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ABSTRACT  

Based on the recently proposed (SISO) multi-scale control scheme, a new approach is 

introduced to design multi-loop controllers for multivariable processes. The basic feature of 

the multi-scale control scheme is to decompose a given plant into a sum of basic modes. To 

achieve good nominal control performance and performance robustness, a set of sub-

controllers are designed based on the plant modes in such a way that they are mutually 

enhanced with each other so as to optimize the overall control objective. It is shown that the 

designed multi-scale controller is equivalent to a conventional PID controller augmented with 

a filter. The multi-scale control scheme offers a systematic approach to designing multi-loop 

PID controllers augmented with filters. Numerical studies show that the proposed multi-loop 

multi-scale controllers provide improved nominal performance and performance robustness 

over some well-established multi-loop PID controller schemes.  

Keywords: Multivariable Process; Decentralized Control; Multi-Loop PID; Multi-Scale 

Control 
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1. Introduction 

Most industrial processes are multivariable or multi-input and multi-output (MIMO) in 

natures where for many decades, the decentralized control architecture (multi-loop PID 

control) has been widely applied to these types of processes. The main reason that the multi-

loop PID control has been preferred to full multivariable control is due to the fact that the 

multi-loop PID control system is relatively simple to design and implement [1]. However, the 

effectiveness of the multi-loop PID control in MIMO processes has often been limited by the 

presence of process interactions or control-loop interactions. The presence of process 

interactions in MIMO processes has been recognized as one of the main culprits responsible 

for poor multi-loop control performance. Besides the process interactions, the presences of 

deadtime (time delay) and inverse-response behaviors have also been recognized as important 

factors imposing limitation on control performance in process plants. For MIMO processes, a 

number of multi-loop PID control designs have been proposed over the last decades with the 

aim to achieve good control performance despite the limitation imposed by process 

interactions.  One example is the independent design method proposed in [2]. This method is 

quite simple to apply but it has a disadvantage resulting from the negligence of how the other 

control-loops are designed. This negligence leads to poor control performance. Another 

example is the sequential design method proposed in [3]. Unlike the independent method, the 

sequential design method attempts to include the effect of closing subsequent loops into the 

design problem. Nevertheless, as the control performance can be highly dependent on how 

the design sequence is chosen, the sequential design method could also result in poor overall 

control performance [4]. 

Besides the independent and sequential design methods, another well-known multi-loop 

control design is based on the detuning approach. In the detuning approach, the performance 

of individual controllers is first tuned based on a single-loop controller design approach (e.g., 
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Ziegler-Nichols tuning). The individual controllers are then detuned (reduced performance) 

once all the control loops are closed. A well-known detuning method is the Biggest Log-

Modulus (BLT) tuning proposed in [5]. The BLT method is based on the Ziegler-Nichols 

tuning for each single-loop controller where a single detuning parameter is introduced to 

meet the stability criterion of the Biggest Log-Modulus. The BLT method is simple to use but 

it can lead to sluggish or oscillatory responses. In addition to the BLT method, Lee and Edgar 

[4] proposed another method via which the dominant poles can be shifted to some favorable 

locations. By shifting the poles to desirable locations, the multi-loop control performance can 

be improved and sluggish or responses can also be avoided. Another pole placement 

approach is the root trajectory method proposed by Zhang et al. [6]. 

It is interesting to note that some researchers have also proposed the application of 

Internal Model Control (IMC) to the multi-loop PID control design, i.e., IMC-PID design [7-

9]. In the IMC-PID design of Vu et al. [9], the individual PID controller parameters are 

expressed in term of a single tuning parameter, i.e., based on the closed-loop time constant of 

each loop. Note that, the controllers designed based on the IMC approach may not be in the 

first place the same as PID controllers. Hence, in order to obtain the standard PID controllers 

via the IMC design, a controller reduction process is often required, e.g., in [9] the IMC-

based controllers are reduced to PID controllers using Maclaurin series.  

Chen and Seborg [10] proposed a method combining the idea of independent design and 

Nyquist stability analysis. This method consists of two steps: (1) identifying the stability 

region for PI controllers, and (2) selecting appropriate PI controller settings within this 

stability region. Advantageously, this method can guarantee the closed-loop stability. Lee et 

al. [11] proposed a method that combined the Nyquist array analysis with an iterative 

continuous cycling approach in order to design multi-loop PI controllers. Kaspar and Ray 

[17] proposed the application of chemometric approach, i.e., Principal Component Analysis 
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(PCA) and Partial Least Squares (PLS) to the design of multi-loop PI control. The advantages 

of the approach as part of the overall control system design include automatic decoupling and 

efficient loop paring, as well as the natural ability to handle non-square system. 

Lakshminarayanan et al. [28] further extended the chemometric approach to the dynamic PLS 

case, where the reduced process model can be used to design multi-loop control system 

including feedforward controller. There are many other methods for multi-loop control 

designs; e.g., see [12-18]. 

