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Abstract—This paper presents a novel application of the particle swarm optimization (PSO) 

technique to optimally design all the proportional-integral (PI) controllers required to control both 

the real and reactive powers of the superconducting magnetic energy storage (SMES) unit for 

enhancing the low voltage ride through (LVRT) capability of a grid-connected wind farm. The 

control strategy of the SMES system is based on a sinusoidal pulse width modulation (PWM) voltage 

source converter (VSC) and PI-controlled DC-DC converter. The control of VSC depends on the 

cascaded PI control scheme. All the PI controllers in the SMES system are optimally designed by the 

PSO technique. The statistical response surface methodology (RSM) is used to build the 

mathematical model of the voltage responses at the point of common coupling (PCC) in terms of PI 

controllers' parameters. The effectiveness of the PI-controlled SMES optimized by the proposed PSO 

technique is then compared to that optimized by genetic algorithms (GA) technique taking into 

consideration symmetrical and unsymmetrical fault conditions. Two-mass drive train model is used 

for the wind turbine generator system because of its large influence on the fault analyses. The paper 

demonstrates the systemic design approach in determining the controller parameters of SMES unit 

and validates its effectiveness in augmenting the LVRT of grid-connected wind farm. 
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I. INTRODUCTION 

 

HE wind power is considered nowadays one of the mainstream alternative sources of electricity 

generation. Many factors affect the huge growth of the wind power all over the world such as increase 

of fuel price, environmental concerns, and trend to a clean energy. The global wind power installations 

reached 238 GW at the end of 2011, bringing the total market growth of more than 20 % [1]. Based on the 

statistics of Global Wind Energy Council, it is expected that the wind power will contribute to 12 % of the 

total world electricity by 2020 [2]. These large grid-connected wind farms cause many power system 

problems which represent a challenging task for the researchers to solve it. One of the important problems 

adheres to grid-connected wind farms are a low voltage ride through (LVRT) capability enhancement.  

 The requirement of the LVRT applies to the wind power generators in order to remain stable and 

connected to the grid during the grid faults. Any disconnection of the wind power generators perhaps 

causes a critical grid situation and reduces the security standards especially when the wind penetration level 

is high. The recent wind farm grid codes insist on the LVRT characteristics of the wind power generators 

[3], [4]. As a result of US recent wind farm grid codes, the wind farm terminal voltage must return to 90 % 

of the rated voltage within 3 s after the start of the voltage drop, otherwise, the wind farm power station has 

to be shutdown [5].   

 Generally, squirrel cage induction generators are used as fixed-speed wind generators due to their 

merits such as simple operation, robust construction, cheapness, and low maintenance. Till now, fixed-

speed wind farms represent around 40 % of total wind farm installations. Accordingly, the LVRT capability 

enhancement is still needed on such farms [6], considering a minimum of 20 years lifetime of wind turbines. 

This study focuses on the LVRT capability enhancement of a fixed-speed wind farm taking into 

consideration symmetrical and unsymmetrical network fault conditions by using particle swarm 

optimization (PSO) based superconducting magnetic energy storage (SMES).   

 Flexible AC transmission system (FACTS) devices such as a static synchronous compensator 

(STATCOM), static var compensator (SVC), and dynamic voltage restorer (DVR) have been used to solve 
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many power system problems. Recently, FACTS with an energy storage system (ESS) have been widely 

used for power system applications [7]. In [8], the LVRT capability of the wind farms was enhanced using 

STATCOM in comparison with thyristor controlled SVC. The STATCOM provides a better transient 

response than that of the SVC. However, the STATCOM is not capable of smoothing output power of the 

wind generator where it has not ability for active power control. Moreover, the LVRT capability of the 

wind generators was improved by using the DVR [9]. The DVR is considered a simpler solution than that 

of the STATCOM. However, using the DVR in the wind power generation has several problems such as a 

phase angle jump when a voltage dip in the network takes place. Therefore, specific control algorithms are 

used for this purpose [9]. The SMES unit has ability to enhance both of the LVRT and the power quality of 

the wind farms because of its flexibility in active and reactive power control.     

