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Abstract

In this paper, the stabilization problem of switched control system-
s with time delay is investigated for both linear and nonlinear cases.
First, a new global stabilizability concept with respect to state feed-
back and switching law is given. Then, based on multiple Lyapunov
functions and delay inequalities, the state feedback controller and the
switching law are devised to make sure that the resulting closed-loop
switched control systems with time delay are globally asymptotically
stable and exponentially stable.

Key words: Switched control systems; stabilizability; time delay.

1 Introduction

A switched system is a hybrid system comprised of continuous-time or
discrete-time subsystems and a rule that supervises the switching between
subsystems. Switched systems can be found in many areas, such as comput-er
science, control systems, electrical engineering and technology, automotive
industry, and air traffic management and control [1]-[4]. For switched system-
s, most important and challenging problems are on stability and stabilization
(i.e., is it possible to design (or find) a switching law under which the result-
ing switched systems are stable?). Hence, the recent focus of switched control



systems is on the design of a switched law and a controller under which the
controlled systems are stable. In the last two decades, stability analysis of
switched systems and switching control design have attracted considerable
attention among control theorists, computer scientists, mathematicians and
practicing engineers. Many interesting and important results have been es-
tablished. See, for example, [3]-[14] and the references therein.

On the other hand, time delay phenomenon exists in many practical
switched systems, see, for example, [9]-[10], [14]-[15]. Stability and stabi-
lization problem is also an important and challenging problem for switched
systems with time delay. In [15], exponential stability of switched system-
s with time-delay is established based on average dwell time and Lyapunov
functions methods. Using a multiple Lyapunov function method, exponential
stability of some special linear switched system is investigated in [16]. More-
over, a linear matrix inequality (LMI) method is applied to study the stability
problem of switched systems in [17]-][20]. In [21], asymptotic stability and
stabilization of a class of switched control systems is studied, where a delay-
dependent stability criterion is formulated in term of LMIs by using quadrat-
ic Lyapunov functions and inequality analysis technique. For discrete-time
systems, some interesting results can be found in [4], [22] and [23]. Other
methods, such as dwell time and average dwell time, are used in the study
of switched systems. For example, stability of some slow-switched control
systems has been studied in [24], and stabilization problems for switched
systems have been discussed in [25]-[28], [38], [39].

For the results mentioned above, the switching signal does not involve
time delay. However, in real world, a switched control system may have
several controllers and not all the controllers are required to switch at the
same time. This class of systems can be described by switched control sys-
tems in which the switching signal has time delay. These switched control
systems are much more complex than a conventional switched system and
hence only few works are available in the literature, such as, [29] and [30],
where some sufficient conditions for stability are derived for some switched
linear systems with time delay appearing in the switching signal. It appears
that no results on the stabilization problem are available in the literature for
nonlinear switched control systems with distributed time delays and time
delay appearing in the switching signal. This has motivated our research. In
addition, our results obtained can be applied to the cases with asynchronous
switching in actual operation, such as the stabilization of chemical systems
[36] and multi-agent systems [33]-[35]. The asynchronous switching in sys-
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tems is always caused by the controller lags of the system.

In this paper, we consider static state feedback control for nonlinear
switched system with distributed time delays and with time delay appear-ing
in the switching signal. In this study, the time delay of the state may be
different from the time delay appearing in the switching signal of the feedback
controller. We first introduce some new concepts on stabilization in relation to
controller and switching law. Then, by using the method of Lyapunov
functions and delay inequalities, some delay-dependent conditions are derived
for the design of state feedback controller and a switching law to guarantee
the stability of the resulting closed-loop switched control sys-tems.The
advantages of this paper are twofold. First, the system model includes both
integral terms, called distributed delay, and asynchronous con-trol time lags.
This model can cover most of the existing models for switched linear/
nonlinear systems. Second, the stability issue under investigation is with
respect to both state feedback control and switching signal, which is a much
more general problem than previous results.

The outline of the paper is as follows. Section 2 presents some definitions
and some technical lemmas needed for the proof of the main results. The
design of a switching law for global asymptotical or exponential stabilizability
of linear and nonlinear switched control systems are obtained in Section 3
and Section 4, respectively. Finally, some concluding remarks are made in
Section 5.

