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Abstract11

Traditionally, least squares method (LSM) has been employed as a standard technique12

for parameter estimation and regression fitting of models to measured points in data13

sets in many engineering disciplines, geoscience fields as well as in geodesy. To get the14

optimal linear unbiased estimator, which provides minimum variance, the model error15

should follow a Gaussian distribution with zero mean. However, this may not always be16

the case due to contaminated data (i.e., the presence of outliers) or data from different17

sources with varying distributions. This study proposes an algebraic iterative method18

that approximates the error distribution model using a Gaussian mixture distribution,19

with the application of maximum likelihood estimation as a possible solution to the20

problem. The global maximization of the likelihood function is carried out through the21

computation of the global solution of a multivariate polynomial system using numerical22

Groebner basis in order to considerably reduce the running time. The novelty of the23

proposed method is the application of total least square (TLS) error model as opposed24

to ordinary least squares (OLS) and the maximization of the likelihood function of the25

Gaussian mixture via algebraic approach. Use of TLS error model rather than OLS26

enables errors in all the 3 coordinates of the model of a 3D plane (i.e., z = αx+ βy + γ)27

to be considered. The proposed method is illustrated by fitting a plane to real laser28

point cloud data containing outliers to test its robustness. Compared to the RANdom29

Sample Consensus (RANSAC) and Danish robust estimation methods, the results of the30
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proposed algebraic method indicate its efficiency in terms of computational time and31

its robustness in managing outliers. The proposed approach thus offers an alternative32

method for solving mixture distribution problems geodesy.33

Keywords: Robust parameter estimation, expectation maximization, maximum34

likelihood estimation, Groebner basis, outliers, point cloud, algebraic solution, Gaussian35

distributions, total least squares.36

1. Introduction37

In geodesy as is in many engineering disciplines, least squares method (LSM) is em-38

ployed as a standard technique for parameter estimation and regression fitting of models39

to points of measured data sets (see, e.g., Grafarend and Awange 2012). Employing40

optimal unbiased linear LSM estimator providing minimum variance, one has to keep in41

mind that the model error distribution should follow a Gaussian distribution with zero42

mean. However, this may not always be the case due to contamination of the dataset43

(e.g., resulting from the presence of outliers) or having data that originates form different44

types of sources with different distributions. In either case, a mixed distribution has to45

be reckoned with (see, e.g., Lang et al., 1989, Xu 2005, Koch and Kargoll 2013, and Koch46

2014).47

In the emerging field of integrated geodesy, for example, where observations from48

global satellite navigation system (GNSS) and those of laser scanning, photogrammetry,49

and CAD modelling are integrated (e.g., Agnello and Brutto 2007; Borre 2006), such50

integration brings with it a mixture of different types of distributions that could be51

Gaussian or non-Gaussian. Furthermore, outliers that corrupt the laser scanned data52

could occur due, e.g., to occlusions, off-surface points and multiple reflectance, thereby53

limiting surface reconstruction using the point cloud. Further examples include the case54

where global positioning system (GPS) and Interferometric Synthetic Aperture Radar55

(InSAR) are related to a slip distribution model used in modelling co-seismic surface56

displacements (e.g., Sun et al 2011), GPS ambiguity resolution problem where the carrier57

phase observations are very precise but contain integer unknowns leading to a mixed58

observation model (e.g., Xu 1998), and assimilation of stream flow observations and59
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satellite data in order to carry out hydrological model calibration (e.g., Eicker et al.,60

2014). Other disciplines where integrated data of mixed distributions are encountered61

include meteorology, oceanography, and seismology, where sampling data is imperfect62

and irregular (Nodet 2012). The foregoing discussions point to the need for robust fitting63

techniques that can manage the resulting outliers.64

The problem of outlier management when the model error distribution does not65

satisfy the Gaussian with zero mean condition has been extensively discussed, e.g., in66

Zuliani (2012). The frequent solution to this problem is the application of robust es-67

timation techniques, e.g., the Danish and the RANdom Sample Consensus (RANSAC)68

method (Krarup et al., 1980; Yaniv 2010), which eliminate outliers using noise thresholds.69