 Recently, the SMES system has received a great interest in the power system applications due to 

the huge development of superconductivity and power electronics. It has been used in the power quality 

enhancement, reactive power control, voltage control, and transient stability improvement [10]. It has many 

advantages such as fast response, high storage efficiency, and no restrictions on charging and discharging 

cycles [11]. However, it is still expensive and it is expected that its price will reduce in the near future.   

 Several studies have been performed to improve the transient stability of the wind generators 

using a proportional-integral (PI), fuzzy logic, and artificial neural network controllers [12] -[15]. However, 

the fuzzy logic controllers depend on the designer experience in tuning the membership functions and 

artificial neural network controllers suffer from the length of the training process. The PI controllers are the 

most widely used in industrial applications because of their robustness and offering a wide stability margin 

but they are sensitive to the nonlinear system dynamics. Therefore, fine tuning of the PI controllers is very 

difficult especially for large power system. Recently, in our previous studies, these controllers were fine 

tuned in wind energy conversion systems by Taguchi method which is a long statistical method and genetic 

algorithm (GA) method which is based on the concept of survival of the fittest [16]-[19].  

 In this study, the powerful swarm intelligence technique, PSO is used to optimally design all the 

PI controllers of the SMES unit used in a voltage source converter (VSC) and a DC-DC converter in 

controlling both the real and reactive powers to enhance the LVRT capability of a grid-connected wind 

farm. This represents the main contribution of this study and has so far not been reported in power system 



literature. The LVRT analysis is carried out in the light of recent wind farm grid codes. The control strategy 

of the SMES system is based on a sinusoidal pulse width modulation (PWM) voltage source converter 

(VSC) and PI-controlled DC-DC converter. The control of VSC depends on the cascaded PI control 

scheme. All the PI controllers in the SMES system are optimally designed by the PSO technique. The 

statistical response surface methodology (RSM) is used to build the mathematical model of the voltage 

responses at the point of common coupling (PCC) in terms of PI controllers' parameters. The effectiveness 

of the proposed PI-controlled SMES optimized by the PSO technique is then compared to that optimized by 

GA technique taking into consideration symmetrical and unsymmetrical fault conditions. MATLAB 

optimization toolboxes are used for design optimization of the controllers' parameters. Two-mass drive 

train model is used for the wind turbine generator system because of its influence on the dynamic analyses. 

The validity of the proposed system is verified by the simulation results which are performed using the 

laboratory standard dynamic power system simulator PSCAD/EMTDC. Notably, the PI-controlled SMES 

optimized by PSO enhances the LVRT capability of a grid-connected wind farm.  

 

II. MODEL SYSTEM 

 The system under study consists of a grid-connected fixed-speed wind farm, as shown in Fig. 1(a). 

The wind farm is modeled by the aggregated wind turbine model where many small size wind generators 

can be represented by a large capacity wind generator [20]. The wind farm is connected to the grid through 

a transmission line with double circuit. A capacitor C is connected to the wind farm terminals to 

compensate the reactive power at the steady state operation and its value has been selected to achieve unity 

power factor of the wind power station at the rated conditions. The parameters of the wind farm are 

illustrated in Table I [14]. The SMES unit is connected to the PCC. 

 

III. Wind Turbine Model 

The mechanical power extraction from the wind can be written as follows [21]-[24]: 
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where Pw is the mechanical power from the wind,  is the air density [kg/m3], R is the blade radius [m], Vw 

is the wind speed [m/s], and Cp is the power coefficient which is a function of the tip speed ratio, , and 

blade pitch angle,  [deg.]. In this study, the Cp formula can be expressed as follows [25]: 
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where ωB is the blade angular velocity [rad/s]. The turbine characteristics used are shown in Fig. 1(b). The 

two-mass drive train parameters of the wind generator are shown in Table I, where Hg and Hwt are the 

generator and wind turbine inertia constants, respectively, and Kw is the shaft stiffness between the two 

masses. 