2 Preliminaries

The following switched control system is considered:

i(t) = Agy(t) + Boyu + fow (x(t), 24), (1)

where z(t) € R", u € R"is state feedback control, Ao ¢ prxn and
Bs(t) € R™™ are state matrices, the right continuous function O'Et) R—
© ={1,2,--- , N} is the switching signal, x; € C; = {p|p € C([—7,0], R")},
7 > 0 is a constant and f,u) € C(R" x C;, R") satisfy f,)(0,0) = 0.

In this paper, Ny = {1,2,---}, R, =[0,400), E is an identity matrix of
appropriate dimension, |A| denotes the usual norm of a matrix A € R™™™
llz¢|| = sup,_,<p<; |z(6)| denotes the sup norm of the function x;, € C,. If
A € R™" A(A) denotes eigenvalue of A. Let o = {(i1,t1), -, (ix, &), - }



be the switching law, meaning that when ¢ € [ty, t541), the if", | subsystem is
active, i.e.

.',U(t) = Ak‘_i_ll'(t) + Bk+1u + fk+1($(t), .',Ut), t - [tk, tk+1).

Let x(t,to,p,0) be the solution of system (1) under the switching law o,
starting from (g, ).

It is well known that, a switching law often plays an important role in
the study of the stability of a switched system. Even if the subsystems are
stable, different switching laws may results in totally different properties of
the overall switched systems. In this paper, our focus is on to design a
controller u and a switching law ¢ so that the resulting closed-loop switched
systems are guaranteed to possess desired properties.

Next, we propose some concepts on the stabilization for the switched
control system.

Definition 2.1. Consider the switched control system (1).

1) It is said to be stabilizable with respect to (w.r.t) the state feedback
control u and the switching law o (SWUS) if it is stable under the state
feedback v and the switching law o. That is, for any € > 0, there exists
ad >0, such that for any p € C;, ||| < d implies ||z(t, 10, p,0)|| < €.

2) It is said to be asymptotical stabilizable under the feedback control u
and the switching law o (ASWUS) if it is SWUS and there exists a
d > 0 such that for any ¢ € Cy, ||¢|| < d implies

limy oo x(t, to, 0, 0) = 0.

3) It is said to be globally asymptotical stabilizable under the feedback con-

trol u and the switching law o (GASWUS) if it is ASWUS and for any
p € Cr, has

limy oo x(t, to, p,0) = 0.

4) 1t is said to be exponential stabilizable under the feedback control u and
the switching law o (ESWUS) if there exist constants M > 0, 6 >
0, > 0, such that for any p € C;, ||¢|| < 9 implies

z(t, to, @, 0)| < Me M=t ¢ > ¢,
p



5) It is said to be globally exponential stabilizable under the feedback control
u and the switching law o (GESWUS) if there exist constants M >
0, A > 0, such that for any ¢ € C;, it holds that

z(t, to, 0, 0)| < M|p|le M) ¢ > ¢,
¢ p

Without loss of generality, we choose, in this paper, {5 = 0 and denote
x(t,0,p,0) := x(t).
To study the stabilizability of system (1), we need the following lemmas.

Lemma 2.1. (Gronwall inequality) Suppose that g,u € C([to,t1), Ry), and
that c is a nonnegative real constant. If

u(t) <c+ /tg(s)u(s)ds, t € [to, 1],

to

then .
u(t) < celio 9%,

%gyl{gltgln%%%d[f}ﬁguppose thatu € CY([to— T, 00), Ry), a > >0 are

u' (t) < —au(t) + Bllu|, t > to.

Then, there exists a A >0 such that

u(t) < gy fle X,
where N is the unique positive solution of the equation N =a-— Bel.

Lemma 2.3. Suppose that u € C'([tg —7,00), Ry), 0 < a < 3 are constants
and that

u(t) < —au(t) + Bllull, > to.

Then
u(t) < JJug ||,

Proof. From Lemma 2.2, we have

d
aeoz(tfto)u(t) S ea(tfto)ﬁl‘utH.



Integrating both sides gives

edt=u(t) < ult) + B [ et |u,|ds

S u(t()) + 6 j;i eaT Sups—’rgé’gs[ea(e_t())u(e)]ds'

Since the right hand side of the inequality above is an increasing function,
we have

sup [0y (0)] < ||uy, H~I—B/ sup [e*@=1)y())ds.

t—7<0<t s— T<6’<s
By Gronwall inequality, it follows that

sup_[eP0u(0)] < flugy e,

t—7<0<t
Since
sup [0 ()] > e lu(t),
t—7<0<t
we have

u(t) < g [l e,

|

Lemma 2.4. [7%) Suppose that Z € R™™ is a positive definite matriz, € > 0
1s a scalar and x,y € R™. Then

20Ty < 2T 77 e 4+ y* Zy,
and, as a special case,

20Ty < e lala + eyly.