Robust statistical approaches of parameter estimation in case of contaminated data were70

pioneered by Huber (1964). Xu (2005) proposed the sign-constrained robust estimator71

with subjective breakdown point, which is methodologically different from methods dis-72

cussed in any statistical literature. Other approaches include the principal component73

analysis (PCA, e.g., Huang and Tseng 2008), improved 3D Hough transform (Borrmann74

et al., 2011), Bayesian techniques (Diebel et al., 2006), elimination methods such as those75

based on the minimum covariance determinant (Russeeuw and Van Driessen 1999), em-76

ploying the bifactor reduction model of weight elements (Yang et al., 2002, Chen and77

Stamos 2007), and data assimilation techniques using probability distributions and recur-78

sive Bayesian estimation and Kalman filtering (Guttman and Lin 1995; Sun et al 2011;79

and Elberg 2015).80

In addition, robust estimations based on the expectation maximization (EM) of81

mixed distributions have been proposed (e.g., Lakaemper and Latecki 2006). For instance,82

Aitkin and Wilson (1980) applied a mixture of two normally distributed components,83

the first one for the observations with expected values defined by a linear model and84

the second one for an outlier with its own expected value. Thus, a mean-shift model85

is introduced and the unknown parameters estimated using the EM algorithm. Koch86

(2013) generalized this method by introducing a mixture of any number of normally87

distributed components, in case of two, the first one is for observations and the second88

one is for outliers. Furthermore, Lang et al., (1989) used the t-distribution to derive for89
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a linear model a robust estimation by the EM algorithm. They introduced weights for90

the observations, which were small for outliers, thus using a variance-inflation model,91

and succeeded in obtaining an adaptive robust estimation. Koch and Kargoll (2013)92

suggested the use of variance-inflation model to detect the outliers and the mean-shift93

model to confirm them, a method that turned out to be very efficient. Later, Koch94

(2014) showed that the EM algorithm based on the mean-shift and variance-inflation95

model does not have to be restricted to a linear model but can also be applied to nonlinear96

models. The concept of break-down point, a point representing the maximum percentage97

of contaminated data beyond which the estimator can no longer produce meaningful98

solution was introduced by Donoho and Huber (1983), and improved by others (e.g.,99

Rousseeuw 1984; Hampel at al. 1986), while Xu (2005) introduced a robust method with100

a highest possible break-down point.101

In contributing to the expectation maximization robust based methods, the present102

contribution proposes an alternative algebraic method that is iterative in nature, but103

which defines the error model in terms of total least squares (TLS) as opposed to the104

ordinary least squares method commonly used in most of the studies above. The method105

applies a likelihood function, where the distribution of model error is approximated using106

a Gaussian mixture distribution computed by the EM algorithm. Using this approach,107

a linear parameter estimation model is considered, where the global maximization of the108

likelihood function is carried out by solving a multivariate polynomial system using nu-109

merical Groebner basis that considerably reduces the computation time. The advantages110

inherent in using total least squares error model compared to ordinary least squares is111

that it is able to take into consideration all the measurement errors in all the 3 coor-112

dinates (x, y, z) of a 3D plane model such as z = αx + βy + γ. The rest of the study113

is organised as follows. In section 2, the likelihood function for standard LSM is pre-114

sented followed by a discussion of the expectation maximization method in section 3.115

Section 4 considers the likelihood function for a Gaussian mixture before presenting the116

proposed iterative algorithm with the embedded algebraic solution in section 5. Section117

6 presents an illustrative example based on a real laser scanned data obtained from a site118

in Budapest (Hungary) while section 7 concludes the study.119
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2. Maximum Likelihood Estimation120

Generally, to carry out a regression procedure using maximum likelihood method121

(ML), one needs to have a model M ( x, y, z : θθθ) = 0, a model error definition eMi
(xi,122

yi,zi: θθθ), as well as, the probability density function of the error PDF (eM( x , y, z : θθθ)).123

The linear model then becomes124

M(x, y, z : θθθ) = αx+ βy + γ − z, (1)

where the terms of the parameter θθθ = (α, β, γ) are to be determined. The error model125

corresponds to the shortest distance of a point Pi from its perpendicular projection to a126

hyperplane,127

eMi
(xi, yi,zi : θθθ)) =

zi − xiα− yiβ − γ√
1 + α2 + β2

. (2)

One has to mention that a mathematically equivalent error-in-variable (EIV) model can128

be given employing a nonlinear adjustment model (see, e.g., Xu 2012). The probability129

density function of the error model is considered as a Gaussian error distribution of N (0,130

σ) given by131

PDF (eM(x,y,z : θθθ)) =
e−

(eM)2

2σ2

√
2πσ

. (3)