In this paper, we introduce a new multi-loop controller design based on the recently 

proposed multi-scale control (MSC) scheme for SISO processes proposed by Nandong and 

Zang [19-20]. The basic principle of the MSC scheme is to decompose a given plant into a 

sum of few basic modes or factors each with distinct speed of responses - different time-

scales. To achieve good nominal control performance and performance robustness it is vital 

that the required controller is designed in such a way that it can promote good cooperation 

among these different plant modes. It is interesting to point out that, the designed MSC 

controller is actually equivalent to a conventional PID controller augmented with a simple 

(often a first or second order) filter. In this respect, the MSC scheme provides a competitive 

alternative to PID controller design. We shall demonstrate the applicability and effectiveness 

of the MSC scheme to designing multi-loop PID control for multivariable processes. 

The rest of this paper is organized as follows. In Section 2, a brief overview of the multi-

scale control (MSC) scheme and the derivation of two PID controller tuning formulas are 

presented. In Section 3, a general procedure for the multi-loop MSC controller design and a 

simple algorithm based on the MSC-PID tuning formulas are provided. Section 4 presents 

some illustrative examples to compare the performances of the proposed multi-loop MSC 

controllers (equivalent PID controllers) with some of the existing multi-loop PID controller 
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designs including the centralized Model Predictive Control (MPC) strategy. Finally, some 

concluding remarks and future work are highlighted in Section 5. 

2. Fundamental of Multi-Scale Control Scheme 

2.1 Preliminary 

In the multi-scale control (MSC) scheme proposed by Nandong and Zang [19-20], it is 

assumed that a given plant of interest can be decomposed (via partial fraction expansion) into 

a sum of basic modes or factors. These basic modes should be different in their speed of 

responses to a given input (manipulated variable) – the modes with multi-scale dynamics.  

In general, for a single-input single-output (SISO) process the decomposition in the MSC 

scheme can be represented as 

)()()()()( 210 sMsMsMsMsP n++++= L
 (1) 

where )(sP  denotes the plant and },,2,1,0{),( nisM i K∈∀  represent the plant modes, which 

could be either a first or second order transfer function with real coefficients. It is also 

assumed that )(sM j  has a slower speed of response than }1,,1,0{),(1 −∈∀+ njsM j K . Note 

that, equation (1) implies that the plant P  can be decomposed into a sum of 1+n  basic 

modes. 

The principle of the MSC scheme is to synthesize a controller that can enhance 

cooperation among the different plant modes, which is crucial to improve both nominal 

performance and performance robustness. To achieve this enhanced cooperation, the MSC 

scheme advocates the idea of using several individual sub-controllers where each sub-

controller is tailored to control a specific plant mode. In theory, for a given plant that can be 

decomposed into a sum of 1+n  basic modes, there will be 1+n  number of separate sub-

controllers required. In a practical application, however, a fewer number of sub-controllers 

might in fact be required than in the ideal case where this can be done by applying a model 

reduction process to a given high-order process based on which the controller is designed. 
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For example, a fourth-order process model will ideally require 4 sub-controllers. If the forth-

order model could be reduced to a second-order model, then the MSC scheme based on this 

reduced model will only require 2 sub-controllers. 

2.2 Realization of the Multi-Scale Control Scheme 

The details about the MSC scheme can be found in the recent papers by Nandong and 

Zang [19-20]. Here, we only present a brief overview of the scheme based on the 3-layer 

MSC structure. Fig. 1 shows the realization block diagram of the 3-layer MSC structure. It is 

assumed that a given plant )(sP  can be decomposed into a sum of 3 basic modes. Referring 

to Fig. 1, iK  is the sub-controller to control the mode }2,1,0{),( ∈∀isM i ; 2,1),( =jsW j  

the multi-scale predictor for the −thj inner-loop; E , D , R , Y  and 
i

U  denote the signals 

for error, disturbance, setpoint, controlled variable and −thi sub-controller output, 

respectively. Notice that, the 3-layer MSC scheme shown in Fig. 1 can be reduced to a single-

loop block diagram as shown in Fig. 2. 

The multi-scale predictor 2,1),( =jsW j  is often chosen to be the inner mode 
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where )(sM i  denotes the nominal model for the mode )(sM i . 

Referring to Fig. 2, the innermost layer ( 2=n ) transfer function is written as follows 

)()(1

)(

)(

)(
)(

22

2

1

2
2

sWsK

sK

sU

sU
sG

+
==

 (3) 

where the next inner-layer ( 1=n ) transfer function can be expressed as 
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The overall multi-scale controller mscK  can be obtained as follows 
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)()()()( 210 sGsGsKsK
msc

=
 (5) 

 Note that, the inner-layer transfer function (3) is useful for synthesizing the innermost 

sub-controller 2K . To synthesize the remaining 2 sub-controllers, it will be helpful to first 

construct the augmented inner-layer transfer function given by 

)()()( 211 sGsWsQ =
 (6) 

and the augmented overall plant transfer function 

)()()()( 21 sPsGsGsPc =
 (7) 

 It is often sufficient to choose the inner-layer sub-controller as a P-only controller to 

simplify the controller tuning. Meanwhile, the outermost sub-controller is chosen as a PI 

controller. For a complicated process, a more advanced controller can be chosen for the 

outermost sub-controller, e.g., a PID or LQG controller. 

