11 l’ng]. (40)

Using the fact that J,,, is symmetric positive definite and from
(38) and (39), it follows from the partitioned matrix inverse the-
orem that a necessary and sufficient condition for the diagonal
elements of C,q to be the same is

m{J  m; = m] I m,. (41)
From (12), it follows that
_ 0] [(M+1)x1
m=-wlol =il @
_[m]  [(M+1)x1
m=an o] =[G 1) 1) @)

where

m =[S {sHT0%,},..., S {sHTVs,}]" . (44
Now partition the matrix J,,, as follows:
e Eril vl L
From (11), it is straightforward to show that
lewl
[sT2x0g) sHTMg; 17
— 2R . (46)
| sHTMg, sHT2xMg, |
Jwsws
[ st T2%0g, siTMs,
= a3 : . (47)
| siTTMs, siiT2xMg, |
JWl‘UQ
= szu-h
sfT2x0s, sTMs,
= iR : (48)
siTMs, sHT2xMg,
Continuing, it is easy to show that
R{s{'T™s; } =R{sT"s2} ¥Ym=0,1,...,2M (49)
R{s{'T"s2} =R{sT™s1} ¥Ym=0,1,...,2M. (50)
Hence, it follows from (46), (47), and (49) that
O%lewl = O%JQ,QMQ. (51)

But from (42), (43), and (45), and the fact that both J,,,,, and
Juw,w, are positive definite, the equality (41) to be proved is
equivalent to

a%mT (leldl - lewzJ;21w2 lewz)_l m

_ 2T -1 -1
= sIM (Jw2w2 _Jw1w2‘]w1w1‘]w1w2) m.

(52)

The proof of the first part of the corollary follows directly from
(51) and (52).

It remains to prove the results for the polynomial phase pa-
rameters because the results still hold for the amplitudes from
the first part. We will show that when the power is the same,
i.e., a1 = as = «, the roles of s; and s, are equivalent as far
as the matrix C,,,, is concerned. To do so, we will make use of
the partitioned matrix inversion theorem to obtain

-1

wa - (wa - JwaJ;alJaw) (53)

Using (49) and (50), it can be readily shown from (39) and
(46)—(48) that when a1 = a2 = &, Jaas Jwiwr> Jwiws s Jwsws»
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and hence J,,, are unchanged when swapping s; with s,. Due
to the fact that

%{s{{Tmsz} = —%{ngmsl} , Ym=0,1,....M

(54
Jua and J,,, both change sign when swapping s; with so. How-
ever, the product J,qJ ;;J aw 18 unchanged. Therefore, it fol-
lows from (52) that C,,,, is unchanged when swapping s; with
so. This implies that the Cramér—Rao bounds of the polyno-
mial phase parameters of the two components are the same on
a pair-wise basis. This concludes the proof. ]

APPENDIX B
DERIVATION OF (34)

Suppose that the location of the new peak is at w; = wg + dw
and that dw is sufficiently small so that we can approximate
exp{jw:} = exp{jwo }(1 + jéw). By definition, one can show
that w; is the solution of

Igw)

9) g(w) = =25 g0 53)

where g(w) = R{Y2(w)} and h(w) = I{Y2(w)}. By noting

that g(w) and h(w) are real-valued functions of w, it can be
deduced that

7w = { T ) = o {22 s

It is easily shown that

Ya(wy) & z_: ya(n) exp{—jwo}(1 — jnéw) (57)
n=0
Yy (w) = ~ —jnya(n) exp{—jwo}(1 — jnéw). (58)
n=0
Denote  p(n) = R{y2(n) exp{—jwo}}, q(n) =

S{ya(n) exp{—jwo}}. One can deduce from the above
equations that

N-1

g(w) = ) p(n) +ng(n)dw (59)
N

g (wy) = ng(n) — n2p(n)5w (60)
N

h(wi) = q(n) — np(n)éw (61)
N1

h (wy) = —np(n) — an(n)éw (62)
n=0

from which we arrive at (34).
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