Considering a set {( x1, y1) , (x2,y2)...,(xN , yN )} as measurement points, the maximum132

likelihood method aims at finding the parameter vector θθθ that maximizes the likelihood133

of the joint error distribution. Assuming that the errors are independent, one should134

maximize,135

L =
N∏
i=1

e−
(eMi)

2

2σ2

√
2πσ

. (4)

In order to use the sum instead of product, the logarithm of Eq. (4), i.e.,136

137

LogL = Log

(
N∏
i=1

PDF (eM)

)
=

N∑
i=1

Log(PDF (eM)), (5)

is used. If the Gaussian error distribution is considered, the function to be now minimized138

becomes139

-LogL(α, β, γ) = NLog
(√

2πσ
)

+
1

2σ2

N∑
i=1

(zi − xiα− yiβ − γ) 2

1 + α2 + β2
, (6)
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which is practically the optimal least squares method. Forming the necessary conditions140

of the optimum through partial derivatives as141

eq1 =
∂LogL
∂α

= 0, eq2 =
∂LogL
∂β

= 0, eq3 =
∂LogL
∂γ

= 0, (7)

one obtains the following system of three multivariate polynomial equations,142

eq1 = i− bα + hα− iα2 − eβ − 2gαβ + eα2β + iβ2−

bαβ2 + dαβ2 − eβ3 − aγ − 2fαγ + aα2γ + 2cαβγ − aβ2γ +Nαγ2

eq2 = g − eα + gα2 − eα3 − dβ + hβ − 2iαβ + bα2β−

dα2β − gβ2 + eαβ2 − cγ − cα2γ − 2fβγ + 2aαβγ + cβ2γ +Nβγ2

eq3 = f − aα− cβ −Nγ


, (8)

where the constants (a, b, c, d, e, f, g, h, i) depend on the measured values (xi, yi, zi), i=143

1,2,...,N.144

The solutions of this system of polynomial equations are the possible optimums of145

Eq.(6), and can be solved, for example, using the Sylvester resultant (e.g., Awange and146

Grafarend 2005; Awange et al., 2010; Awange and Palancz 2016) or the Dixon resultant147

(Lewis et al., 2014). Since the last expression of Eq. (8) is linear, it can be expressed148

in terms of γ and then substituted in the first two equations of Eq. (8) leading to a149

system of two equations in two unknowns (α and β), which can be solved using reduced150

Groebner basis (Awange and Grafarend 2005; Awange et al., 2010; Awange and Palancz151

2016) to yield a univariate polynomial of seventh order in α and β (see, e.g., Awange et152

al., 2014). Once α and β have been solved, they are substituted in the last equation of153

Eq. (8) to yield γ. The triplet (α, β, and γ) of the solution is considered as a proper154

global maximum solution if it is real, and in comparison to other triplets, minimizes Eq.155

(6). To illustrate the situation, let us consider Fig. (1, left), where inliers (blue points)156

and outliers (red points) are considered together as data points and Eq. (8) is solved.157

The model error can then be computed with the known parameters (α,β,γ), see Fig 2.158

This distribution has a “tail” on the right-hand-side indicating that the histogram does159

not represent a Gaussian distribution with zero mean. It can even be considered as a160

mixture of two general Gaussians.161
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Figure 1: The inliers (blue points) and outliers (red points) considered together as one data set (left

figure), and the plane with black color resulted from the solution of Eq. 8 (right figure)

-3 -2 -1 0 1 2 3 4

Figure 2: The histogram of the error distribution computed with parameters α, β, and γ from Eq. 8

3. Expectation Maximization Algorithm162

Now, the question that arises from the error distribution in Fig. 2 is how it can be163

approximated by two Gaussians, or alternatively, how can the distribution be separated164

into two Gaussian ones. This separation can be done by the EM algorithm (Hastie and165

Tibshirani 2008). This algorithm appeared in the geodetic literature, e.g., in the paper166

of Luxen and Brunn (2003) extracting straight lines and parabolas from digital images167

as well as in the paper of Peng (2009) employing EM for robust estimation of parameters168

and variance components. Recently the method was also employed by Koch (2014) as169

well as Koch and Kargoll (2013). One should mention that robust methods with high170

breakdown point can also be applied to solve the problem, see e.g., Xu (2005). Let us171
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consider a two-component Gaussian mixture represented by the mixture model in the172

following form,173

N12(x) = η1N (µ1, σ1, x) + η2N (µ2, σ2, x) , (9)

where174

N (µi, σi, x) =
e
− (x−µi)