3 Linear Switched Control Systems

In this section, we consider a linear switched control system, where the
linear state feedback control is given by v = K pz and fou(x(t), ) =



Co) ftt_T x(s)ds, with y(t) = o(t — 7) and C,) € R"*". Then, the resulting
switched system (1) becomes:

+ Bo@yu + Cor) ftt_T x(s)ds,

)

I
~—~

~
SN—

i(t) = Aswz(t)
Kw(t)l‘(t)
V() = oft—71),

The closed-loop system may be written more specifically as:

t
@(t) = Apyx(t) + Bowy Ko@—r)x(t) + Co / z(s)ds. (2)
t—1

System (2) in form of intero-differential equations contains not only in-
tegral terms but also delayed switching controllers. These controllers’ de-
scription is consistent with that for the asynchronous switching controller in
[36]. In addition, it can be seen that system (2) can cover the switching linear
systems with asynchronous switching described in [36]. Our aim is to choose a
control matrix Ky;—r)and a switching law o such that the resulting switched
system (2) is GASWUS or GESWUS.

To continue, we assume that the following conditions are satisfied.

Assumption A,

i) There exista >0, 3> 0,and M > 1 such that ||e(4i+BiK)t
and | 4B I pe=Phold for all i # j, i, j € ©;

| S Mefat’

ii) 3C > 0 such that |C;] < C foralli € ©, and —\ £ CM7e® — o < 0;

iii) For the switching law o = {(i1,t1), -+, (dm,tm), -+ }, it holds that
tm — tm—l Z 27_7 m € N+.

Now, we have the following result.

Theorem 3.1. Suppose that Assumption Ay holds. Let M, :=m(21n M +
T(CMeP™+ a + N)), m € N,. Then, the switched control system (2) is:

(a) SWUS, if there exists a constant M such that the switching law o sat-
isfies My, — Xt,, < M, m € N_;

(b) GASWUS, if limy,—oo(My — Alp) = —00;
(¢) GESWUS, if limsup,,_,. Mmt;m’\tm < 0.



Proof. Consider the closed-loop switched control system (2). For a given
switching signal o = {(i1, t1), - = =, (im, tm), - - - }, when t € [0, t;), the i,
subsystem is active, meaning that

t—1

z (t) = A,x(t) + B, Kiz(t) + C;, / z(s)ds.
Its solution is

2(t) = et BaKa )ty 0) + /e(Ai1+Bi1Ki1)(ts) f Ci (1) dids.

0 s—T
Taking the norm on both sides, we

obtain —a(t—s)
()] < Me2!|2(0)| + CMr /Ote |2 ds.

Multiplying both sides by e®*, we have

e“!|z(t)] < M|z (0)| + CMr / ||| ds.
0
Since the right hand side of the inequality above is an increasing function, it
follows that

]| < e“Tsupy ey €l (0)]

< Me* ||| + e CMr / ¢/l ds.
Thus, by Lemma 2.1, we obtain

lzell < MeT[|glle™, t € [0, t1).
From this inequality, it follows from the continuity property of the
solution that

e, || < Me||plle™.

Now, for the case t € [t;,_1, t,,—1+ 7), where m € N, and m > 1. The
active subsystem is:

x (t) = A;,x(t)+ B;, K, x(t) + Cim/ z(s)ds

t—T1
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and for t € [t,,—1 + T, ), the active subsystem is:

t
(t) = A, x(t) + B, K, x(t) + C;,, / x(s)ds.
t—1

By a similar argument, we can show that

and

Meﬂr”xt ye(CMTeﬂf_g)(t—tmq)’ te [tmflytmfl 4 7)7

m—l’

]| <

Me ||z, _yirlle 7m0t € [ty + T )

BT
|2t sl < Ml [T, (3)

thmH < e(a+)\)TMthm_1+T ”efA(tmftm_l)' (4)

Then, it follows from (3) and (4) that

M| pf|e=Nom el CMTT=BITHBT -t € [ty b + 7),

]| <
M e e, LE ot o tsn).
In conclusion, for t € [t,,, tyy1), where m = 1,2, -+ we have
]l < M ||| eMrmAtm gm0, ()

where M € R, is a positive constant.
By (5), it can be shown that

(a)