 For the MSC scheme shown in Fig. 1, the closed-loop setpoint transfer function from R  

to Y  is given by 

)()(1

)()(
)(
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+
=

 (8) 

and that from the input disturbance D  to Y as 

)()(1

)(

sPsK

sP
H

msc

dy
+

=
 (9) 

 Notice that, the transfer functions (8) and (9) have similar characteristic equations. Thus, 

if the multi-scale controller )(sKmsc  is stable for the setpoint tracking, then it will also be 

stable for the input disturbance even if the plant is an open-loop unstable process. 

Significantly, this means that the MSC scheme does not suffer from internal instability 

problem. 

2.3 Equivalent MSC-PID Controller Derivation 
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 In the following, we shall demonstrate how to synthesize an equivalent PID controller 

based on the MSC scheme – derivation of the MSC-PID tuning formula. In the present work, 

we only derive 2 tuning formulas based on First-Order plus Deadtime (FOPDT) and Second-

Order plus Deadtime (SOPDT) models. Furthermore, we assume that the 1/1 Padé formula is 

applied to approximate the deadtime; thus, the FOPDT model will lead to a 2-layer MSC 

scheme while the SOPDT model will result in a 3-layer MSC scheme. 

 Case 1 – 2-Layer MSC Scheme 

 Consider a process which can be represented by the FOPDT model 

1
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By applying the 1/1 Padé formula to approximate the delay component, an approximated 

second-order model is obtained 
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where it is assumed that mτθτ <= 5.01 . 

Upon the decomposition of equation (11) using partial fraction expansion  
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where the mode gains 0k  and 1k  can be calculated using 
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If mτθτ >= 5.01  then the expressions for 0k  and 1k  will be reversed as given by 
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 For mτθτ <= 5.01 , the multi-scale predictor is chosen to be the faster inner mode, i.e.,

)1()( 11 += sksW τ . If mτθτ >= 5.01 , the lag component will be the faster mode and the 

predictor becomes )1()( 1 += sksW mτ . From this point onward, we assume that

mτθτ <= 5.01  unless otherwise stated. 

 Assuming that the P-only controller with gain pK1  is used to control the inner mode, we 

can write the inner-layer closed-loop setpoint transfer function as 
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After substituting )1()( 11 += sksW τ  into equation (17), and followed by simplification 
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where the overall gain and closed-loop time constant are given by 
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 Let us define the ratio of the open-loop to the closed-loop (OC) time constant as follows 

1

1
1

cτ

τ
λ =

 (21) 

Significantly, the OC time-constant ratio defined in equation (21) indicates the closed-loop 

response speed in comparison with the open-loop case for a given inner-layer loop. The 

larger the value of 1λ , the faster is the closed-loop response of the inner-layer loop. Hence, 

we can specify a desired value for 1λ  based on which the value of pK1  is determined. To 
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determine pK1 , let us substitute equation (20) into (21) where after simplification pK1  can be 

written as 

1

1
1

1

k
K p

−
=

λ
 (22) 

Equation (22) can be used to obtain pK1  by first specifying the 1λ . 

 Our next task is to determine the required setting for the outermost sub-controller. To do 

this, we assume that the PI controller is chosen to control the outermost mode, i.e.: 
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To determine pK0 , we can use the same approach as in the inner mode case, i.e., by 

specifying the OC time-constant ratio for the outermost mode as follows 
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where 
1kΓ  indicates the sign for the inner mode gain 1k  (this sign is included to ensure that a 

correct sign of the overall controller gain is obtained). 

 Meanwhile, the reset time is set based on a desired fraction γ  of the open-loop time 

constant. We suggest 

2.11.0,0 ≤≤= γγττ mI  (25) 

For this 2-layer MSC scheme, the only inner-layer transfer function is given by 
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The overall MSC controller can then be obtained as in (5), i.e., combining (23) and (26): 
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Notice that, equation (27) is similar to the classical form of PID controller, which can be 

easily converted into a PID controller augmented with a first order filter given as follows 
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 Upon comparison of equations (27) and (28), the PID controller parameters in terms of 

new tuning parameters ( 0λ , 1λ , γ ) are 
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where the OC time-constant ratios 10 >λ  and 11 >λ . 

 Case 2: 3-Layer MSC Scheme 

 In this case, we consider a process given by the SOPDT model as 
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The application of the 1/1 Padé formula to equation (33) leads to 
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The factional expansion of (34) yields a sum of 3 basic modes: 

111
)(

2

2

1

1

0

0

+
+

+
+

+
=

s

k

s

k

s

k
sP

τττ  (35) 

where the mode gains 0k , 1k  and 2k are given by 
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The mode gains (36) are derived based on the assumption that 012 5.0 ττθτ <<= m , i.e. half 

of the delay is less than the faster lag time 1τ . 

 Similar to the first case, let us assume that the P-only controllers are used to control the 

first and second inner modes with gains pK1  and pK2  respectively; a PI controller is used to 

control the outermost mode. The sub-controller gains can be obtained in the same way as in 

the previous case 1: 
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where 
ji kkΓ  a denote the sign of ji kk × . 

 For this 3-layer MSC scheme, the combined inner-layer transfer functions can be 

expressed in the form of 
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Here, )1/( 2222 kK pc += ττ  and 2222 1/( kKKK pp
o

p += ). 