 

IV. SMES SYSTEM 

 In this study, the SMES unit consists of a three-phase Wye-Delta 66/0.77 kV transformer, a six 

pulse PWM VSC using insulated gate bipolar transistors (IGBTs), a DC-link capacitor of 60 mF, a two-

quadrant DC-DC converter using IGBTs, and a superconducting coil of inductance 0.24 H, as shown in 

Fig. 2. The SMES unit is connected to the power system at the PCC. An over voltage protection system 

(OVPS) is used for the safety of the VSC unit and the capacitor. The braking chopper is modeled in the 

DC-link in order to protect the DC-link capacitor during the fault situation. The chopper is activated when 

the DC-link voltage increases over the predefined limit (20 % of the rated value) and dissipates the active 

power into the resistance during the voltage dip in the grid. 

 The stored energy, E [Joule], in the superconducting coil and its rated power, P [Watt], are 

described by the following equations: 
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where Lsm is the inductance of the superconducting coil, Ism is the DC current flowing through the coil, and 

Vsm is the instantaneous voltage across the coil. The rated values of E and P for the SMES system under 



study are 0.05 MWH and 50 MW, respectively [14].  

A. VSC 

 The VSC is a three-phase rectifier/inverter connecting the superconducting coil to the AC power 

system. The cascaded PI control scheme is used in this study, as shown in Fig. 3(a). The dq and three-phase 

electrical quantities are related to each other by the reference frame transformation. The transformation 

angle is detected from three-phase voltages (va,vb,vc) at the high voltage side of the transformer using a 

Phase-Locked Loop (PLL). The PI-1 controllers are used in the outer loops to follow the DC-link voltage 

(VDC) error signal and the voltage at the PCC (VPCC) error signal to produce Id-ref and Iq-ref, respectively. The 

PI-2 controllers are used in the inner loops to follow the Id error signal and the Iq error signal to produce Vq-

ref and Vd-ref, respectively. These signals are converted to a three-phase sinusoidal reference waveform Va,b,c-

ref, which is compared with a triangular waveform to generate the gate signals of IGBTs. The frequency of 

the triangular waveform is selected 1 kHz. The VDC is kept constant at 1 kV through the simulation using 

the PWM VSC.   

B. DC-DC Converter 

 A two-quadrant DC-DC converter is used to control the DC voltage across the coil by adjusting its 

duty cycle. When the duty cycle is greater or lower than 50 %, the DC voltage is positive or negative and 

the coil is charged or discharged, respectively. Moreover, at 50 % duty cycle, the net DC voltage across the 

coil is zero and this means that the coil is neither charged nor discharged. The line power (PL) is defined as 

the active power from the wind farm at the PCC. Fig. 3(b) shows the duty cycle control of the DC-DC 

converter. The PI-3 controller is used to follow the PL error signal to update the duty cycle signal (D) which 

is compared with a triangular waveform to produce the gate signals for the IGBTs of the DC-DC converter. 

The chosen frequency of the triangular waveform is 1 kHz. In this study, all the PI controllers in the SMES 

system are optimally designed by the PSO technique. This represents a fully design optimization of PI 

controllers in such system. 

 

V. OPTIMAL DESIGN 

A.  The RSM  

 

 Recently, the RSM has received a great attention for electrical machines and power system 



applications. It is a powerful statistical method used to create a mathematical model by obtaining the 

relationship between the design variables and the response [26]. In this study, PSCAD/EMTDC [27] is used 

for numerical simulations to provide the response. The maximum percentage undershoot (MPUS), the 

maximum percentage overshoot (MPOS), and the settling time (Ts) of the VPCC profile are the responses. 

These are varied by the design variables variant. In the RSM, the second order model is used to obtain an 

accurate response. The response surface creation depends on the Box-Behnken design which has a lower 

number of design experiments than that of the central composite design and leading to the same modeling 

accuracy.  

B.  PSO Approach 

 The PSO is a swarm intelligence computation technique presented by Eberhart and Kennedy in 

1995 [28]. It is inspired by the social behavior of bird flocking and fish schooling. It has several advantages 

over other optimization techniques such as less parameters to be adjusted, fast computational time, and 

derivative free algorithm. The PSO technique has been used to solve many power system optimization 

problems [29]-[32].   