2

2σ2
i

√
2πσi

, i = 1, 2, (10)

and ηi’s are the membership weights constrained by175

η1 + η2 = 1. (11)

The parameters being sought are (µ1, σ1 ) and (µ2, σ2 ). The log-likelihood function in176

case of N samples is177

LogL (xi, θ) =
N∑
i=1

Log (N12 (xi, θ)) =
N∑
i=1

Log (η1N (µ1, σ1, xi) + η2N (µ2, σ2, xi)) , (12)

where θ = (µ1, σ1,µ2, σ2) are the parameters of the Gaussian distributions. The problem178

is the direct maximization of this function due to the sum of terms inside the logarithm.179

In order to solve this problem, let us introduce the following alternative log-likelihood180

function:181

LogL (xi, θ,∆) =
∑N

i=1 (1−∆i) Log (N (µ1, σ1, xi)) + ∆iLog (N (µ2, σ2, xi)) +∑N
i=1 (1−∆i) Log (η1) + ∆iLog (η2) .

(13)

Here ∆i’s are considered as unobserved latent variables taking values 0 or 1. If xi182

belongs to the first component, then ∆i= 0, so183

LogL (xi, θ,∆) =
∑

i∈N1(∆)

Log (N (µ1, σ1, xi)) +N1Log (η1) (14)

otherwise xi belongs to the second component then ∆i=1, leading to184

LogL (xi, θ,∆) =
∑

i∈N2(∆)

Log (N (µ2, σ2, xi)) +N2Log (η2) , (15)

where N1 and N2 are the numbers of the elements of the mixture, which belong to the185

first and to the second components, respectively.186
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Since the values of the ∆i’s are unknown, an iterative procedure is adopted. Substi-187

tuting for each ∆i, its expected value becomes,188

ξi(θ) = E (∆i|θ, x) = Pr (∆i = 1|θ, x) ≈ η2N (µ2, σ2, xi)

(1− η2)N (µ1, σ1, xi) + η2N (µ2, σ2, xi)
. (16)

This expression is also called the responsibility of component 2 for observation i.189

Then, the EM algorithm for the two components of the Gaussian mixture is as follows:190

Take the initial guess for the parameters: θ = (µ̃1, σ̃1, µ̃2, σ̃2) and for η̃2191

Expectation Step: compute the responsibilities:192

ξ̃i =
η̃2N (µ̃2, σ̃2, xi)

(1− η̃2)N (µ̃1, σ̃1, xi) + η̃2N (µ̃2, σ̃2, xi)
, for i = 1, 2, ..., N. (17)

Maximization Step: compute the weighted means and variances for the two compo-193

nents:194

µ̃1 =
∑N

i=1

(
1− ξ̃i

)
xi/
∑N

i=1

(
1− ξ̃i

)
σ̃1 =

∑N
i=1

(
1− ξ̃i

)
(xi − µ̃1) 2/

∑N
i=1

(
1− ξ̃i

)
µ̃2 =

∑N
i=1 ξ̃ixi/

∑N
i=1 ξ̃i

σ̃2 =
∑N

i=1 ξ̃i (xi − µ̃1) 2/
∑N

i=1 ξ̃i,

(18)

and the mixing probability195

η̃2 =
N∑
i=1

ξ̃i

/
N. (19)

Assuming two Gaussian distributions, this method provides not only the means and196

standard deviations {µ1, σ1}, and {µ2, σ2} of the distributions, but also the membership197

functions for every data point {η1, η2}. Consequently, the data belonging to the two198

different distributions can be identified (see Fig. 3, left). It can be seen that some199

sample elements are misclassified. Using these parameters {µ1, µ2, σ1, σ2, η1, and η2}, let200

us compute new parameters of the plane (α, β, γ). To achieve that, ML estimation is201

now employed using a Gaussian mixture as a type of distribution.202

Therefore, we turn to the modified ML function involving a Gaussian mixture as an203

error distribution.204

4. Maximum Likelihood Estimation for a Gaussian Mixture205

Maximum likelihood estimation (MLE) models having different probability distri-206

butions than standard Gaussian, N (0, σ) can be found in literature. For example Uhler207
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Figure 3: The histograms and the data points of the error distributions resulting from the application

of EM algorithm (left). Two distributions with the inliers (blue points) and outliers (red points) are

shown in the right figure.

