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Abstract

In this paper, the stabilization problem of switched control system- 
s with time delay is investigated for both linear and nonlinear cases. 
First, a new global stabilizability concept with respect to state feed- 
back and switching law is given. Then, based on multiple Lyapunov 
functions and delay inequalities, the state feedback controller and the 
switching law are devised to make sure that the resulting closed-loop 
switched control systems with time delay are globally asymptotically 
stable and exponentially stable.
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1 Introduction

A switched system is a hybrid system comprised of continuous-time or 
discrete-time subsystems and a rule that supervises the switching between 
subsystems. Switched systems can be found in many areas, such as comput-er 
science, control systems, electrical engineering and technology, automotive 
industry, and air traffic management and control [1]-[4]. For switched system-
s, most important and challenging problems are on stability and stabilization 
(i.e., is it possible to design (or find) a switching law under which the result-
ing switched systems are stable?). Hence, the recent focus of switched control
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systems is on the design of a switched law and a controller under which the 
controlled systems are stable. In the last two decades, stability analysis of 
switched systems and switching control design have attracted considerable 
attention among control theorists, computer scientists, mathematicians and 
practicing engineers. Many interesting and important results have been es-
tablished. See, for example, [3]-[14] and the references therein.

On the other hand, time delay phenomenon exists in many practical 
switched systems, see, for example, [9]-[10], [14]-[15]. Stability and stabi-
lization problem is also an important and challenging problem for switched 
systems with time delay. In [15], exponential stability of switched system-
s with time-delay is established based on average dwell time and Lyapunov 
functions methods. Using a multiple Lyapunov function method, exponential 
stability of some special linear switched system is investigated in [16]. More-
over, a linear matrix inequality (LMI) method is applied to study the stability 
problem of switched systems in [17]–[20]. In [21], asymptotic stability and 
stabilization of a class of switched control systems is studied, where a delay-
dependent stability criterion is formulated in term of LMIs by using quadrat-
ic Lyapunov functions and inequality analysis technique. For discrete-time 
systems, some interesting results can be found in [4], [22] and [23]. Other 
methods, such as dwell time and average dwell time, are used in the study 
of switched systems. For example, stability of some slow-switched control 
systems has been studied in [24], and stabilization problems for switched 
systems have been discussed in [25]-[28], [38], [39].

For the results mentioned above, the switching signal does not involve 
time delay. However, in real world, a switched control system may have 
several controllers and not all the controllers are required to switch at the 
same time. This class of systems can be described by switched control sys-
tems in which the switching signal has time delay. These switched control 
systems are much more complex than a conventional switched system and 
hence only few works are available in the literature, such as, [29] and [30], 
where some sufficient conditions for stability are derived for some switched 
linear systems with time delay appearing in the switching signal. It appears 
that no results on the stabilization problem are available in the literature for 
nonlinear switched control systems with distributed time delays and time 
delay appearing in the switching signal. This has motivated our research. In 
addition, our results obtained can be applied to the cases with asynchronous 
switching in actual operation, such as the stabilization of chemical systems 
[36] and multi-agent systems [33]-[35]. The asynchronous switching in sys-
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tems is always caused by the controller lags of the system.
In this paper, we consider static state feedback control for nonlinear

switched system with distributed time delays and with time delay appear-ing
in the switching signal. In this study, the time delay of the state may be
different from the time delay appearing in the switching signal of the feedback
controller. We first introduce some new concepts on stabilization in relation to
controller and switching law. Then, by using the method of Lyapunov
functions and delay inequalities, some delay-dependent conditions are derived
for the design of state feedback controller and a switching law to guarantee
the stability of the resulting closed-loop switched control sys-tems.The
advantages of this paper are twofold. First, the system model includes both
integral terms, called distributed delay, and asynchronous con-trol time lags.
This model can cover most of the existing models for switched linear/
nonlinear systems. Second, the stability issue under investigation is with
respect to both state feedback control and switching signal, which is a much
more general problem than previous results.

The outline of the paper is as follows. Section 2 presents some definitions
and some technical lemmas needed for the proof of the main results. The
design of a switching law for global asymptotical or exponential stabilizability
of linear and nonlinear switched control systems are obtained in Section 3
and Section 4, respectively. Finally, some concluding remarks are made in
Section 5.

2 Preliminaries

The following switched control system is considered:

ẋ(t) = Aσ(t)x(t) + Bσ(t)u+ fσ(t)(x(t), xt), (1)

where x(t) ∈ Rn, u ∈ Rn is state feedback control, Aσ(t) ∈ Rn×n, and
Bσ(t) ∈ Rn×n are state matrices, the right continuous function σ(t) : R →
Θ = {1, 2, · · · , N} is the switching signal, xt ∈ Cτ = {φ|φ ∈ C([−τ, 0], Rn)},
τ > 0 is a constant and fσ(t) ∈ C(Rn × Cτ , R

n) satisfy fσ(t)(0, 0) = 0.
In this paper, N+ = {1, 2, · · · }, R+ = [0,+∞), E is an identity matrix of

appropriate dimension, |A| denotes the usual norm of a matrix A ∈ Rn×m,
∥xt∥ = supt−τ≤θ≤t |x(θ)| denotes the sup norm of the function xt ∈ Cτ . If
A ∈ Rn×n, λ(A) denotes eigenvalue of A. Let σ = {(i1, t1), · · · , (ik, tk), · · · }
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be the switching law, meaning that when t ∈ [tk, tk+1), the i
th
k+1 subsystem is

active, i.e.