 Let the design variables of an optimization problem are N. The swarm of P particles is initialized 

in which each particle is assigned a random position in the N-dimensional hyperspace, such that each 

particle’s position corresponds to a candidate solution. In the PSO technique, each particle has two vectors, 

the position vector (Xi = [xi1, xi2,…,xiN]) and the velocity vector (Vi = [vi1, vi2,….,viN]). Each particle updates 

its position based on its own best exploration, best swarm overall experience, and its previous velocity 

vector according to the following equations [33]: 
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where c1 and c2 are two positive acceleration constants; r1 and r2 are two random numbers in a range of [0,  
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C.  GA Approach 

 

 GA is a random search technique used for solving several optimization problems in engineering 

applications. This search depends on the principle of survival of the fittest. Moreover, it uses techniques 

inspired by evolutionary biology such as natural selection, mutation, and crossover. 

 

VI. SYSTEMIC DESIGN APPROACH OF PROPOSED OPTIMIZATION TECHNIQUE 

 

 Fig. 4 shows the flowchart of the proposed PSO approach. The following steps summarize the 

whole design strategy:  

Step 1- Selection of Variables and Levels: 

 The proportional gain and integral time constant of the PI controllers in the SMES system are the 

design variables. X1, X3, and X5 are the proportional gain of PI-1, PI-2, and PI-3, respectively. X2, X4, and 

X6 are the integral time constant of PI-1, PI-2, and PI-3, respectively. These design variables have three 

levels. The levels (-1), (0), and (1) represent the minimum, average, and maximum values of the design 

variable, respectively. The design variables and levels are shown in Table II.   

Step 2- Design of Experiments: 

 In this study, the RSM model is based on the standard Box-Behnken design in building the 

responses. The experiments frequency is established by using Box-Behnken design. In this analysis, there 

are 54 experiments for six design variables problem, as shown in Table III. This statistical design is 

performed using Minitab program [34].     

Step 3- PSCAD Program Calculation: 

 The PSCAD program calculation is carried out for each experiment and the values of MPUS, 

MPOS, and Ts of the VPCC profile are determined and stored in Table III. 

Step 4- Creation of RSM Model: 

 The MPUS (Y1), MPOS (Y2), and Ts (Y3) of the VPCC profile are fitted by second order polynomial 

functions as follows: 
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Step 5- PSO Approach: 

 
  The PSO technique is applied directly to the RSM model. In this study, MATLAB optimization 

Toolbox is used [35]. The MPUS (Y1) is the objective function and both of MPOS (Y2) and Ts (Y3) are 

nonlinear constraint functions. The constraints of the optimized problem are described as follows: 

 Design variables range is 3 ≤ X1 ≤ 5, 0.08 ≤ X2 ≤ 0.12, 1 ≤ X3 ≤ 2, 0.001 ≤ X4 ≤ 0.003, 0.1 ≤ X5 ≤ 

1.1, and 0.002 ≤ X6 ≤ 0.5.  

 The MPOS constraint Y2 ≤ 10 % and Ts constraint Y3 ≤ 1.5 s.  

 The PSO characteristics are shown in Table IV. After 400 iterations, the PSO is terminated. Fig. 5 

shows the fitness function convergence. Table V shows the optimization set value and level of the design 

variables. At these optimal values, the MPUS is 54.66 %, the MPOS is 8.9 %, and Ts is 1.02 s.  

Step 6- GA Approach: 

 For a fair comparison, GA technique is also applied to the RSM model. In GA analysis, the Rank 

fitness scaling is applied to avoid premature convergence. GA includes natural selection, mutation, and 

crossover. The selection process is performed using the uniform selection technique which prevents bias 



and minimal spread. The GA characteristics are illustrated in Table VI. GA optimization was terminated 

after the 5th iteration where the average change in the fitness value and the constraint violation were less 

than 1e-6. Fig. 6 shows the fitness function convergence and current best individual. The optimal level and 

size value of the design variables using GA technique are shown in Table V. Moreover, at these optimal 

values, the MPUS is 56.91 %, the MPOS is 9.5 %, and Ts is 1.5 s.   