By combining (23) with (38) as in (5), the overall MSC controller can be expressed as 
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From (42), by taking the augmented filter as 
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We can now obtain the PID controller parameters using the following equations (44) – (46): 
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The equations (39) – (41) can be expressed in terms of the new tuning parameters as 
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Note in this case, the overall MSC controller (42) is equivalent to a PID controller augmented 

with a second-order filter (43). The values for 2,1,0, =iki  are calculated via equation (36). 

3. Multi-Loop MSC Controller Design Procedure 

3.1. General Procedure 

 The following steps represent a general procedure for designing equivalent MSC-PID 

controllers for multivariable processes. 
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 Step 1: Identify the suitable controller pairings. This can be done via RGA analysis for 

simplicity. After the controller parings have been determined, arrange the transfer function 

matrices in a way that corresponds to the direct pairing case. Each MSC controller )(, sK imsc  

can be designed independently based on the diagonal transfer function )(sgii . 

 Step 2: Decompose )(sgii  into a sum of basic modes as illustrated below: 

)()()()( ,1,0, sMsMsMsg niiiii L++=
 (50) 

Here, for )(sM ij  the first subscript i denotes the thi  control loop and the second subscript j  

denotes the thj  mode. 

 Step 3: Design the )(, sK imsc  based on (50) (assuming 3-layer MSC scheme): 

Step 3.1: Assume that a P-only controller is chosen, first design the innermost sub-controller 

2,i
K  based on the innermost mode )(2, sM i . Obtain the sub-controller tuning value 

*
2,i

K  based 

on the minimum Integral Absolute Error (IAE) criterion via the Matlab SISO Design tool. 

Step 3.2: The implemented sub-controller is 
*

2,2,
5.0

ii
KK = . Use this setting to construct the 

innermost layer transfer function )(2, sGi  as in (3) and the augmented inner-layer transfer 

function )(1, sQi  as in (6). 

Step 3.3: Assume a P-only controller is used, design the second inner-layer sub-controller 

1,i
K  based on the minimum IAE criterion to obtain a tuning value 

*
1,i

K . 

Step 3.4: Set the sub-controller tuning 
*
1,1,

5.0
ii

KK =  and construct )(1, sGi  as in (4). 

Step 3.5: Construct the augmented overall transfer function )(, sP ci  as in (7) and finally use 

this transfer function to design the outermost sub-controller )(0, sKi . The overall MSC 

controller for the −thi loop is obtained as in (5). The overall MSC controllers can be easily 

rearranged into the form of practical PID controllers augmented with filters; see [20]. 
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 Step 4: Refinement of MSC-PID controllers designed in Step 3. 

Step 4.1: Upon closing all the control loops, it is often required to refine (probably detuning) 

the MSC controllers. We recommend refining the outermost sub-controllers first while 

keeping the inner-layer sub-controllers constant. As an illustration, let us assume that a PI 

controller is adopted for the outermost sub-controller 
0,i

K  where based on the minimum IAE 

criterion (or some other criteria) we can obtain via Step 3.5: 

( )sKK iIici ,
*
,

*
0, /11 τ+=  

Next, we can retune the above controller as: 

0,
*

0,0, / iii RFKK =  

 In other words, the controller gain 
*
,ic

K  is retuned by a factor of 0,iRF ; 10, >iRF  implies 

detuning of the multi-scale controller while 10, <iRF  implies increasing the controller tuning 

(increase the controller aggressiveness). 

Step 4.2: After retuning all the outermost sub-controllers as in Step 4.1, it may still be 

necessary to further retune the inner-layer sub-controllers if certain target responses remain 

unachievable, e.g. overshoot of certain controlled variables are too high which implies that 

some of the innermost sub-controllers might be too aggressive. 

Remark 1 - The P/PI/PID controllers used in the MSC scheme are designed using the Matlab 

SISO Design Tool (Matlab Control System Toolbox). The proposed design (i.e., tuning 

procedure) is rather general where other tuning procedures, e.g. IMC and LQG synthesis can 

also be applied. 

3.2. Algorithm: Design via MSC-PID Tuning Formula 

 As an alternative to the general procedure given in the previous sub-section, in the 

following we propose an algorithm for the direct synthesis of PID controller based the MSC-

PID formulas given in Sub-Section 2.3. 
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 Step 1: For a given −thi loop, specify the values for open-loop to closed loop (OC) time 

constant ratios jλ  ( 2,1=j  based on the FOPDT model or 3,2,1=j  based on the SOPDT 

model) with an initial setting of 1=γ . 

 Step 2: Obtain the PID controller parameters using equations (29) to (32) if the diagonal 

transfer function )(sgii  is represented by the FOPDT model or using the equations (44) to 

(49) if )(sgii  is given as the SOPDT model. 

 Step 3: Check the gain margin (GM) and phase margin (PM) using either the Nyquist or 

Bode plot. The target value for GM should be approximately between 6 dB and 10 dB while 

the PM should be approximately between 40
o
 and 65

o
. If GM and PM are outside these 

desired ranges, go back to Step 1 and reset jλ . 

 Step 4: Once the values of GM and PM fall within the desired ranges, gradually reduce 

the value for γ until the desired shape of response (e.g., setpoint response) is obtained. 

4. Illustrative Examples 

The usefulness of the 2 proposed multi-loop control designs based on the MSC scheme is 

demonstrated using two 2x2 and one 3x3 multivariable processes reported in the open 

literature. 