ẋ(t) = Ak+1x(t) + Bk+1u+ fk+1(x(t), xt), t ∈ [tk, tk+1).

Let x(t, t0, φ, σ) be the solution of system (1) under the switching law σ,
starting from (t0, φ).

It is well known that, a switching law often plays an important role in
the study of the stability of a switched system. Even if the subsystems are
stable, different switching laws may results in totally different properties of
the overall switched systems. In this paper, our focus is on to design a
controller u and a switching law σ so that the resulting closed-loop switched
systems are guaranteed to possess desired properties.

Next, we propose some concepts on the stabilization for the switched
control system.

Definition 2.1. Consider the switched control system (1).

1) It is said to be stabilizable with respect to (w.r.t) the state feedback
control u and the switching law σ (SWUS) if it is stable under the state
feedback u and the switching law σ. That is, for any ε > 0, there exists
a δ > 0, such that for any φ ∈ Cτ , ||φ|| < δ implies ||x(t, t0, φ, σ)|| < ε.

2) It is said to be asymptotical stabilizable under the feedback control u
and the switching law σ (ASWUS) if it is SWUS and there exists a
δ > 0 such that for any φ ∈ Cτ , ∥φ∥ < δ implies

limt→+∞ x(t, t0, φ, σ) = 0.

3) It is said to be globally asymptotical stabilizable under the feedback con-
trol u and the switching law σ (GASWUS) if it is ASWUS and for any
φ ∈ Cτ , has

limt→+∞ x(t, t0, φ, σ) = 0.

4) It is said to be exponential stabilizable under the feedback control u and
the switching law σ (ESWUS) if there exist constants M > 0, δ >
0, λ > 0, such that for any φ ∈ Cτ , ∥φ∥ < δ implies

|x(t, t0, φ, σ)| ≤Me−λ(t−t0), t ≥ t0.
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5) It is said to be globally exponential stabilizable under the feedback control
u and the switching law σ (GESWUS) if there exist constants M >
0, λ > 0, such that for any φ ∈ Cτ , it holds that

|x(t, t0, φ, σ)| ≤M∥φ∥e−λ(t−t0), t ≥ t0.

Without loss of generality, we choose, in this paper, t0 = 0 and denote
x(t, 0, φ, σ) := x(t).

To study the stabilizability of system (1), we need the following lemmas.

Lemma 2.1. (Gronwall inequality) Suppose that g, u ∈ C([t0, t1), R+), and
that c is a nonnegative real constant. If

u(t) ≤ c+

∫ t

t0

g(s)u(s)ds, t ∈ [t0, t1],

then
u(t) ≤ ce

∫ t
t0

g(s)ds
.

Lemma 2.2. [31] Suppose that u ∈ C1([t0 − τ, ∞), R+), α > β > 0 are 
constants and that

u˙ (t) ≤ −αu(t) + β∥ut∥, t ≥ t0.

Then, there exists a λˆ > 0 such that

u(t) ≤ ∥ut0 ∥e−
ˆλ(t−t0),

where λˆ is the unique positive solution of the equation λˆ = α − βeλτ .

Lemma 2.3. Suppose that u ∈ C1([t0− τ,∞), R+), 0 < α ≤ β are constants
and that

u̇(t) ≤ −αu(t) + β∥ut∥, t ≥ t0.

Then
u(t) ≤ ∥ut0∥e(βe

ατ−α)(t−t0).

Proof. From Lemma 2.2, we have

d

dt
eα(t−t0)u(t) ≤ eα(t−t0)β∥ut∥.
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Integrating both sides gives

eα(t−t0)u(t) ≤ u(t0) + β
∫ t

t0
eα(s−t0)∥us∥ds

≤ u(t0) + β
∫ t

t0
eατ sups−τ≤θ≤s[e

α(θ−t0)u(θ)]ds.

Since the right hand side of the inequality above is an increasing function,
we have

sup
t−τ≤θ≤t

[eα(θ−t0)u(θ)] ≤ ∥ut0∥+ β

∫ t

t0

eατ sup
s−τ≤θ≤s

[eα(θ−t0)u(θ)]ds.

By Gronwall inequality, it follows that

sup
t−τ≤θ≤t

[eα(θ−t0)u(θ)] ≤ ∥ut0∥eβe
ατ (t−t0).

Since
sup

t−τ≤θ≤t
[eα(θ−t0)u(θ)] ≥ eα(t−t0)u(t),

we have
u(t) ≤ ∥ut0∥e(βe

ατ−α)(t−t0).

Lemma 2.4. [32] Suppose that Z ∈ Rn×n is a positive definite matrix, ϵ > 0
is a scalar and x, y ∈ Rn. Then

2xTy ≤ xTZ−1x+ yTZy,

and, as a special case,

2xTy ≤ ϵ−1xTx+ ϵyTy.

3 Linear Switched Control Systems

In this section, we consider a linear switched control system, where the
linear state feedback control is given by u = Kγ(t)x and fσ(t)(x(t), xt) =
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Cσ(t)

∫ t

t−τ
x(s)ds, with γ(t) = σ(t− τ) and Cσ(t) ∈ Rn×n. Then, the resulting

switched system (1) becomes: ẋ(t) = Aσ(t)x(t) +Bσ(t)u+ Cσ(t)

∫ t

t−τ
x(s)ds,

u(t) = Kγ(t)x(t),
γ(t) = σ(t− τ),

The closed-loop system may be written more specifically as:

ẋ(t) = Aσ(t)x(t) +Bσ(t)Kσ(t−τ)x(t) + Cσ(t)

∫ t

t−τ

x(s)ds. (2)

System (2) in form of intero-differential equations contains not only in-
tegral terms but also delayed switching controllers. These controllers’ de-
scription is consistent with that for the asynchronous switching controller in 
[36]. In addition, it can be seen that system (2) can cover the switching linear 
systems with asynchronous switching described in [36]. Our aim is to choose a 
control matrix Kσ(t−τ ) and a switching law σ such that the resulting switched 
system (2) is GASWUS or GESWUS.