 

VII. SIMULATION ANALYSIS AND DISCUSSION 

 

 In this study, the detailed switching model of a PWM VSC and DC-DC converter is considered for 

obtaining precise analyses. Two-mass drive train model is used for the wind turbine generator system 

because of its huge influence on the dynamic analyses. Time domain simulation has been done using 

PSCAD/EMTDC. The time step is 20 µs and the simulation time is 5 s. The wind speed is fixed at the rated 

value of 11.8m/s. 

 In this study, the simulation results are described in light of the recent grid code, set by E. On Netz, 

recently known as TenneT TSO GmbH [3]. Fig. 7 shows the LVRT standard of this grid code. The wind 

turbines are required to stay online and connected to the grid above the limit lines. 

 The system under study is subjected to a severe symmetrical three-line to ground fault (3LG) as a 

network disturbance. The fault occurs at 0.1 s at fault point F, shown in Fig. 1(a). The circuit breakers 

(CBs) on the faulted line are opened at 0.2 s to clear the fault, and are reclosed at 1 s.     

 Fig. 8(a) shows the voltage response at the PCC. It can be noted that without using the SMES unit, 

the voltage drop happens at the PCC causing sudden increase in the induction generator speed. As a result, 

the induction generator accelerates and becomes unstable. In contrast when SMES is used, the required 

reactive power is supplied from the VSC of the SMES unit properly according to the error signals and the 

voltage at the PCC can be returned back to the pre-fault level in a short time. Moreover, the DC-DC 

converter of the SMES unit controls the real power flow during the disturbance. It can be realized that the 

voltage response at the PCC when a PSO-based SMES unit is used, is a faster and better damped response 

than that obtained when a GA-based SMES unit is used. The induction generator and turbine speeds are 

illustrated in Figs. 8(b), and (c), respectively. Notably, the induction generator becomes stable with the 



SMES unit. The line reactive and real powers at the PCC are shown in Figs. 8(d) and (e), respectively. The 

real power and stored energy of the SMES unit are shown in Figs. 8 (f) and (g), respectively. It can be 

noted that a better response and high storage efficiency are achieved with a PSO-based SMES unit than that 

of a GA-based SMES unit. Fig. 8 (h) shows the DC-link voltage response which has a better transient 

characteristic with a PSO-based SMES unit.   

 In fact, the better transient characteristics adhere to the PSO-based SMES unit is due to the merits 

of the PSO technique over GA technique. PSO has a perfect memory capability than GA. In addition, PSO 

is very effective in keeping the diversity of the swarm, since all the particles use the information related to 

the most successful particle to improve themselves, whereas in GA, the worse solutions are refused and 

only the good ones are accepted; therefore in GA the population has a part of the best individuals. 

For further verification of the proposed control scheme, the transient analysis is performed using a most 

frequently occurred unsymmetrical fault (single-line to ground, 1LG) as a network disturbance. Fig. 8 (i) 

shows the voltage response at the PCC with this type of fault. It can be noted that the voltage response at 

the PCC with a PSO-based SMES unit is found better damped than that obtained with a GA-based SMES 

unit. It can also be claimed from the simulation results that PSO-based SMES unit works well for both 

symmetrical and unsymmetrical fault conditions. Not only the LVRT capability of a grid-connected wind 

farm can be improved but also the power quality can be enhanced using PSO-based SMES units. 

 

VIII. CONCLUSION 

 This paper has presented the PSO technique for design optimization of all the PI controllers in a 

SMES unit to enhance the LVRT capability of a grid-connected wind farm. The LVRT is analyzed in light 

of the recent grid code set by E. On Netz, recently known as TenneT TSO GmbH. The SMES control 

strategy depends on a sinusoidal PWM cascaded-controlled VSC and PI-controlled DC-DC converter. The 

RSM has been used to build the mathematical model of the voltage responses at the PCC in terms of PI 

controllers' parameters in a precise way. The simulation results have shown that the system responses with 

a PSO-based SMES unit is faster and better damped than that of a GA-based SMES unit for both 

symmetrical and unsymmetrical fault conditions. The LVRT capability of a grid-connected wind farm can 

be noticeably improved using PSO-based SMES units. The proposed PSO based optimization methodology 



for multiple PI controllers is also suitable for other power system applications including the FACTS, smart 

grid, and other renewable energy systems, especially when their transfer functions are difficult to be 

achieved.    
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Fig. 1(a). Model system. 
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Fig. 2. SMES unit. 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 
Fig. 3(a). Control block diagram of the VSC. 