Example 1 - Wardle and Wood (WW) Column 

 The WW column has been used by some researchers in studying the performances of 

some multi-loop PID control schemes; e.g., see references [5-6, 16, 21-22]. The nominal 

model of the WW column [5] is given by: 











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



=

+

−

+

++

−
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12.0
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094.0

)145)(148(

101.0
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126.0
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s

e

s

e

ss

e

s

e

ss

ss

G(s)G(s)G(s)G(s)  (51) 
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 The Bristol’s relative gain array (RGA) based on model (51) is as follows: 













−

−
=

687.2687.1

687.1687.2
RGA  

Based on the RGA values, the direct pairing should be used. Notice that the RGA diagonal 

elements are quite big (above 1) indicating significant interactions in the process. 

 Jung et al. [22] compared the performance of the multi-loop PID control designed based 

on their one-parameter method with the multi-loop control schemes designed based the BLT 

(Biggest Log-Modulus) and SAT (sequential autotuning) methods. They reported that a 

significant closed-loop performance improvement was achieved based on the one-parameter 

method over the BLT and SAT methods. In the present study we shall compare the 

performance of the multi-loop PID control based on the MSC scheme with that of the Jung et 

al. [22] and the centralized Model Predictive Control (MPC). 

 Decentralized MSC strategy 

 Here, we demonstrate the applicability and effectiveness of the general procedure given in 

Sub-Section 3.1 to the multi-loop PID control design. It is assumed that the time-delays are 

approximated using the first-order Padé formula. Following the plant decomposition, each of 

the diagonal transfer functions is decomposed into a sum of 2 basic modes given as follows 

















=








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



+
+

+

−

+
−

+

14

031.0

135

151.0

13

013.0

160

139.0

)(

)(

22

11

ss

ss

sg

sg

 (52) 

Next, we choose the multi-scale predictors as 












=













+

+−

)14/(031.0

)13/(013.0

)(

)(

1,2

1,1

s

s

sW

sW

 (53) 

Following the procedure in Section 3.1, the finalized tuning values for the first MSC 

controller are given by 
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










=













−

+−

2.47

/)122(043.0
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0,1 ss
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 (54) 

and for the second MSC controller 












=








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

 +−

132

/)116(049.0

1,2

0,2 ss

K

K

 (55) 

Note that, the retuning factors used for the inner-layers of control-loops 1 and 2 are 

2.711 =RF  and 122 =RF , i.e., there is no need to retune the loop 2. In this example, only the 

inner sub-controller for the control-loop 1 is detuned to avoid sharp “spike” in 2Y  following a 

setpoint change in 1Y . 

From equation (54), the overall MSC controller for the control-loop 1 is given by 









+

+−







 +
−=

186.1

)13(2.29122
043.0)(1,

s

s

s

s
sKmsc  (56) 

Equation (56) can easily be rearranged in the form of a PID controller augmented with a first 

order filter  









+








 ++=
186.1

1
64.2

25

1
14.31)(1,

s
s

s
sKmsc  (57) 

We can obtain the second PID controller for the control-loop 2 from equation (55) using the 

same procedure as above. The equivalent PID controllers corresponding to the multi-scale 

controllers (54) and (55) are displayed in Table 1. 

Decoupling MSC strategy 

Next, we demonstrate the applicability and usefulness of the alternative MSC-PID tuning 

algorithm given in Sub-Section 3.2 to the multi-loop PID control design. In this case, we 

propose the use of 2 ideal decoupling controllers given as: 

s
d e

ss

s
KsD 6

212
13.07.112,272

1.01.6
)( −
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 (58) 









+

+
=

12.06.4

09.03.3
)(21

s

s
KsD d  (59) 
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Notice that, we have introduced the moderating factor dK  in equations (58) and (59) in 

order to reduce the sensitivity of overall control performance when subject to modeling 

errors. The performance of an ideal decoupler is often too sensitive to modeling error. For 

this example, we choose 8.0=dK . The PID controller tunings based on the algorithm given 

in the Sub-Section 3.2 is shown in Table 2. Additionally, for the purpose of comparison we 

also show the PID controller tunings used in the Jung et al. [22] in Table 3. 

MPC strategy 

For the linear MPC design, the following settings are used: the time interval 2=∆T , 

prediction horizon 25=pN , control horizon 2=uN , input rate weightage [ ]1.01.0=IR  and 

output weightage [ ]5045=yQ . The MPC controller is designed via the Matlab MPC 

Toolbox. 

The performances of the 4 different control strategies are compared based on sequential 

step changes in 1Y  and 2Y  at times 5=t  units and 100=t  units, respectively. Furthermore, 

the performance robustness in the presence of modeling errors in the model given by (51) are 

compared under 4 perturbed conditions defined as follows: 

i. Perturbed condition A: 30% time delay errors and 10% gain errors in all transfer 

function elements. 

ii. Perturbed condition B: 30% time delay errors and -10% gain errors in all transfer 

functions. 

iii. Perturbed condition C: 30% time delay errors, 10% gain errors in the diagonal 

transfer functions and -10% gain errors in the off-diagonal transfer functions. 

iv. Perturbed conditions D: 30% time delay errors, -10% gain errors in the diagonal 

transfer functions and 10% gain errors in the off-diagonal transfer functions. 
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The performance as measured in terms of the total Integral Absolute Error (IAE) for the 4 

different control strategies under various conditions are shown in Table 4. Notice that from 