To continue, we assume that the following conditions are satisfied.
Assumption A1

i) 0There∥ exist α >∥ , β > 0, and M ≥ 1 such that ∥e(Ai+BiKi)t∥ ≤ Me−αt, 
and ∥e(Ai+BiKj )t∥ ≤ Me−βt hold for all i ̸= j, i, j ∈ Θ;

ii) ∃C > 0 such that |Ci| ≤ C for all i ∈ Θ, and −λ , CMτeατ − α < 0;

iii) For the switching law σ = {(i1, t1), · · · , (im, tm), · · · }, it holds that
tm − tm−1 ≥ 2τ , m ∈ N+.

Now, we have the following result.

Theorem 3.1. Suppose that Assumption A1 holds. Let Mm := m(2 ln M + 
τ(CMeβτ + α + λ)), m ∈ N+. Then, the switched control system (2) is:

(a) SWUS, if there exists a constant M̃ such that the switching law σ sat-
isfies Mm − λtm ≤ M̃ , m ∈ N+;

(b) GASWUS, if limm→∞(Mm − λtm) = −∞;

(c) GESWUS, if lim supm→∞
Mm−λtm

tm
< 0.
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Proof. Consider the closed-loop switched control system (2). For a given 
switching signal σ = {(i1, t1), · · · , (im, tm), · · · }, when t ∈ [0, t1), the i1th 

subsystem is active, meaning that

x˙ (t) = Ai1x(t) + Bi1Ki1x(t) + Ci1

∫ t
t−τ

x(s)ds.

Its solution is

x(t) = e(Ai1
+Bi1

Ki1 )tx(0) +
∫ t

e(Ai1
+Bi1

Ki1 )(t−s)
∫ s
s−τ

Ci1x(ψ)dψds.
0

Taking the norm on both sides, we 

obtain
|x(t)| ≤ Me−αt|x(0)| + CMτ

∫ t
0

e−α(t−s)∥xs∥ds.

Multiplying both sides by eαt, we have

eαt|x(t)| ≤ M|x(0)| + CMτ
∫ t

eαs∥xs∥ds.
0

Since the right hand side of the inequality above is an increasing function, it 
follows that

eαt∥xt∥ ≤ eατ supt−τ≤θ≤t eαθ|x(θ)|

≤ Meατ ∥φ∥ + eατ CMτ
∫ t
0

eαs∥xs∥ds.

Thus, by Lemma 2.1, we obtain

∥xt∥ ≤ Meατ ∥φ∥e−λt, t ∈ [0, t1).

From this inequality, it follows from the continuity property of the 
solution that

∥xt1 ∥ ≤ Meατ ∥φ∥e−λt1 .

Now, for the case t ∈ [tm−1, tm−1 + τ), where m ∈ N+, and m > 1. The 
active subsystem is:

x˙ (t) = Aimx(t) + BimKim−1x(t) + Cim

∫ t
t−τ

x(s)ds
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and for t ∈ [tm−1 + τ, tm), the active subsystem is:

ẋ(t) = Aimx(t) +BimKimx(t) + Cim

∫ t

t−τ

x(s)ds.

By a similar argument, we can show that

∥xt∥ ≤

 Meβτ∥xtm−1∥e(CMτeβτ−β)(t−tm−1), t ∈ [tm−1, tm−1 + τ),

Meατ∥xtm−1+τ∥e−λ(t−tm−1−τ), t ∈ [tm−1 + τ, tm)

and
∥xtm−1+τ∥ ≤M∥xtm−1∥eCMτeβτ , (3)

(4)∥xtm∥ ≤ e(α+λ)τM∥xtm−1+τ ∥e−λ(tm−tm−1). 

Then, it follows from (3) and (4) that

∥xt∥ ≤

 eMm∥φ∥e−λtme|CMτeβτ−β|τ+βτ , t ∈ [tm, tm + τ),

eMm∥φ∥e−λteατ , t ∈ [tm + τ, tm+1).

In conclusion, for t ∈ [tm, tm+1), where m = 1, 2, · · · , we have

∥xt∥ ≤ M̂∥φ∥eMm−λtme−λ(t−tm), (5)

where M̂ ∈ R+ is a positive constant.
By (5), it can be shown that

(a) If the switching law satisfies Mm − λtm ≤ M̃, m ∈ N+, then (5)

implies ∥xt∥ ≤ M̂∥φ∥eM̃ , t ≥ 0, meaning that (2) is SWUS;

(b) If the switching law satisfies limm→∞(Mm − λtm) = −∞, then (2)
is SWUS and (5) implies limt→∞ |x(t, 0, φ, σ)| = 0, for all φ ∈ Cτ ,
meaning that (2) is GSWUS;

(c) If the switching law satisfies lim supm→∞
Mm−λtm

tm
< 0, then there exist

ε > 0 and N ∈ N+ such that for all m ≥ N , Mm − λtm < −εtm,
(without loss of generality, we may choose ε ≤ λ). Thus, there exists
a positive constant Π such that ∥xt∥ ≤ Π∥φ∥e−εt, t ≥ 0, meaning that
(2) is GESWUS.
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Corollary 3.1. Suppose that the conditions of Theorem 3.1 hold. Then the 
switched control system (2) is:

(a) SWUS, if the switching law σ satisfies

tm − tm−1 ≥
2 lnM + τ(CMeβτ + α + τ)

λ
, m ∈ N+;

(b) GASWUS, if the switching law σ satisfies

tm − tm−1 ≥
2 lnM + τ(CMeβτ + α + τ)

λ
+

1

m
, m ∈ N+;

(c) GESWUS, if the switching law σ satisfies

lim sup
m→∞

2 lnM + τ(CMeβτ + α + τ)

tm − tm−1

= λ− ε,

where ε > 0 is a constant.

