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Abstract

In this paper, we propose a novel hybrid global optimization method to solve constrained optimization prob-

lems. An exact penalty function is first applied to approximate the original constrained optimization problem

by a sequence of optimization problems with bound constraints. To solve each of these box constrained op-

timization problems, two hybrid methods are introduced, where two different strategies are used to combine

limited memory BFGS (L-BFGS) with Greedy Diffusion Search (GDS). The convergence issue of the two

hybrid methods is addressed. To evaluate the effectiveness of the proposed algorithm, 18 box constrained

and 4 general constrained problems from the literature are tested. Numerical results obtained show that our

proposed hybrid algorithm is more effective in obtaining more accurate solutions than those compared to.
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1. Introduction

Many practical problems can be formulated as optimization problems [1, 2]. A general optimization

problem can be stated as follows:

min f(x) (1)

s.t. hi(x) = 0, i = 1, · · · , l, (2)

gj(x) ≤ 0, j = 1, · · · ,m, , (3)

x ∈ X = {x ∈ Rn : L ≤ x ≤ U}, (4)

where x ∈ Rn, f, hi, i = 1, · · · , l, and gj , j = 1, · · · ,m, are continuously differentiable functions, L =

[L1, L2, · · · , Ln] and U = [U1, U2, · · · , Un] are, respectively, the lower and upper bounds. Let this problem5

be referred to as Problem (P ). To proceed further, we suppose that this problem has at least one feasible

solution.

In many real world applications, Problem (P ) is non-convex, either due to the non-convexity of the

objective function or the constraint functions. For such a case, Problem (P ) may admit many local minima.
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In practice, local minima are useless if their corresponding objective function values are far away from the10

global minimum [3]. Thus, it is important to develop methods for finding a global minimum of Problem (P ).

In the past several decades, there have been extensive efforts dedicated to global optimization. In general,

global optimization methods can be classified into three main categories: deterministic methods, stochastic

methods and hybrid methods. For the methods belonging to the first category, they are developed based on

deterministic search strategies in which only deterministic information is involved for both local and global15

searches. In particular, for each of these methods, it relies heavily on the construction of an auxiliary function

to escape from local minima, such as tunnelling function [4] and filled function [5, 6], where there are several

parameters to be adjusted. Tuning these parameters is computationally expensive. For the methods belonging

to the second category, probabilistic techniques are utilized to escape from local minima, such as Genetic

Algorithm [7, 8, 9], Ant Colony Optimization [10, 11], Simulated Annealing algorithm [12], Artificial Bee20

Colony algorithm [13, 14, 15], Particle Swarm Optimization [16, 17], Collective neuro-dynamic optimization

[18], Artificial algae algorithm [19] and Differential search algorithm [20, 21]. However, these methods tend

to obtain solution with low accuracy and are computationally expensive due to lack of guidance by gradient

during the searching process [22]. Their performances are poor in terms of convergence [23].

The methods belonging to the third category are known as hybrid methods, where some stochastic schemes25

are combined together or population based search methods are combined with deterministic methods so as to

speed up convergence process. In [24], Harmony Search (HS) and Artificial Bee Colony (ABC) algorithm are

combined together to solve a class of box-constrained optimization problems in which ABC is incorporated to

improve the local convergence of HS. In [23], a hybrid optimization technique is proposed through combining

a genetic algorithm with a local search strategy based on the interior point method. In [25], an improved30

genetic algorithm (IGA) and an improved particle swarm optimization (IPSO) algorithm are combined and

applied to optimize the amplitude of the current excitation of the spherical conformal array. In [26, 3],

Simulated Annealing method is used to escape from local optima obtained by gradient-based deterministic

method. In [27], ABC algorithm is combined with a modified pattern search method to improve success

rate and solution accuracy for box constrained optimization problems. In [28], Particle Swarm Optimizer is35

combined with BFGS to solve box-constrained optimization problems, where BFGS is for the local search.