 

 

 

 

 

 

 

 

 
 

Fig. 3(b). Duty cycle control of the DC-DC converter. 
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Fig. 4.  Flowchart of the proposed PSO approach. 
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Fig. 5.  Fitness function convergence using PSO. 
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Fig. 6. (a) Fitness function convergence. (b) Current best individual. 

 

 

 

 

 
 

 
Fig. 7. LVRT standard set by E. On Netz [3]. 
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Fig. 8. Responses for 3LG fault (a) Terminal voltage at the PCC (b) Induction generator speed (c) Turbine speed (d) Reactive power at 

the PCC (e) Line real power at the PCC (f) Real power of SMES (g) Stored energy of SMES (h) DC-link voltage. (i) Terminal voltage 

at the PCC for 1LG fault. 

 

 

 

 

 
 

 

 

 

 



Table I 

INDUCTION GENERATOR AND  

TURBINE DATA 

MVA 50 

r1 [pu] 0.01 

x1 [pu] 0.1 

xmu [pu] 3.5 

r2 [pu] 0.015 

x2 [pu] 0.12 

Hg [pu] 0.3 

Hwt [pu] 3.0 

Kw [pu] 90 

 
TABLE II 

DESIGN VARIABLES AND LEVELS 

Design variables 

Level 

 

X1 

 

X2 

 

X3 

 

X4 

 

X5 

 

X6 

-1 3 0.08 1 0.001 0.1 0.002 

0 4 0.1 1.5 0.002 0.6 0.251 

1 5 0.12 2 0.003 1.1 0.5 

 

 
TABLE III 

RANGE OF DESIGN VARIABLES AND EXPERIMENT FREQUENCY 

Exp. 

No. 
X1 X2 X3 X4 X5 X6 

MPUS 

(%) 

MPOS 

(%) 

Ts 

(s) 

Exp. 

No. 
X1 X2 X3 X4 X5 X6 

MPUS 

(%) 

MPOS 

(%) 

Ts 

(s) 

1 3 0.12 1.5 0.001 0.6 0.251 56.5 11.1 2.8 28 3 0.1 1.5 0.003 1.1 0.251 51 16 2.14 

2 4 0.1 1 0.001 0.6 0.5 59 8.3 2.92 29 5 0.1 2 0.002 0.6 0.002 48 13.1 2 

3 5 0.1 2 0.002 0.6 0.5 58 12 2.75 30 4 0.1 2 0.003 0.6 0.5 58 16.6 7 

4 5 0.1 1.5 0.001 0.1 0.251 64 7.5 2.8 31 3 0.1 1 0.002 0.6 0.002 48 13.6 3 

5 3 0.1 2 0.002 0.6 0.5 57.5 15 3.9 32 4 0.1 1 0.003 0.6 0.5 57.5 16 12 

6 4 0.1 1.5 0.002 0.6 0.251 56 12.85 2.85 33 4 0.12 1.5 0.002 0.1 0.002 48 13.2 2.8 

7 5 0.12 1.5 0.001 0.6 0.251 58.5 6.9 1.5 34 4 0.08 2 0.002 0.1 0.251 63 14.2 2.62 

8 4 0.1 2 0.001 0.6 0.5 59 9 1.85 35 4 0.1 1.5 0.002 0.6 0.251 56 12.85 2.85 

9 3 0.08 1.5 0.001 0.6 0.251 57 11.8 2.8 36 4 0.08 1.5 0.002 1.1 0.002 48 13.64 2.8 