Proof. For t ∈ [tm, tm+1), from (5), it follows that

∥xt∥ ≤ M̂∥φ∥eMm−λtme−λ(t−tm)

≤ M̂∥φ∥e
∑m

i=1[2 lnM+τ(CMeβτ+α+τ)−λ(ti−ti−1)]e−λ(t−tm).

Thus, it holds that

(a) If the switching law satisfies

tm − tm−1 ≥
2 lnM + τ(CMeβτ + α + τ)

λ
, m ∈ N+,

then
m∑
i=1

[2 lnM + τ(CMeβτ + α+ τ)− λ(ti − ti−1)] ≤ 0

and

∥xt∥ ≤ Mˆ ∥φ∥.
This implies that the switched control system (2) is SWUS.
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(b) If the switching law satisfies

tm − tm−1 ≥
2 lnM + τ(CMeβτ + α + τ)

λ
+

1

m
, m ∈ N+,

then

m∑
i=1

[2 lnM + τ(CMeβτ + α + τ)− λ(ti − ti−1)] ≤ −λ
m∑
i=1

1

i

and for all φ ∈ Cτ ,
lim |x(t; 0, φ, σ)| = 0.
t→∞

This means that the switched control system (2) is GASWUS.

(c) If the switching law satisfies

lim sup
m→∞

2 lnM + τ(CMeβτ + α + τ)

tm − tm−1

= λ− ε,

then there exists a N ∈ N+, such that for m ≥ N ,

2 lnM + τ(CMeβτ + α + τ)− λ(tm − tm−1)

tm − tm−1

≤ −ε
2
,

and thus

∥xt∥ ≤ MM̂ ∥φ∥e− ε
2 t,

where M is a positive number. This implies that the switched control 
system (2) is GESWUS.

4 Nonlinear Systems

In this section, we consider the following nonlinear switched control system

ẋ(t) = Aσ(t)x(t) +Bσ(t)u(t) + fσ(t)(x(t),

∫ t

x(s)ds). (6)
t−τ1

The aim is to design a switching law and a state feedback 

controller
u(t) = Kγ(t)x(t), t ≥ 0,

11



where Kγ(t) ∈ Rn×n and γ(t) is the detection function of σ(t), (i.e., γ(t) =
σ(t− τ2)), such that the closed-loop switched system

ẋ(t) = Aσ(t)x(t) +Bσ(t)Kσ(t−τ2)x(t) + fσ(t)(x(t),

∫ t

t−τ1

x(s)ds) (7)

is globally asymptotically stable or globally exponentially stable, where τ1, τ2 ≥
0.

To continue, let x(t; t0, φ) be the solution of the system,

ẋ(t) = Ax(t) + f(x(t),

∫ t

t−τ

x(s)ds), (8)

with xt0 = φ, φ ∈ Cτ .

Lemma 4.1. Suppose that there exist positive numbers ϵ, λ1, λ2 and matrices
E1 = ET

1 , E2 ∈ Rn×n, such that

2xT (t)f(x(t),

∫ t

t−τ

x(s)ds) ≤ xT (t)E1x(t) +

∫ t

t−τ

xT (t)E2x(s)ds.

λ(A + AT + E1 + τϵ−1E) ≤ −λ1, λ(E2
T E2) ≤ λ2.

where λ(·) stands for the maximum eigenvalue of the corresponding matrix. 
Then

(i) λ1 > τϵλ2 ≥ 0 implies

|x(t)| ≤ ∥φ∥e−λ(t−t0), (9)

where λ is the unique positive solution of the equation 2λ = λ1 −
τϵλ2e

2λτ .

(ii) 0 ≤ λ1 ≤ τϵλ2 implies

|x(t)| ≤ ∥φ∥e
1
2
(τϵλ2eλ1τ−λ1)(t−t0). (10)

12



Proof. Let V = xTx. Then, by Lemma 2.4, we have

V̇ |(8) = xT (t)(A+ AT )x(t) + 2xT (t)f(x(t),

∫ t

t−τ

x(s)ds)

≤ xT (t)(A+ AT )x(t) + xT (t)E1x(t) +

∫ t

t−τ

xT (t)E2x(s)ds

≤ xT (t)(A+ AT + E1)x(t) +

∫ t

t−τ

[ϵ−1xT (t)x(t) + ϵxT (s)ET
2 E2x(s)]ds

≤ xT (A+ AT + E1 + τϵ−1E)x(t) + ϵ

∫ t

t−τ

xT (s)ET
2 E2x(s)ds

≤ −λ1V (t) + τϵλ2∥Vt∥.