(b)

If the switching law satisfies M, — At,, < M, m € Ny, then (5)
implies ||z¢| < M||¢||le*, t >0, meaning that (2) is SWUS;

If the switching law satisfies lim,, oo (M, — M) = —o0, then (2)
is SWUS and (5) implies limy_,, |z(£,0,0,0)] = 0, for all ¢ € C,,
meaning that (2) is GSWUS;

If the switching law satisfies lim sup,,,_, ., M’”t;m < 0, then there exist

¢ > 0 and N € N, such that for all m ZmN, M, — M, < —¢t,,
(without loss of generality, we may choose € < A). Thus, there exists
a positive constant IT such that [|z;|| < T||¢|le™*, ¢t > 0, meaning that
(2) is GESWUS.



Corollary 3.1. Suppose that the conditions of Theorem 3.1 hold. Then the
switched control system (2) is:

(a) SWUS, if the switching law o satisfies

2In M + 7(CMeP™ + a+ 1)

tn — b1 > 5 . me N
(b) GASWUS, if the switching law o satisfies
2In M MePT 1
P s nM +7(CMe —|—a+7’)+_’ me N,
A m
(¢) GESWUS, if the switching law o satisfies
. 2In M + 7(CMeP™ + o+ 1)
lim sup =\—c,
m—00 tm - tm—l

where € > 0 is a constant.

Proof. For t € [t tm1), from (5), it follows that
lzel| < M |jpl|eMm—Xtme=At—tn)
< M||<p||ezzil[21nM+T(CMeBT+a+r)—/\(ti—ti,l)]e_A(t_tm).
Thus, it holds that

(a) If the switching law satisfies

2In M + 7(CMeP™ + o+ 1)

tm - tm—l 2 /\ ) m e N+7
then .
2[2 In M +7(CMeP™ +a+7) = Ati—t,1)] <0
i=1
and

el < M o]
This implies that the switched control system (2) is SWUS.
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(b) If the switching law satisfies

tm - tmfl 2

2InM +7(CMeP™ +a+71) 1
)\ _'_E, m€N+,

then

1
D RIMM+7(CMe™ +a+7) = Aty —tig)] < =AY -
=1

=1

and for all ¢ € C.,
Jlim [2(£;0,¢,0)] = 0.

This means that the switched control system (2) is GASWUS.

(c) If the switching law satisfies
_ 2In M + 7(CMeP™ + a + 1)
lim sup

m—o0 tm - tmfl

then there exists a N € Ny, such that for m > N,

=\—c¢,

21nM+T(C’MeﬁT—|—a—|—T)—/\(tm—tm_l)< €
t — tm—1 - 2

and thus

el < MM jglle2",
where M is a positive number. This implies that the switched control

system (2) is GESWUS.

4 Nonlinear Systems

In this section, we consider the following nonlinear switched control system
t
l‘(t) = Aa(t)l‘(t) + Ba(t)u(t) + fa(t) (l‘(t),l :p(s)ds) (6)
—n

The aim is to design a switching law and a state feedback

controller u(t) = Kypax(t), >0,
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where K, € R™" and (t) is the detection function of o(t), (i.e., y(t) =
o(t — 7)), such that the closed-loop switched system

2(t) = Asyx(t) + Bott) Ko(t—r)2(t) + fon (x(t), /t z(s)ds)  (7)

is globally asymptotically stable or globally exponentially stable, where 7, 75 >
0.
To continue, let z(¢; ¢y, ¢) be the solution of the system,

1) = Az(0) + f(a(0). | a(s)as). )

with z;, = ¢, p € C;.
Lemma 4.1. Suppose that there exist positive numbers €, \1, Ao and matrices

E, = ET E, € R™™, such that

QxT(t)f(x(t),/t x(s)ds) SxT(t)Elx(t)+/t 27 (t) Eyz(s)ds.