(2011) employed multivariate Gaussian while Rose (2000) considered the probability den-208

sity function different from Gaussian and solved MLE in symbolical form. There are also209

examples for using multivariate algebraic polynomial solution with mixture of distri-210

butions, e.g., by Drton (2006) who applied seemingly unrelated regression (SUR), and211

recently Batselier et al. (2012) who used discrete statistical model of mixture. Here, a212

multivariate polynomial solution of the MLE in case of two component Gaussian mixture213

of continuous probability variables is adopted, where in ideal case one of the components214

can represent the inliers points, while the other component is for the outliers. The like-215

lihood function for Gaussian mixture is216

LogL (xi, θ) =
∑

i∈N1
Log (N (µ1, σ1, xi, θ)) +∑

i∈N2
Log (N (µ2, σ2, xi, θ)) +N1Log (η1) +N2Log (η2) ,

(20)

where the index “1” refers to the first component while “2” corresponds to the second217

component. Considering Eq. (6) for both components and forming the necessary condi-218

tions of the optimum, the corresponding polynomial form of the maximization problem219

is developed in similar manner to the single component distribution, see Eq. (7). Details220

of the algebraic derivation of these equations in symbolic way can be found in Paláncz221

(2014).222

σ2
2

(
−

N1

(
−2αγ2−2αγµ1

√
1+α2+β2

)
2

+223

(2α2γ − (1 + α2 + β2) γ) a1 + b1 (α3 − α (1 + α2 + β2)) +224
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e1 (2α2β − β (1 + α2 + β2)) + i1 ((1 + α2 + β2)− 2α2) +225

a1

(
α2µ1

√
1 + α2 + β2 − µ1 (1 + α2 + β2)

3/2
)

+ 2αβγc1 + αβ2d1 − 2αγf1 +226

αh1 − 2αβg1 + αβµ1

√
1 + α2 + β2 − f1αµ1

√
1 + α2 + β2

)
+227

σ2
1

(
−

N2

(
−2αγ2−2αγµ2

√
1+α2+β2

)
2

+228

(2α2γ − (1 + α2 + β2) γ) a2 + b2 (α3 − α (1 + α2 + β2)) +229

e2 (2α2β − β (1 + α2 + β2)) + i2 ((1 + α2 + β2)− 2α2) +230

a2

(
α2µ2

√
1 + α2 + β2 − µ2 (1 + α2 + β2)

3/2
)

+ 2αβγc2 + αβ2d2 − 2αγf2 +231

αh2 − 2αβg2 + αβµ2

√
1 + α2 + β2 − f2αµ2

√
1 + α2 + β2

)
, (21)232

similarly, the second polynomial233

σ2
2

(
−

N1

(
−2βγ2−2βγµ1

√
1+α2+β2

)
2

+234

c1 (2β2γ − γ (1 + α2 + β2)) + e1 (2αβ2 − (1 + α2 + β2)α) +235

d1 (β3 − (1 + α2 + β2) β) + g1 (−2β2 + (1 + α2 + β2)) +236

c1

(
β2µ1

√
1 + α2 + β2 − µ1 (1 + α2 + β2)

3/2
)

+ 2αβγa1 + α2βb1 − 2βγf1 +237

βh1 − 2αβi1 + αβµ1

√
1 + α2 + β2 − βµ1f1

√
1 + α2 + β2

)
+238

σ2
1

(
−

N2

(
−2βγ2−2βγµ2

√
1+α2+β2

)
2

+239

c2 (2β2γ − γ (1 + α2 + β2)) + e2 (2αβ2 − (1 + α2 + β2)α) +240

d2 (β3 − (1 + α2 + β2) β) + g2 (−2β2 + (1 + α2 + β2)) +241

c2

(
β2µ2

√
1 + α2 + β2 − µ2 (1 + α2 + β2)

3/2
)

+ 2αβγa2 + α2βb2 − 2βγf2 +242

βh2 − 2αβi2 + αβµ2

√
1 + α2 + β2 − βµ2f2

√
1 + α2 + β2

)
, (22)243

and the third one as244

σ2
2

(
−

N1

(
2γ+2µ1

√
1+α2+β2

)
2

− αa1 − βc1 + f1

)
+245

σ2
1

(
−

N2

(
2γ+2µ2

√
1+α2+β2

)
2

− αa2 − βc2 + f2

)
. (23)246

The unknowns are the model parameters of the linear model to be fitted (α, β, and γ),247

while the others are known (constant) parameters, partly computed from data points248

and partly via EM algorithm as (µ1, µ2, σ1, σ2). To solve this system using numerical249