If λ1 > τϵλ2 ≥ 0, then it follows from Lemma 2.2 that

V (t) ≤ ∥Vt0∥e−2λ(t−t0),

which shows the validity of (9).
If λ1 ≤ τϵλ2, then it follows from Lemma 2.3 that

|V (t)| ≤ ∥Vt0∥e(τϵλ2eλ1τ−λ1)(t−t0),

and hence
|x(t)| ≤ ∥φ∥e

1
2
(τϵλ2eλ1τ−λ1)(t−t0).

Now, consider system (7) under the following assumptions.
Assumption A2

i) There exist positive numbers ϵi, λ1i, λ2i, λ3i and matrices E1i = ET
1i, E2i ∈

Rn×n, i ∈ Θ, such that for all i ∈ Θ

2xT (t)fi(x(t),

∫ t

t−τ1

x(s)ds) ≤ xT (t)E1ix(t) +

∫ t

t−τ1

xT (t)E2ix(s)ds;

ii) λ((Ai +BiKi)
T + (Ai +BiKi) + E1i + τ1ϵ

−1
i E) ≤ −λ1i,

λ((Ai +BiKj)
T + (Ai +BiKj) + E1i + τ1ϵ

−1
i E) ≤ −λ2i, i ̸= j,

λ(ET
2iE2i) ≤ λ3i, i, j ∈ Θ.
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4.1 The case τ1 ≥ τ2

Theorem 4.1. Suppose that Assumption A2 hold and that

(i) λ1i − τ1ϵiλ3i > 0, λ(i) is the unique positive solution of the equation
2λ(i) = λ1i − τ1ϵλ3ie

2λ(i)τ and λ = mini∈Θ{λ(i)};

(ii) λ2i − τ1ϵiλ3i > 0, λ̂(i) is the unique positive solution of the equation

2λ̂(i) = λ2i − τ1ϵλ3ie
2λ̂(i)τ and λ̂ = mini∈Θ{λ̂(i)}; and

(iii) the switching law σ = {(i1, t1), · · · , (ik, tk), · · · } satisfies tk − tk−1 ≥
τ1 + τ2.

Then, the switched control system (7) is GESWUS.

Proof. Let σ(t) be a given switching signal. For the case when t ∈ [0, t1),
the ith1 subsystem is active, i.e.,

ẋ(t) = Ai1x(t) + Bi1Ki1x(t) + fi1(x(t),

∫ t

t−τ1

x(s)ds),

Then, by the conditions of the theorem and Lemma 4.1(i), it follows that

|x(t)| ≤ ∥φ∥e−λt.

We claim that, for any m ∈ N+ and t ∈ [tm, tm+1), the solution of system
(7) satisfies:

(∗)1 : |x(t)| ≤ ∥φ∥e−λ(tm−mτ1)e−λ̂(t−tm), t ∈ [tm, tm + τ2),

(∗)2 : |x(t)| ≤ ∥φ∥e−λ(t−(m+1)τ1), t ∈ [tm + τ2, tm+1).

Indeed, when t ∈ [t1, t1 + τ2), the active subsystem is:

ẋ(t) = Ai2x(t) + Bi2Ki1x(t) + fi2(x(t),

∫ t

t−τ1

x(s)ds).

Thus, by the conditions of theorem and Lemma 4.1(i), we obtain

|x(t)| ≤ ∥xt1∥e−λ̂(t−t1) ≤ ∥φ∥e−λ(t1−τ1)e−λ̂(t−t1), t ∈ [t1, t1 + τ2).
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For t ∈ [t1 + τ2, t2), we have

|x(t)| ≤ ∥xt1+τ2∥τe−λ(t−t1−τ2)

= max{supt1+τ2−τ1≤θ≤t1 |x(θ)|, supt1≤θ≤t1+τ2 |x(θ)|}e
−λ(t−t1−τ2)

≤ max{∥φ∥e−λ(t1+τ2−τ1), ∥xt1∥}e−λ(t−t1−τ2)

≤ max{∥φ∥e−λ(t1+τ2−τ1), ∥φ∥e−λ(t1−τ1)}e−λ(t−t1−τ2)

= ∥φ∥e−λ(t−τ2−τ1) ≤ ∥φ∥e−λ(t−2τ1).

It means that (∗)1 and (∗)2 hold for m = 1.
Suppose that (∗)1 and (∗)2 hold for m ∈ N+ and we will show that (∗)1

and (∗)2 hold for m+ 1.
For t ∈ [tm+1, tm+1 + τ2), we have

|x(t)| ≤ ∥xtm+1∥e−λ̂(t−tm+1)

≤ ∥x0∥e−λ(tm+1−(m+1)τ1)e−λ̂(t−tm+1).

On this basis, it follows that for t ∈ [tm+1 + τ2, tm+2),

|x(t)| ≤ ∥xtm+1+τ2∥e−λ(t−tm+1−τ2)

≤ max{suptm+1+τ2−τ1≤θ≤tm+1
|x(θ)|, suptm+1≤θ≤tm+1+τ2 |x(θ)|}e

−λ(t−tm+1−τ2)

≤ max{∥φ∥e−λ(tm+1+τ2−(m+2)τ1), ∥φ∥e−λ(tm+1−(m+1)τ1)}e−λ(t−tm+1−τ2)

= ∥φ∥e−λ(t−(m+2)τ1).

This means that (∗)1 and (∗)2 hold for m + 1. By mathematical induction
principle, we conclude that for all m ∈ N+, (∗)1 and (∗)2 hold.