T

MA+ AT 4 BEi 4 7 'E) < =\, M(E,TEy) < .
where A(+) stands for the mazimum eigenvalue of the corresponding matriz.
Then

(i) A1 > 1€y > 0 implies

[2(B)] < [lolle"), (9)
where X is the unique positive solution of the equation 2\ = A\ —
TeXge T

(i) 0 < A\ < TeAy implies
T (10)
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Proof. Let V = 2Tz. Then, by Lemma 2.4, we have

V](g) = 2T () (A+ AN x(t) + 227 (t) f(z(t), /t_ x(s)ds)

IN

o () (A + AD)x(t) + 27 (t) Evao(t) + /tt oT (t)Eyx(s)ds

IN

oT () (A+ AT + E)z(t) + /t [e 'l () (t) + ex’ (s) E3 Eqx(s)]ds

t
< 2T (A+ AT+ By + 1 B)x(t) + e/ o (s)ET Byx(s)ds
t—1

< =MV(E) + T [Vill.
If \{ > 7e\y > 0, then it follows from Lemma 2.2 that
V(1) < ||[Viplle 2210,

which shows the validity of (9).
If Ay < 7eXg, then it follows from Lemma 2.3 that

V()] < [V, | elrenm -2t

and hence
|£B(t>| S ||90||e%(’r6/\2ek17—)\1)(t—t0)‘

Now, consider system (7) under the following assumptions.
Assumption A,

i) There exist positive numbers €;, A\1;, Ag;, A3; and matrices Fy; = Eﬂ, Es; €
R™™ i € ©, such that for all i € ©

22 (1) fu(x (1), /t_ 2(s)ds) < 27 (#) Bya(t) + /t_ o7 (1) By (s)ds:

T1
i) M(A4; + B.K)" + (A + BiK;) + Ey; + Tlﬁi_lE) < =i,
M(A; + BiK)T + (A + BiK;) + Eyy + e, 'E) < =Xy, i # 7,
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4.1 The case 14 > 1

Theorem 4.1. Suppose that Assumption Ay hold and that

(i) A\ii — Ti€idsi > 0, Ay is the unique positive solution of the equation
2)\(1) = )\11' — 7'16)\3i€2>\(i>7— cmd )\ = mlnzeg{)\(l)}7

(11) Agi — Ti€;A3; > 0, S\(i) 15 the unique positive solution of the equation
25\(2-) = \g; — T1EN3:€2OT and \ = minieg{j\(i)}; and

(i1i) the switching law o = {(i1,t1), -+, (ig, k), - } satisfies t, — tp—1 >
T + To.

Then, the switched control system (7) is GESWUS.

Proof. Let o(t) be a given switching signal. For the case when t € [0,¢;),
the i" subsystem is active, i.e.,

t
‘T(t) = A“Q?(t) + BllKhx(t) + fil (l’(t),/ SL‘(S)dS),
t—71
Then, by the conditions of the theorem and Lemma 4.1(i), it follows that
[2()] < [lelle™™

We claim that, for any m € Ny and ¢ € [t,,, t;11), the solution of system
(7) satisfies:

) lz(t)] < e*’\(tm*mfl)efx(t*tm), t € [tm,tm + T2),
¥
(¥)2: |z(t)] < |lplle” 2T =t e [t + T, i)

Indeed, when ¢ € [t,1; + 72), the active subsystem is:

¢
(0) = Ault) + BuKyalt) + fulalt), [ a(s)ds).
t—T1
Thus, by the conditions of theorem and Lemma 4.1(i), we obtain

[2(t)] < Jonlle ) < [lpfle e Nt e [t 4 7).
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For t € [t; + T2, t2), we have

|l‘(t)| < I|$t1+,r2 ||76*)\(t7t177'2)

- max{suptlJrT?*TlSGStl |x(9)|’supt1§9§t1+m ‘x(0)|}€_/\(t_tl_7—2)

< max{lple T, [y [Je -t
< max{llglle ), [pllenN - e Netm)

= ||¢||6*>\(t7727n) < ||SD||67>\(t727-1)'

It means that (x); and (x), hold for m = 1.

Suppose that (x); and (%), hold for m € N, and we will show that (x);
and (%) hold for m + 1.