Groebner basis is feasible, but to solve it in symbolic way is very difficult. However,250

Dixon’s method implemented using Early Discovery of Factors heuristic algorithm can251

be applied (see, e.g., Lewis et al., 2014).252
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5. The Proposed Algebraic Solution253

The steps of the algorithm are as follows (see the flow-chart in Fig. 4):254

1) Step 1: Employ likelihood function developed for least squares in section 2 using Eq.255

8.256

2) Step 2: Having the values of the parameters, compute the model error distribution.257

3) Step 3: Employing EM algorithm, compute the parameters of the Gaussians repre-258

senting the two components in the mixture (see Eqs. 9-19).259

4) Step 4: Using likelihood function developed for Gaussian mixture, see Eq. 21 in sec-260

tion 4, compute the new model parameters via numerical Groebner basis.261

5) Step 5: Repeat steps 2, 3 and 4 above until the change of the values of the model262

parameters (α, β, and γ) are less than a given threshold of the error limit.263

6. Illustrative Example264

The application of the proposed algorithm is illustrated by fitting a plane to a265

slope having dense vegetation represented by real laser scanner data set. Outdoor laser266

scanning measurements were carried out on a hilly Park in Budapest (Hungary) using267

a Faro Focus 3D terrestrial laser scanner (Fig. 5, left). The test area was on a steep268

slope covered by dense but low vegetation (Fig. 5, right). The vegetation are bushes,269

which are natural part of the slope side and low compared to trees. The test also aimed at270

investigating tie points’ (i.e., markers with known positions and sizes) detection capability271

of the scanner’s processing software. This necessitated the deployment of different types272

of tie points (spheres in this case) all over the test area. In case of multiple scanning273

positions, these spheres were used for registering the point cloud (Fig. 5, left). The274

measurement range of the scanner is 120 m, and according to the manufacturer’s technical275

specification, the ranging error is ± 2 mm .276

The scanning parameters were set to 1/2 resolution, which equals to 3 mm/10m277

point spacing. The terrestrial laser scanner (Fig. 5) produced about 179 millions points278

acquired within five and half minutes. In order to reduce running time, the number279

of these points were reduced (automatically) to 33292 via random but proportional ex-280

traction, saving the original structure of data set. The final data set comprised of 33292281
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Figure 4: Steps of the iterative algorithm with implemented algebraic solution (see Eq. 21) in the

fourth step.

points in ASCII format, where only the x, y, z coordinates were kept (no intensity values).282

The measured coloured laser scanning point cloud and the extracted test point cloud are283

presented in Fig. (6). Figure 7 shows the results of the different iteration steps. Details284

of the implementation of the proposed algorithm in Mathematica can be found in Paláncz285

(2014).286

Tables 1 and 2 show the numerical results of the iteration process. In Table 1, the287

changing parameter values of the Gaussian components can be seen, i.e., the mean value288

(µ), standard deviation (σ) as well as the number of the data points (η, N) belonging289

to inliers and outliers respectively. Concerning this last parameter, in reality, more290

information is known, since the identity (membership function) of every data point is also291

provided by EM algorithm. Table 2 shows the progress of the corresponding parameter292
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value of the linear model (here, a plane). The convergence of the determined parameters293

after the 11th iteration is noticeable. Table 3 shows the computation times of the global294

maximization of the likelihood function with Gaussian mixture (Eq. 20) in every iteration295

step. It can be seen that the global algebraic solution of Eq. (21) using numerical296

Groebner basis is faster in nearly every step than the stochastic global optimization297

techniques, which can never find a truly global optimal solution but only an improved298

solution to truly global optimization methods of deterministic types, see e.g., Xu (2003).299

A comparison of the algebraic solution to those of three robust estimation methods300

in Table 4 indicates that the algebraic method had the smallest maximum error and301

standard deviation.302

Figure 5: The test area covered by dense, but low vegetation. The left image indicates the tie points

(i.e., reference points with known positions and radiuses) in white and the scanner while the right image

shows the test area.
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Figure 6: The colored laser scanning point cloud (left) and the extracted test point clouds (right).