Now, from (∗)1 and (∗)2, we have

|x(t)| ≤ ∥φ∥eλτ1e−λ(t−mτ1), t ∈ [tm, tm+1). (11)

Since the switching law satisfies tk − tk−1 ≥ τ1 + τ2, thus

lim inf
k→∞

tk − kτ1
tk

> 0,
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so there exist ε > 0 and N ∈ N+, such that for k ≥ N , tk − kτ1 > εtk. Thus

−λ(tk − kτ1) < −λεtk, k ≥ N.

and hence
|x(t)| ≤ ∥φ∥eλτ1e−λ(t−mτ1)

≤ ∥φ∥eλτ1e−λ(tm−mτ1)e−λ(t−tm)

≤ ∥φ∥eλτ1e−λεtme−λ(t−tm), m ≥ N

Therefore, the conclusion of the theorem follows readily.

Corollary 4.1. Suppose that the conditions of Theorem 4.1 hold and that τ2 = 
0. Then, the switched control system (7) is:

a) SWUS, if the switching law σ satisfies limk→∞(tk − kτ1) <∞;

b) GASWUS, if the switching law σ satisfies limk→∞(tk − kτ1) = ∞;

c) GESWUS, if the switching law σ satisfies lim infk→∞
tk−kτ1

tk
> 0.

Corollary 4.2. Suppose that the conditions of Theorem 4.1 hold. Then, the 
switched control system (7) is GESWUS, if the switching law σ satisfies

lim inf
m→∞

tm − tm−1 − τ1
tm − tm−1

= ε > 0.

Proof. From (11), it follows that

|x(t)| ≤ ∥φ∥eλτ1e−λ(t−mτ1)

≤ ∥φ∥e−
∑m

i=1 λ(ti−ti−1−τ1)e−λ(t−tm−τ1).

Since the switching law satisfies

lim inf
m→∞

tm − tm−1 − τ1
tm − tm−1

= ε,

there exists an N ∈ N+, such that for m ≥ N and λ > 0,

−λtm − tm−1 − τ1
tm − tm−1

≤ −ε
2
λ,
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and hence

∥xt∥ ≤ ∥φ∥e−λ
∑m

i=1(ti−ti−1−τ1)e−λ(t−tm−τ1)

≤ ∥φ∥e−λ
∑N

i=1(ti−ti−1−τ1)e−λ
∑m

i=N (ti−ti−1−τ1)e−λ(t−tm−τ1)

≤ ∥φ∥e−λ
∑N

i=1(ti−ti−1−τ1)e−
ε
2
λ(tm−tN )e−λ(t−tm−τ1)

≤ M∥φ∥e− ε
2
λt,

where M is a positive number. Thus the switched system is GESWUS.

Using the similar proof method of Theorem 4.1 and Lemma 4.1(ii), we
can prove the following results.

Theorem 4.2. Suppose that Assumption A2 holds and that

(i) λ1i − τ1ϵiλ3i > 0 and λ(i) is the unique positive solution of the equation
2λ(i) = λ1i − τ1ϵλ3ie

2λ(i)τ and λ = mini∈Θ{λ(i)};

(ii) λ2i − τ1ϵiλ3i ≤ 0, i ∈ Θ; and

(iii) the switching law σ = {(i1, t1), · · · , (ik, tk), · · · } satisfies tk − tk−1 ≥
τ1 + τ2.

Then, the switched control system (7) is:

a) SWUS, if there exists M ∈ R, such that for all m ∈ N+, m(∆+λτ2)−
λ(t−mτ1) ≤M ;

b) GASWUS, if limm→∞[m(∆ + λτ2)− λ(t−mτ1)] = −∞; and

c) GESWUS, if lim infk→∞
m(∆+λτ2)−λ(t−mτ1)

t
< 0,

where 2∆ = maxi∈Θ{(λ3iϵiτ1eλ2iτ1 − λ2i)τ2} .

Corollary 4.3. Suppose that the conditions of Theorem 4.2 hold. Then, the 
switched control system (7) is:

a) SWUS, if there exists M > 0 such that
∑m

k=1(tk− tk−1−τ1−τ2− ∆
λ
) ≥

−M ;

b) GASWUS, if limk→∞
∑m

k=1(tk − tk−1 − τ1 − τ2 − ∆
λ
) = +∞; and

c) GESWUS, if lim infk→∞

∑m
k=1(tk−tk−1−τ1−τ2−∆

λ
)

t
> 0,

where 2∆ = maxi∈Θ{(λ3iϵiτ1eλ2iτ1 − λ2i)τ2}.
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4.2 The case of τ2 ≥ τ1

To begin, we notice that since τ2 ≥ τ1, ∥xt∥ = supt−τ2≤θ≤t |x(θ)|.
By similar argument, we can prove following results.

Theorem 4.3. Suppose that Assumption A2 holds and that

(i) λ1i − τ1ϵiλ3i > 0 and λ(i) is the unique positive solution of the equation
2λ(i) = λ1i − τ1ϵiλ3ie

2λ(i)τ and λ = mini∈Θ{λ(i)}; and

(ii) λ2i − τ1ϵiλ3i > 0 and λ̂(i) is the unique positive solution of the equation

2λ̂(i) = λ2i − τ1ϵiλ3ie
2λ̂(i)τ and λ̂ = mini∈Θ{λ̂(i)}.