For t € [tyi1,tms1 + T2), we have

EXOINE E Bl
< onH6_)‘(“"“_(mﬂ)“)e_j‘(t_tmﬂ),

On this basis, it follows that for ¢ € [t,,+1 + Ta, tma),

lz(t)] < ||wtm+1+7'2 ||6*>\(t*tm+1*7’2)

< max{sup, o coerns 1EO)]SUD, L coch i [2(0)[FeT AT

< max{ H 90” e—A(tm+l+T2—(m+2)Tl)’ H Sp‘|€—>\(tm+1—(m+1)n) }e—)\(t—th—Tg)

= ng“@‘A(t—(m-i-?)n)_

This means that (x); and ()2 hold for m + 1. By mathematical induction
principle, we conclude that for all m € N, (x); and (%) hold.
Now, from (x); and (x),, we have

()] < [l e M b€ [t ). (11)
Since the switching law satisfies t;, — tx_1 > 71 + 7o, thus

ty — k
lim inf 22— "L >0,
k—o0 k
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so there exist € > 0 and N € N, , such that for k > N, t, — k1y > €t;.. Thus
—)\(tk — le) < —)\&Ttk,k > N.

and hence
z(t)] < pllermeAEmmm)

< gl Nemmm At

< flgllemetneNetn) > N
Therefore, the conclusion of the theorem follows readily.
a

Corollary 4.1. Suppose that the conditions of Theorem 4.1 hold and that 7o =
0. Then, the switched control system (7) is:

a) SWUS, if the switching law o satisfies limy_,oo(tp — k1) < 00;

b) GASWUS, if the switching law o satisfies limy_,o0 (ty, — k71) = 00;

c) GESWUS, if the switching law o satisfies liminfy_, % > 0.

Corollary 4.2. Suppose that the conditions of Theorem 4.1 hold. Then, the
switched control system (7) is GESWUS, if the switching law o satisfies

t, — ti—1 —
lim inf - e > 0.

m—co m tm— 1

Proof. From (11), it follows that

z()] < [lollerme )

< H(PHG_ z;n;l A(ti_t,‘_l—Tl)e_A(t_tm_Tl).

Since the switching law satisfies

. . tm - tmfl — T
lim inf =
m—00

)
m tm—l

there exists an N € N, such that for m > N and A > 0,

tm_tm—l_7_1<_§)\7
tr — tme1 2

-A
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and hence
ol < e ZRattisreo-tn oy

”SD”e_A Eéi]_(ti_ti—l_Tl)e_)\ Z?;N(ti_ti—l_Tl)e_)\(t_t'm_Tl)

IN

< ”SDH‘E_A Eil(ti_ti_l_Tl)ef%A(tM*tN)e_)\(t—tm—n)

< Mglle=2*,

where M is a positive number. Thus the switched system is GESWUS. O

Using the similar proof method of Theorem 4.1 and Lemma 4.1(ii), we
can prove the following results.

Theorem 4.2. Suppose that Assumption Ay holds and that
(i) A — 1103 > 0 and Ay s the unique positive solution of the equation
2)\(1) = /\1@' — 7'16)\32‘62)\("‘)7- and \ = HllnlE@{)\(Z)}7
(ZZ) Noi — T1€ Az < 0, 1€ @; and
(11i) the switching law o = {(i1,t1), -+, (ig, k), - } satisfies t, — tj_1 >
1 -+ T2.
Then, the switched control system (7) is:
a) SWUS, if there exists M € R, such that for allm € Ny, m(A+ A1) —

b) GASWUS, if lim, oo [m(A 4+ A72) — A(t — mmy)] = —o0; and

¢c) GESWUS, if liminfy_, m(Athra)=A(t=mri) _ 0.

t
where 2A = max;eg{ (Azi€; 71 — \oj)To} .

Corollary 4.3. Suppose that the conditions of Theorem 4.2 hold. Then, the
switched control system (7) is:

a) SWUS, if there exists M > 0 such that Y ;- (ty —ty—1 —T1 —To— %) >

b) GASWUS, if limyyoe Yoy (tr — tye1 — 71 — T2 — §) = +00; and

[ - —Ti—p— 2
c) GESWUS, if liminf, . S (b=t —1 D) o 0

t

where 2A = max;co{(A3i6; 71 — Xy}
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4.2 The case of > 71y

To begin, we notice that since 7, > 71, ||24]| = sup;_,, <<, |2(0)].
By similar argument, we can prove following results.