Figure 7: Isolation of outliers (red points) in the subsequent iteration steps leaving the desired good data

(inliers, blue points). First iteration (top, left), second iteration (top, right), third iteration (bottom,

left), and fourth iteration (bottom, right). After the fourth iteration (see the convergence in Table 2),

it can be seen that the proposed algorithm successfully isolates the red outlying points.
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Table 1: Parameters of the two-component Gaussian during the iteration processing

steps.

Μ1 Σ1 Μ2 Σ2 N1 N2

1 -0.262556 1.991 0.183204 0.441901 9959 23333

2 -0.0116018 2.04777 0.107134 0.403876 10192 23100

3 0.263474 2.11406 0.038595 0.369776 10357 22935

4 0.560364 2.16896 -0.0120112 0.317158 10808 22484

5 0.843549 2.22209 -0.0527925 0.265089 11195 22097

6 1.14661 2.27333 -0.0889218 0.216683 11529 21763

7 1.51548 2.32325 -0.119917 0.156959 11696 21596

8 1.87306 2.359 -0.140957 0.109529 11497 21795

9 2.2991 2.35912 -0.157437 0.0922262 10621 22671

10 2.92102 2.2328 -0.173098 0.0849716 8868 24424

11 2.97683 2.24941 -0.174499 0.0651785 9000 24292

12 2.97717 2.25054 -0.174496 0.0647087 9009 24283

13 2.97713 2.25058 -0.174432 0.0646964 9009 24283

14 2.9772 2.25058 -0.174368 0.0646943 9009 24283

15 2.97727 2.25059 -0.174304 0.0646923 9009 24283

303

Table 2: Model parameters during the iteration processing steps

304
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Table 3: Comparison of the computation times of each iteration steps (in sec) in the

algebraic solution and in the direct global optimization of the likelihood function.

i Algebraic Solution Global Optimization

1 0.2184 0.2340

2 0.1248 0.2184

3 0.1248 0.2184

4 0.2652 0.2340

5 0.1560 0.2184

6 0.1240 0.2340

7 0.1248 0.2184

8 0.1716 0.2184

9 0.1248 0.2340

10 0.1404 0.2184

11 0.1872 0.2340

12 0.1404 0.2340

13 0.1404 0.2184

14 0.1560 0.2340

15 0.1872 0.2340

305

Table 4 Results of the computation in case of real data obtained from laser scanning306

of the test area in Fig. 5.307

308

Method Number of α β γ Min of Max of Standard

Inlier error error deviation

Set (cm) (cm) (cm)

RANSAC 24382 0.106 0.503 202.66 −22.4 28.3 6.4

Danish 24576 0.106 0.505 202.66 −22.0 37.0 7.0

PCA 26089 0.103 0.567 202.54 −46.0 94.6 18.6

Algebraic solution 24283 0.107 0.503 202.66 −22.0 25.0 6.2

7. Conclusion309

This study has presented an iterative algorithm using an embedded algebraic solution310

for the parameter estimation of a linear model in cases where the distribution of model311

error does not follow the criteria of a distribution of Gaussian with zero mean. To find312

the model parameters of a linear model, one can employ ML estimation developed for a313

two component Gaussian mixture. The maximization problem of this likelihood function314
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can be converted into the task of solving a multivariate polynomial system. In order315

to obtain the parameters of the Gaussian distributions, EM algorithm was employed.316

To demonstrate the suggested algorithm, an outdoor area was laser scanned; with the317

acquired point cloud consisting of both inliers (i.e., points reflecting from the ground)318

and outliers (i.e., points reflecting from vegetation). The results were compared to those319

of robust estimation methods; RANSAC, Danish and PCA. The results indicate that320

the quality of the parameter estimation from the proposed algebraic method - smaller321

maximum value and standard deviation of the fitting error - proved to be better. Future322

studies will consider heterogeneous data originating from different sources resulting in323

different error distributions as another possible application of the suggested algorithm.324

Acknowledgement325

J. Awange is grateful for the Alexander von Humboldt Foundation, which provided326

the financial support that facilitated his stay at the Geodetic Institute, Karlsruhe Insti-327

tute of Technology (KIT), Germany and Japan Society of Promotion of Science (JSPS),328

which provided the financial support that facilitated his stay at the Geophysics Institute,329
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