Then, the switched control system (7) is:

a) SWUS, if the switching law σ = {(i1, t1), · · · , (im, tm), · · · } satisfies
τ2 ≤ tm − tm−1 ≤ 2τ2, for m ∈ N+;

b) GASWUS, if the switching law σ = {(i1, t1), · · · , (im, tm), · · · } satisfies
tm − tm−1 ≥ 2τ2 for m ∈ N+ and limm→∞(tm − 2mτ2) = ∞; and

c) GESWUS, if the switching law σ = {(i1, t1), · · · , (im, tm), · · · } satisfies
tm − tm−1 ≥ 2τ2, m ∈ N+ and lim infm→∞

tm−2mτ2
tm

> 0.

Proof. Let σ = {(i1, t1), · · · , (im, tm), · · · } be a given a switching signal.
For t ∈ [0, t1), the i

th
1 subsystem is active, i.e.,

ẋ(t) = Ai1x(t) + Bi1Ki1x(t) + fi1(x(t),

∫ t

t−τ1

x(s)ds),

Thus, by the conditions of the theorem and Lemma 4.1(i), it is clear that

|x(t)| ≤ ∥φ∥e−λt.

a) We claim that, for any m ∈ N+, the solution of system (7) satisfies:

(∗)3 : |x(t)| ≤ ∥φ∥e−λ(t1−τ2)e−λ̂(t−tm), t ∈ [tm, tm + τ2),

(∗)4 : |x(t)| ≤ ∥φ∥e−λ(t1−2τ2)e−λ(t−tm), t ∈ [tm + τ2, tm+1).

Indeed, for t ∈ [t1, t1 + τ2), the active subsystem is:

ẋ(t) = Ai2x(t) +Bi2Ki1x(t) + fi2(x(t),

∫ t

t−τ1

x(s)ds),

18



Thus, by the conditions of the theorem and Lemma 4.1(i), we obtain

|x(t)| ≤ ∥xt1∥e−λ̂(t−t1) = ∥φ∥e−λ(t1−τ2)e−λ̂(t−t1).

Now, for t ∈ [t1 + τ2, t2), we have

|x(t)| ≤ ∥xt1+τ2∥e−λ(t−t1−τ2)

= supt1≤θ≤t1+τ2 ∥φ∥e
−λ(t1−τ2)e−λ̂(θ−t1)e−λ(t−t1−τ2)

= ∥φ∥e−λ(t1−2τ2)e−λ(t−t1).

It means that (∗)3 and (∗)4 hold for m = 1.

Suppose that (∗)3 and (∗)4 hold for m ∈ N+ and we shall show prove
that (∗)3 and (∗)4 hold for m+ 1.

For t ∈ [tm+1, tm+1 + τ2), we have

|x(t)| ≤ ∥xtm+1∥e−λ̂(t−tm+1)

= suptm+1−τ2≤θ≤tm+1
∥x(θ)∥e−λ̂(t−tm+1)

= max{suptm+1−τ2≤θ≤tm+τ2 ∥x(θ)∥, suptm+τ2≤θ≤tm+1
∥x(θ)∥}e−λ̂(t−tm+1)

= max{suptm+1−τ2≤θ≤tm+τ2 ∥φ∥e
−λ(t1−τ2)e−λ̂(θ−tm),

suptm+τ2≤θ≤tm+1
∥φ∥e−λ(t1−2τ2)e−λ(θ−tm)}e−λ̂(t−tm+1)

≤ max{∥φ∥e−λ(t1−τ2)e−λ̂(tm+1−τ2−tm), ∥φ∥e−λ(t1−τ2)}e−λ̂(t−tm+1)

≤ ∥φ∥e−λ(t1−τ2)e−λ̂(t−tm+1).

Now, for t ∈ [tm+1 + τ2, tm+2), we obtain

|x(t)| ≤ ∥xtm+1+τ2∥e−λ(t−tm+1−τ2)

= suptm+1≤θ≤tm+1+τ2 ∥φ∥e
−λ(t1−τ2)e−λ̂(θ−tm+1)e−λ(t−tm+1−τ2)

≤ ∥φ∥e−λ(t1−τ2)e−λ(t−tm+1−τ2)

≤ ∥φ∥e−λ(t1−2τ2)e−λ(t−tm+1).
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This means that for m+1, (∗)3 and (∗)4 hold. Thus, by mathematical
induction principle, it is clear that for all m ∈ N+, (∗)3 and (∗)4 hold.

From (∗)3 and (∗)4, it follows that

|x(t)| ≤ ∥φ∥e−λ(t1−τ2), t ∈ [tm, tm+1),

which implies that the the switched control system (7) is SWUS.

b) In this case, the switching law σ satisfies the condition tm−tm−1 ≥ 2τ2.

We claim that, for any m ∈ N+, the solution of system (7) satisfies:

(∗)31 : |x(t)| ≤ ∥φ∥e−λ(tm−2mτ2+τ2)e−λ̂(t−tm), t ∈ [tm, tm + τ2),

(∗)41 : |x(t)| ≤ ∥φ∥e−λ(t−2mτ2), t ∈ [tm + τ2, tm+1).

Indeed, for t ∈ [t1, t1 + τ2), the active subsystem is:

ẋ(t) = Ai2x(t) +Bi2Ki1x(t) + fi2(x(t),

∫ t

t−τ1

x(s)ds),

Thus, by the conditions of the theorem and Lemma 4.1(i), it follows
that

|x(t)| ≤ ∥xt1∥e−λ̂(t−t1) ≤ ∥φ∥e−λ(t1−τ2)e−λ̂(t−t1).