Theorem 4.3. Suppose that Assumption Ay holds and that

(i) A — 1103 > 0 and Ay s the unique positive solution of the equation
2)\(1) = /\1@' — ’7'162')\31'62)\(1‘)7— and \ = Hlll’lleg{/\(z)}7 and

(11) Aoi — T1€:A3; > 0 and 5\(1-) 18 the unique positive solution of the equation
25\(1) = )\gi — 7'161‘)\31‘€2>\(i>7— and 5\ = mlnzee{j\(,)}
Then, the switched control system (7) is:

a) SWUS, if the switching law o = {(i1,t1), -+, (tm,tm), -+ } satisfies
T2 S tm - tmfl S 27—27 fOT m e NJr;

b) GASWUS, if the switching law o = {(i1,t1), -, (im,tm), - -+ } salisfies
tm — tm—1 > 215 for m € Ny and lim,, o (t,, — 2mmy) = 00; and
tm

c) GESWUS, if the switching law o = {(i1,t1), -+, (im,tm), - -+ } salisfies

tm — tm_1 > 279, m € Ny and liminf,, t"ﬁﬂ > 0.

Proof. Let o = {(i1,t1), -, (im,tm), - } be a given a switching signal.
For t € [0,t,), the i{" subsystem is active, i.e.,

1) = Aua(t) + BuFialt) + fula(0). [ a(5)ds),

Thus, by the conditions of the theorem and Lemma 4.1(i), it is clear that
l2(t)] < llelle™.

a) We claim that, for any m € N, the solution of system (7) satisfies:

(Mg : [2(B)] < fplle BmmemMimtn)

) te [tmvtm+T2)7
(Fa: |z(@)] < lplleX72Rlem A0t e [, + 7, tng).
Indeed, for t € [t1,t; + T2), the active subsystem is:
Y

1) = Aslt) + Buoa(t)+ Fu(ol0). [ a(s)ds)

18



Thus, by the conditions of the theorem and Lemma 4.1(i), we obtain
’l’(t)’ S H.Z‘tlue*j‘(t*tl) — H(pue*)\(tlfm)efj\(tftl).

Now, for t € [t; + 7o, t2), we have

|l‘(t)| S ||mt1+7'2||67)\(t7t177-2)

— —A(t1—72 - 0—t1) ,—A(t—t1—72
= SUPy, <get, 1y || plleT TR AT )

— H30H€_>‘(t1_2T2)6_)‘(t_t1).

It means that (x)3 and (x)4 hold for m = 1.

Suppose that ()3 and (*)4 hold for m € N, and we shall show prove
that (%)3 and ()4 hold for m + 1.

For t € [tyi1,tme1 + T2), we have
()] < g, e

= Suptm+1—7’2§9§tm+1 ||$(0)||67)\(t7tm+1)

= ma‘X{Suptm+1—T2§9§tm+T2 ||l‘(0) ||7 Suptm+72§9§tm+1 ||x(9> || }efA(tftm-ﬁ—l)

- maX{Supth —12 <0<t +72 el e M) g A0 tm),

SUDy, 4yt [Pl AO—tm) Lo tni)

< max{ ” SOHe—/\(t1—Tg)e—jx(tm_._l—'rz—tm) , HQOHG—)\(tl—TQ) }e—Z\(t—tm+1)
S ||¢||€—A(t1—7'2)6—5\(t—tm+1)'

NOW; for t S [tm+1 + T2, tm+2>, we obtain
(1)) < (T, g fle X EIme=)

= S <0<t ”QOHe_A(tl_7—2)6_5‘(9_tm+1)e_A(t—tm+1—7'2)

< ||QOHe—A(tl—Tz)e—)\(t—tm+1_72)

< ”(p||6—/\(t1—27-2)€—>\(t—tm+1).

19



This means that for m + 1, (x)3 and ()4 hold. Thus, by mathematical
induction principle, it is clear that for all m € N,, ()3 and (x)4 hold.

From ()3 and ()4, it follows that
2(@®)] < llplle™ 7™, ¢ € [t tur),
which implies that the the switched control system (7) is SWUS.

In this case, the switching law o satisfies the condition t,, —t,,_1 > 27.

We claim that, for any m € N, the solution of system (7) satisfies:
(K)s, : [2(t)] < |lplle X Enm2mmtmemAtn) g [ty 8, + T2),
(a1 |z@)] < lplleA72mm), t € [tm + T2y tmga)-

Indeed, for ¢ € [t,t1 + 7o), the active subsystem is:

1) = At () + Buirt) + Fula(), [ a(s)ds)

Thus, by the conditions of the theorem and Lemma 4.1(i), it follows
that A A
‘l‘(t)‘ < H.ﬁl}tlHe*)‘(tftl) < H(p"e*)\(h*m)ef)\(tftl)'

Now, for t € [t; + 7o, 12), we have

|$(t)| < ||mt1+7'2||67)\(t7t177-2)

— —A(t1—72 - 0—t1) ,—A(t—t1—72
= SUPy, <get, 1, || plleT TP AT )

S H90He_A(tl_T2)e_)\(t_t1_T2) — H(PHe_)\(t_2T2) .