10 3 0.1 2 0.002 0.6 0.002 48 14.5 2.9 37 4 0.12 1 0.002 0.1 0.251 62.5 12.6 2.5 

11 4 0.12 2 0.002 0.1 0.251 62.5 13.5 2.71 38 4 0.1 1.5 0.002 0.6 0.251 56 12.85 2.85 

12 4 0.1 1.5 0.002 0.6 0.251 56 12.85 2.85 39 3 0.1 1 0.002 0.6 0.5 58 14.4 15 

13 3 0.1 1.5 0.003 0.1 0.251 62 23 12 40 4 0.12 1 0.002 1.1 0.251 51 12.6 2.9 

14 4 0.1 1 0.001 0.6 0.002 48 10.5 2.75 41 4 0.08 1 0.002 0.1 0.251 63 13.2 3.8 

15 5 0.12 1.5 0.003 0.6 0.251 56 14.1 1.45 42 4 0.08 1.5 0.002 0.1 0.5 63 14.6 14 

16 4 0.12 1.5 0.002 1.1 0.002 48 13.2 2.8 43 4 0.1 2 0.001 0.6 0.002 48.2 11.4 2 

17 5 0.08 1.5 0.001 0.6 0.251 58.5 8 1.48 44 4 0.08 1.5 0.002 1.1 0.5 52.5 13.1 3 

18 5 0.1 1 0.002 0.6 0.002 48 12.3 2.82 45 5 0.1 1.5 0.003 1.1 0.251 50.75 14.3 2.85 

19 4 0.08 1 0.002 1.1 0.251 51 13 2.9 46 4 0.12 2 0.002 1.1 0.251 51 13.4 2.9 

20 4 0.1 2 0.003 0.6 0.002 48 15.25 2.9 47 3 0.1 1.5 0.001 1.1 0.251 51.2 11.75 1.7 

21 4 0.08 2 0.002 1.1 0.251 51 14 2.84 48 3 0.08 1.5 0.003 0.6 0.251 56 17.8 15 

22 4 0.12 1.5 0.002 1.1 0.5 52 12.5 2.98 49 4 0.1 1.5 0.002 0.6 0.251 56 12.85 2.85 

23 4 0.1 1 0.003 0.6 0.002 48 14.5 2.95 50 5 0.1 1.5 0.001 1.1 0.251 52.6 8.3 1.65 

24 4 0.1 1.5 0.002 0.6 0.251 56 12.85 2.85 51 5 0.1 1 0.002 0.6 0.5 58 10.9 2.05 

25 5 0.1 1.5 0.003 0.1 0.251 62.5 15.5 12 52 4 0.12 1.5 0.002 1.1 0.5 52 12.5 3 

26 4 0.08 1.5 0.002 0.1 0.002 48 13.6 2.8 53 5 0.08 1.5 0.003 0.6 0.251 56 14.7 1.78 

27 3 0.12 1.5 0.003 0.6 0.251 56 17 12 54 3 0.1 1.5 0.001 0.1 0.251 63 11.5 1.55 

 

 



TABLE IV 

PSO CHARACTERISTICS 

PSO Parameters 

Number of particles 50 

Initial velocity of the agent 0.0 

Inertia weight 1 

Acceleration constants 2 

No. of iterations  400 

 
 

TABLE V 

OPTIMAL LEVEL AND SIZE OF DESIGN VARIABLES  

Design variables 

Level 
X1 X2 X3 X4 X5 X6 

Optimum level (PSO) 1 0 -0.3 -1 0.99 0.55 

Optimum size (PSO) 5 0.1 1.35 0.001 1.1 0.37 

Optimum level (GA) 0.99 0.283 -0.458 -0.276 0.09 0.85 

Optimum size (GA) 4.99 0.105 1.27 0.002 0.64 0.463 

 
 

 

 
TABLE VI 

GA CHARACTERISTICS 

 
GA Parameters 

Population type Double vector 

Population size 50 

Fitness scaling 

function 
Rank 

Selection function Uniform 

Crossover fraction 0.8 

Crossover function Scattered 

Migration fraction 0.2 

Migration interval 20 