Table 4, under the nominal condition the difference in performances between the MPC and 

decoupling MSC is only about 5%. Meanwhile, the decentralized MSC provides nearly 150% 

performance improvement over the decentralized PID scheme of Jung et al. [22]. For all 

perturbed conditions based on the modeling errors of 30% in time delays and ±10% in 

process gains, the MPC is unstable while all other control strategies remain stable. On 

average, the decoupling MSC provides about 100% and 270% performance improvement 

over the decentralized MSC and Jung et al. schemes, respectively. Thus, we can conclude that 

by adding the decoupling controllers (58) and (59), the control performance can be increased 

significantly over the purely decentralized control structure. Also, we can conclude that the 

MSC-based PID control design produces improved performance over the Jung et al. PID 

control design for this multi-loop process. 

Figs. 3 and 4 show the closed-loop responses at the nominal condition for the outputs and 

inputs respectively. As shown in Fig. 3 it is obvious that the decentralized MSC produces 

better performance than the Jung et al. decentralized PID control scheme; meanwhile, the 

MPC and decoupling MSC responses are quite closed at the nominal condition. 

Example 2 - Wood and Berry (WB) Column 

 The Wood and Berry (WB) column [23] is perhaps the most widely cited two-input two-

output example in the multi-loop control study; e.g., see [4, 6, 11, 23-24]. The model for WB 

distillation column is given by 
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 (60) 

The RGA for the WB column is given by 
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











−

−
=

009.2009.1

009.1009.2
RGA  

which suggest that direct controller pairings should be used. The diagonal RGA values of the 

WB column is quite similar to that of the previous WW column – indicates that the process 

interaction is quite serious. 

 The general procedure in Section 3.1 is used to devise the multi-loop (decentralized) MSC 

controllers where the resulting equivalent PID controllers are shown in Table 1. Meanwhile, 

the algorithm in Section 3.2 is used to directly synthesize the PID controllers for the 

decoupling MSC strategy (the result is shown in Table 2). For the decoupling MSC strategy, 

the following 2 ideal decouplers are used 

s
d e

s

s
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
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s
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
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


+

+
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 (62) 

where the moderating factor is chosen to be 8.0=dK . For comparison we also use the multi-

loop PID control of Vu and Lee [23] where the controller tunings are shown in Table 3. Vu 

and Lee [23] reported that their multi-loop PID control design based on an independent 

method resulted in a better performance than the methods proposed by Lee et al. [13], Loh et 

al. [21] and Ho et al. [25]. Additionally, we also design a linear MPC controller for the WB 

column for comparison with the proposed decoupling MSC scheme. For the MPC design, the 

following settings are used: 1=∆T , 30=pN , 2=uN , [ ]15.015.0=IR  and [ ]7.67.6=yQ . 

The performances of the 4 different control strategies are compared on the basis of 

sequential step changes in 1Y  and 2Y  at times 5=t  units and 100=t  units respectively. The 

performance robustness is compared under the 4 perturbed conditions similar to those defined 

in the WW column example; the only difference is that for this WB example, the perturbed 

conditions are based on 20% time delay errors and ±10% gain errors. 
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Table 5 shows the total IAE values for the different control strategies. It is worth 

highlighting that on average the decoupling MSC performs markedly better than the MPC 

while the decentralized MSC-PID performs better than the multi-loop PID control designed 

based on the method of Vu and Lee [23]. 

Fig. 6 shows the closed-loop responses at the nominal condition for the different control 

strategy. Again, notice that the responses for the decoupling MSC and MPC schemes are 

quite closed. The input movements at the nominal condition are shown in Fig. 7; the input 

movements for the Vu and Lee multi-loop PID control is not shown in the figure because of 

the huge spikes (10
10

 in magnitude) in the controlled outputs. Just like in the previous 

example, overall the decoupling MSC demonstrates better performance robustness than the 

centralized MPC strategy. 

Example 3 - Ogunnaike and Ray (OR) column 

 The OR column [26] has been used by several researchers to test the performances of 

various multi-loop/multivariable control schemes, e.g., see [4, 16, 24]. The model for the 3x3 

OR column is given as follows 
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The RGA for the OR column is 


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Again, the RGA diagonal elements are quite large above 1, which indicate strong process 

interaction in the OR column. For the first and second control-loops, notice that 11g  and 22g  
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are both decomposable into a sum of only 2 basic modes after the approximation of the 

delays using the first-order Padé formula. Meanwhile with respect to the third control-loop, 

the transfer function 
33g  is decomposed into 3 basic modes. Thus, for this third control-loop 

we may choose to use the 3-layer MSC scheme instead of only 2-layer MSC scheme. In the 

present work, for control-loop 3 we use the 3-layer MSC scheme as the transfer function 33g

is quite complex in terms of its dynamic behaviors (with slow zero) compared to the transfer 

functions 11g  and 22g . 

The decentralized MSC control scheme is designed based on the general procedure given 

in Section 3.1 (see Table 1 for equivalent PID controller tunings). Additionally, we also 

develop a partial decoupling control strategy where the required PID controllers are tuned 

using the MSC-PID algorithm given in Sub-Section 3.2. The resulting PID controller tunings 

for this partial decoupling MSC strategy are given in Table 2. The 3 ideal decoupling 

controllers are given by 
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where the moderating factor 8.0=dK . 