It means that (x)3, and ()4, hold for m = 1.

Suppose that (x)3, and (x)4, hold for m € N, and we shall show that
(%)s, and (*)4, hold for m + 1.
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For t € [tyi1, tmy1 + T2), we have

()] S gy [l )

— Suptm+17T2§9§tm+1 ||Qj(0) ||€*)\(t7tm+1)

S OSUDy, <0<t [eo]le™ AO=2mm2) o =Alt=tm1)

< ||<,0||€7)‘ tm+1=2(mA1)T2472) o= AE—tm+1)

Now, for t € [t;11 + T2, tmaz), it follows that

R B P [

= SUD¢,, 1 <0<tymi1+T ||QOH6_/\ tmt1=2(mA1)T2472) o =AO—tm+1) o= A(t—tm41—-72)
m+1> m+4+1TT2

< ||90||€_/\ tm1=2(m+1)72+72) o =A(t—tm+1-72)
< lplle At 2mAD),

This means that for m + 1, (%)3, and ()4, hold. Therefore, by math-
ematical induction principle, it is clear that for all m € Ny, (x)3, and
(%)4, hold.

From (x)3, and (x)4,, we can show that
()] < llplle™ 72t € [t i), (12)
which implies that the switched control system (7) is GASWUS.

In this case, the switching law o satisfies the condition t,, —t,,_1 > 27.

It follows from (12) that
()] < llelle™ 72, t € [t tms).

If 5
lim inf 27— 72 > 0,
k—o0 m

then there exist ¢ > 0 and N € N, such that for all m > N, have

= =Mty — 2mmy) < —¢ty,



and hence (without loss of generality, we may choose £ < \)

|a:(t)| < ||S0||67/\(t72m7‘2) — ||(p||67)\(tm72m72)6,/\(t,tm)

< lpllemstmemtTtm) = e,

Thus, the switched control system (7) is GESWUS.

Corollary 4.4. Suppose that the conditions of Theorem 4.3 hold. Then, the
switched control system (7) is:

(a) GASWUS, if the switching law o satisfies tp, — ty,—1 > 275 + %, m €
Ny; and

(b) GESWUS, if the switching law o satisfies
trw — t—1 — 2

tm - tm—l

-
225>0.

Using the similar proof method of Theorem 4.3 and Lemma 4.1(ii), we
can prove the following result:

Theorem 4.4. Suppose that Assumption Ay holds and that

(i) A\ii —Ti€iAs; > 0 and Ay is the unique positive solution of the equation
2)\@) = /\12' — T1€7;)\3i€_2>\(i)7 and A = Hllnle@{)\(z)},

(Zl) /\2,’ — T1€Z')\31' S O, 1€ @, and
(i1i) Switching law o = {(i1,t1),- -, (ix, tx), -+ } satisfies tx, — tx_1 > 275.
Then, the switched control system (7) is:

a) SWUS, if there exists a M > 0 such that for all m € Ny, —At,, +
m2A + A)r < M;

b) GASWUS, if limy, 0o =AMty + m(2X\ + A)1y = —00;

¢) GESWUS, if liminf, . —Mmtm@AERT g 4 e gt

tm

where 2A = max;co{(A3i6; 71 — Xy}
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Corollary 4.5. Suppose that the conditions of Theorem 4.4 hold. Then, the
switched control system (7) is:

(a) SWUS, if the switching law o satisfies

/\(fm — tm,1> — (2)\ + A)TQ > 0, m € N+,
(b) GASWUS, if the switching law o satisfies
1
Al = tm—1) = A+ A)mp + - ME N

(c) GESWUS, if there exist ¢ > 0, N € N, such that for all m > N, the
switching law o satisfies

)\(tm — tm—l) — (2)\ + A)TQ Z c

tm - tm—l

5 Conclusion

In this paper, we study the stabilization problem of switched control sys-
tems with switching signal time delay. New concepts of globally asymptotical
or exponential stabilizability under state feedback controllers and switching
laws are presented. Then, by using the method of Lyapunov functions and
delay inequalities, appropriate state feedback controllers and switching laws
are devised under which the resulting closed-loop switched systems are glob-
ally asymptotically stable and exponentially stable.
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