Now, for t ∈ [t1 + τ2, t2), we have

|x(t)| ≤ ∥xt1+τ2∥e−λ(t−t1−τ2)

= supt1≤θ≤t1+τ2 ∥φ∥e
−λ(t1−τ2)e−λ̂(θ−t1)e−λ(t−t1−τ2)

≤ ∥φ∥e−λ(t1−τ2)e−λ(t−t1−τ2) = ∥φ∥e−λ(t−2τ2).

It means that (∗)31 and (∗)41 hold for m = 1.

Suppose that (∗)31 and (∗)41 hold for m ∈ N+ and we shall show that
(∗)31 and (∗)41 hold for m+ 1.
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For t ∈ [tm+1, tm+1 + τ2), we have

|x(t)| ≤ ∥xtm+1∥e−λ̂(t−tm+1)

= suptm+1−τ2≤θ≤tm+1
∥x(θ)∥e−λ̂(t−tm+1)

≤ suptm+1−τ2≤θ≤tm+1
∥φ∥e−λ(θ−2mτ2)e−λ̂(t−tm+1)

≤ ∥φ∥e−λ(tm+1−2(m+1)τ2+τ2)e−λ̂(t−tm+1).

Now, for t ∈ [tm+1 + τ2, tm+2), it follows that

|x(t)| ≤ ∥xtm+1+τ2∥e−λ(t−tm+1−τ2)

= suptm+1≤θ≤tm+1+τ2 ∥φ∥e
−λ(tm+1−2(m+1)τ2+τ2)e−λ̂(θ−tm+1)e−λ(t−tm+1−τ2)

≤ ∥φ∥e−λ(tm+1−2(m+1)τ2+τ2)e−λ(t−tm+1−τ2)

≤ ∥φ∥e−λ(t−2(m+1)τ2).

This means that for m + 1, (∗)31 and (∗)41 hold. Therefore, by math-
ematical induction principle, it is clear that for all m ∈ N+, (∗)31 and
(∗)41 hold.

From (∗)31 and (∗)41 , we can show that

|x(t)| ≤ ∥φ∥e−λ(t−2mτ2), t ∈ [tm, tm+1), (12)

which implies that the switched control system (7) is GASWUS.

c) In this case, the switching law σ satisfies the condition tm−tm−1 ≥ 2τ2.

It follows from (12) that

|x(t)| ≤ ∥φ∥e−λ(t−2mτ2), t ∈ [tm, tm+1).

If

lim inf
k→∞

tm − 2mτ2
tm

> 0,

then there exist ε > 0 and N ∈ N+, such that for all m > N , have

tm − 2mτ2
tm

≥ ε

λ
⇒ −λ(tm − 2mτ2) ≤ −εtm
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and hence (without loss of generality, we may choose ε ≤ λ)

|x(t)| ≤ ∥φ∥e−λ(t−2mτ2) = ∥φ∥e−λ(tm−2mτ2)e−λ(t−tm)

≤ ∥φ∥e−εtme−ε(t−tm) = ∥φ∥e−εt.

Thus, the switched control system (7) is GESWUS.

Corollary 4.4. Suppose that the conditions of Theorem 4.3 hold. Then, the 
switched control system (7) is:

(a) GASWUS, if the switching law σ satisfies tm − tm−1 ≥ 2τ2 +
1
m
, m ∈

N+; and

(b) GESWUS, if the switching law σ satisfies

tm − tm−1 − 2τ2
tm − tm−1

≥ ε > 0.

Using the similar proof method of Theorem 4.3 and Lemma 4.1(ii), we
can prove the following result:

Theorem 4.4. Suppose that Assumption A2 holds and that

(i) λ1i − τ1ϵiλ3i > 0 and λ(i) is the unique positive solution of the equation
2λ(i) = λ1i − τ1ϵiλ3ie

−2λ(i)τ and λ = mini∈Θ{λ(i)};

(ii) λ2i − τ1ϵiλ3i ≤ 0, i ∈ Θ; and

(iii) Switching law σ = {(i1, t1), · · · , (ik, tk), · · · } satisfies tk − tk−1 ≥ 2τ2.

Then, the switched control system (7) is:

a) SWUS, if there exists a M > 0 such that for all m ∈ N+, −λtm +
m(2λ+∆)τ2 < M ;

b) GASWUS, if limm→∞ −λtm +m(2λ+∆)τ2 = −∞;

c) GESWUS, if lim inft→∞
−λtm+m(2λ+∆)τ2

tm
< 0, t ∈ [tm, tm+1),

where 2∆ = maxi∈Θ{(λ3iϵiτ1eλ2iτ1 − λ2i)τ2}.

22



Corollary 4.5. Suppose that the conditions of Theorem 4.4 hold. Then, the 
switched control system (7) is:

(a) SWUS, if the switching law σ satisfies

λ(tm − tm−1)− (2λ+∆)τ2 ≥ 0, m ∈ N+;

(b) GASWUS, if the switching law σ satisfies

λ(tm − tm−1) ≥ (2λ+∆)τ2 +
1

m
, m ∈ N+;

(c) GESWUS, if there exist ε > 0, N ∈ N+ such that for all m ≥ N , the
switching law σ satisfies

λ(tm − tm−1)− (2λ+∆)τ2
tm − tm−1

≥ ε.

5 Conclusion

In this paper, we study the stabilization problem of switched control sys-
tems with switching signal time delay. New concepts of globally asymptotical 
or exponential stabilizability under state feedback controllers and switching 
laws are presented. Then, by using the method of Lyapunov functions and 
delay inequalities, appropriate state feedback controllers and switching laws 
are devised under which the resulting closed-loop switched systems are glob-
ally asymptotically stable and exponentially stable.
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