For this example, we also use the multi-loop PID control of Vu and Lee [24] and the 

centralized MPC scheme for comparison purposes. The PID controller tunings for the Vu and 

Lee scheme are shown in Table 3. Note that, for this example Vu and Lee [24] had shown 

that their multi-loop PID control performed better than the multi-loop PID control designed 

via the one-parameter method of Jung et al. [22] and the BLT [5]. The centralized MPC 
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controller is designed with the following settings: 1=∆T , 24=pN , 2=uN , 

[ ]1.01.01.0=IR  and [ ]1044100=yQ . 

The nominal performance and performance robustness are evaluated on the basis of 

sequential step changes of magnitudes 1, 1, and 10 units in 1Y , 2Y  and 3Y  respectively (at 

times 5=t  units, 100=t  units and 200=t  units respectively). The perturbed conditions are 

as defined in the previous examples based the modeling errors of 20% in time delays and 

±10% in process gains. Table 6 illustrates the performance comparison measured in term of 

the total IAE values for the 4 different control strategies. Interestingly, on average the 

decentralized MSC scheme not only outperforms the decentralized PID control based on Vu 

and Lee [24] but also produces almost the same performance as the fully multivariable MPC 

controller. For this example, the decoupling MSC exhibits the best performance (i.e., lowest 

IAE) followed by the decentralized MSC, MPC and Vu and Lee schemes. The fact that the 

decoupling MSC exhibits better performance than the decentralized MSC implies that the 

process interaction has a significant influence on the control performance. 

Fig. 8 demonstrates the closed-loop responses at the nominal condition while Fig. 9 

shows the corresponding input movements. As displayed in Fig. 8, it is clear that the MSC-

based PID control design provides large improvement over other schemes for the control-

loop 3, i.e., 3Y  response. Fig. 9 shows that all control strategies do not encounter the problem 

of derivative or proportional kick (i.e. no huge spike in input movement). 

5. Conclusions 

We have presented a new approach to designing the multi-loop PID control based on the 

principle of the multi-scale control scheme of Nandong and Zang [19-20]. Two MSC-based 

procedures for the multi-loop PID control design have been proposed: (a) a general MSC 

procedure, and (b) an algorithm using MSC-PID tuning formulas. In the general procedure 
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(Section 3.1), the minimum IAE tuning criterion is applied sequentially to the outer and inner 

modes. Note that, different tuning rules can also be used in this general procedure, e.g., IMC, 

and Ziegler-Nichols. Moreover, for each mode different tuning rule can also be applied – 

different tuning rules can be mixed. In Sub-Section 3.2, a simple algorithm for the multi-loop 

PID control design has been proposed, which makes use of the MSC-PID tuning formulas 

derived in Sub-Section 2.3. Interestingly, the decoupling multi-loop MSC scheme has shown 

superior performance robustness over the centralized MPC strategy while the decentralized 

MSC scheme has demonstrated better performance robustness over the two well-known 

decentralized PID control schemes. It is worth highlighting that, for the 3x3 Ogunnaike and 

Ray column the decentralized MSC scheme outperformed the MPC scheme. Future work will 

focus on the extension of the proposed MSC-based design procedures to more complex (e.g., 

higher order transfer functions) and nonlinear systems. 
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Table 

Table 1. Equivalent MSC-PID controller tunings via the general procedure in Section 3.1 
 PID Controller Filter Stability 

WW Column    

Loop 1 






 ++= s
s

Gc 64.2
25

1
14.311  

186.1

1
1

+
=

s
G f  

oPMdBGM 9.50,3.12 ==

 

Loop 2 






 ++−= s
s

Gc 05.0
20

1
14.252  

1785.0

1
2

+
=

s
G f  

oPMdBGM 48,14.8 ==  

WB Column    

Loop 1 






 ++= s
s

Gc 48.0
5.13

1
1848.01  

1235.0

1
1

+
=

s
G f  

oPMdBGM 4.60,65.7 ==

 

Loop 2 





 ++−= s
s

Gc 031.0
93.3

1
1079.02

 
1195.0

113.2
2

+

+
=

s

s
G f  

oPMdBGM 3.24,1.9 ==  

OR Column    

Loop 1 






 ++= s
s

Gc 72.0
9.2

1
1829.01  

1236.0

1
1

+
=

s
G f  

odBGM 6.46,3.17=  

Loop 2 







 ++−= s
s

Gc 15.0
3.3

1
1309.02

 
1275.0

15.1
2

+

+
=

s

s
G f  

oPMdBGM 9.58,6.10 ==

 

Loop 3 






 ++= s
s

Gc 24.0
96.0

1
103.23  )1065.0)(107.1(

189.3
3

++

+
=

ss

s
G f

 

oPMdBGM 1.33,74.5 ==
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Table 2. PID controller tunings via the MSC tuning formulas in Section 3.2 

 Setting Stability PID Controller Filter 

WW    

Loop 1 
9.0

5.3,2 10

=

==

γ

λλ
 

o
PM

dBGM

7.64

8.7

=

=
 








++= s

s
Gc 84.2

57

1
14.511  

186.0

1
1

+
=

s
G f  

Loop 2 
8.0

5,1.2 10

=

==

γ

λλ
 

o
PM

dBGM

62

6.7

=

=
 








++−= s

s
Gc 5.3

32

1
18.252  

18.0

1
2

+
=

s
G f  

WB    

Loop 1 
7.0

5.2,2 10

=

==

γ

λλ
 

o
PM

dBGM

2.64

8.8

=

=
 







 ++= s
s

Gc 48.0
2.12

1
1746.01  

12.0

1
1

+
=

s
G f  

Loop 2 
9.0

6,2 10

=

==

γ

λλ
 

o
PM

dBGM

1.66

9.7

=

=
 







 ++−= s
s

Gc 34.1
5.14

1
117.02  

125.0

1
2

+
=

s
G f  

OR

 

   

Loop 1 
8.0

4,1.2 10

=

==

γ

λλ

 
o

PM

dBGM

2.65

3.10

=

=

 









++= s

s
Gc 05.1

66.6

1
118.21

 
1325.0

1
1

+
=

s
G f

 

Loop 2 
8.0

5,4.2 10

=

==

γ

λλ

 
o

PM

dBGM

4.66

7.10

=

=

 









++−= s

s
Gc 09.1

5.5

1
141.02

 
13.0

1
2

+
=

s
G f

 

Loop 3 
12.0,2.1

4.1,5.3

2

10

==

==

γλ

λλ

 
o

PM

dBGM

5.49

3.8

=

=

 









++= s

s
Gc 43.1

15.6

1
191.73

 
1224.3135.1

15.0
3

++

+
=

ss

s
G f
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Table 3. PID controller tunings based on Jung et al. [22] and Vu & Lee [24] 

 PID Controller Filter Stability 

WW    

Loop 1
a 








 ++= s
s

Gc 02.33
09.28

1
183.371  

101.39

1
1

+
=

s
G f  oPMdBGM 2.69,2.12 ==  

Loop 2
a 








 ++−= s
s

Gc 36.31
62.30

1
186.382  

111.68

1
2

+
=

s
G f  oPMdBGM 9.61,6.10 ==  

WB    

Loop 1b 







 ++= s
s

Gc 02.0
55.10

1
166.01  NA oPMdBGM 5.57,9.9 ==  

Loop 2
b 








 ++−= s
s

Gc 04.1
54.7

1
111.02  NA oPMdBGM 3.52,6.12 ==  

OR    

Loop 1
b 








 ++= s
s

Gc 58.2
12.7

1
125.21  

137.4

1
1

+
=

s
G f  oPMdBGM 5.50,3.13 ==  

Loop 2b 







 ++−= s
s

Gc 37.3
44.6

1
149.02  

165.5

1
2

+
=

s
G f  oPMdBGM 5.51,13 ==  

Loop 3b 







 ++= 16.10
11.3

1
183.43

s
Gc  

174.5

1
3

+
=

s
G f  oPMdBGM 2.41,58.3 ==  

a 
Jung et al. [22] and 

b 
Vu & Lee [24]. 
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Table 4. Total IAE values for 4 different control strategies (WW column) 

Condition MPC Decoupling MSC Decentralized MSC Vu & Lee 

Nominal 9.2 10.5 16.8 18.9 

Perturbed A 14.6 13.5 21.6 23.2 

Perturbed B 12.6 12.9 19.8 22.0 

Perturbed C 14.7 12.7 17.0 19.0 

Perturbed D 18.2 20.5 31.9 35.3 

Average 17.3 14.0 21.4 23.7 

 

Table 5. Total IAE values for 4 different control strategies (WB column) 

Condition MPC Decoupling MSC Decentralized MSC Jung et al. 

Nominal 34 36.8 69.5 172.9 

Perturbed A Unstable 47.1 104.9 170.2 

Perturbed B Unstable 45.9 97.5 187.6 

Perturbed C Unstable 41.7 86.2 175.1 

Perturbed D Unstable 63.6 121.7 175.8 

Average - 47.0 96.0 176.3 

 

Table 6. Total IAE values for 4 different control strategies (OR column) 

Conditions MPC Decoupling MSC Decentralized MSC Vu & Lee 

Nominal 137.3 144.3 121.3 412.3 

Perturbed A 191.4 177 216.6 438.5 

Perturbed B 171.8 164.1 167.2 480.6 

Perturbed C 188.1 146.9 156.7 422.2 

Perturbed D 232.9 250.3 252.9 508.1 

Average 184.3 176.5 182.9 452.3 
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Figure Captions 

Fig. 1 Realization block diagram of the 3-layer multi-scale control (MSC) scheme 

Fig. 2  Single-loop equivalence of the 3-layer multi-scale control (MSC) scheme 

Fig. 3 Closed-loop responses under the nominal condition for the WW column 

Fig. 4 Input movements under the nominal conditions for the WW column 

Fig. 5 Input movements under the perturbed condition D for the WW column 

Fig. 6 Closed-loop responses under the nominal condition for the WB column 

Fig. 7 Input movements under the nominal condition for the WB column 

Fig. 8 Closed-loop responses under the nominal conditions for the OR column 

Fig. 9 Input movements under the nominal conditions for the OR column 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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Figure 9 
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