In [22], this hybrid method is further developed to solve general constrained optimization problems. In

[29], evolutionary computation (EC) algorithms are combined with a sequential quadratic programming

(SQP) algorithm to solve constrained global optimization problems. The hybrid methods mentioned above

have better numerical performances when compared with pure stochastic search methods. In these hybrid40

methods, the stochastic methods are mainly utilized to help obtain a better initial condition for further local

minimizing which means that only exploration search is used. Note that the original stochastic methods

are designed not only for exploration search, but also for exploitation search. For a hybrid algorithm, if a

gradient-based method is embedded for local search, the exploration would be strengthened at the expense of

weakening exploitation. However, the performance of these algorithms depends heavily on tuning parameters45

in the stochastic algorithms. If the parameters are not tuned appropriately, the solution obtained will still

be trapped into local minimum. To overcome this drawback, Dynamically Dimensioned Search Algorithm is
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developed in [30] where no parameters tuning is requred. However, that method is a single-solution based

heuristic global search algorithm.

Stochastic based search methods are applicable only to unconstrained or box-constrained optimization50

methods, and hence are not directly applicable to solve Problem (P ) which is a constrained optimization

problem involving both equality and inequality constraints. In the literature, a constrained optimization

problem is often transformed into a box constrained optimization problem by augmenting the constraint

functions to the cost function using the augmented Lagrangian penalty method [22]. However, the penalty

parameter is required to go to infinity for achieving feasibility. In this paper, the exact penalty function55

method (EPM) (see [31, 32]) will be applied to convert the constrained optimization problem (P) into a box

constrained optimization problem. A major advantage of this approach is that the penalty parameter needs

only to be greater than or equal to some finite value for achieving feasiblity. Then, a new population-based

stochastic search method, called the Greedy Diffusion Search (GDS), is proposed to solve the box constrained

optimization problems where two parameters are included. In our extensive experimental experiences, both of60

the two parameters can be pre-set without affecting performance and thus, no parameters tuning is required

in GDS. In addition, the convergence issue is addressed. However, this method is strong in exploration but

suffers from poor exploitation. Thus, the limited memory BFGS is embedded into GDS in two different

strategies to improve its exploitation. An effective new hybrid search method is thus obtained for solving

Problem (P).65

The rest of this paper is organized as follows. In Section 2, an exact penalty method is introduced to

tackle the constraints. In Section 3, two hybrid methods are proposed. Numerical results and comparisons

between different methods are reported in Section 4. Section 5 concludes the paper.

2. Exact Penalty Function Method (EPM)

Nonlinear constrained optimization problems can be solved through solving a sequence of box-constrained70

optimization problems by augmenting the constraint functions to the objective function using the penalty

function method [6, 33], to form an augmented objective function. For optimization problems with equality

and inequality constraints, the penalty parameter in the augmented objective function is, in principle, required

to go to infinity for achieving feasibility of the solution obtained. However, this is clearly undoable. On the

other hand, the exact penalty function method introduced in [31, 32] does not require the penalty parameter75

to go to infinity [31, 32] for achieving feasibility of the solution obtained. In what follows, the exact penalty

function approach proposed in [31] will be briefly described.

Let us first define the constraint violation function on X as follows:

G(x) =

l∑
i=1

[hi(x)]
2

+

m∑
j=1

[max{gj(x), 0}]2 . (5)

It is clear that G(x) = 0 if and only if x satisfies the equality constraints (2) and the inequality constraints

(3). Furthermore, G(x) is a continuously differentiable function [31].80
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For a given ε̄ > 0, we define the following penalty function on X × [0, ε̄]:

Fσ(x, ε) =


f(x), if ε = 0, G(x) = 0;

f(x) + ε−αG(x) + σεβ , if ε ∈ (0, ε̄];

∞, if ε = 0, G(x) 6= 0;

(6)

where σ > 0 is a penalty parameter, α and β are two positive constants satisfying 1 ≤ β ≤ α.

Instead of solving Problem (P ) directly, let us consider the following optimization problem:

min
(x,ε)∈X×[0,ε̄]

Fσ(x, ε). (7)

Let this problem be referred to as Problem (Pσ). For a given σ, minimizing Fσ(x, ε) with respect to (x, ε) ∈

X × [0, ε̄] is equivalent to minimizing f(x) + ε−αG(x) + σεβ . Thus, if σ is increased, εβ will be decreased.85

Hence, the constraint violation G(x) will be decreased. Therefore, the increase of the penalty parameter σ

will eventually yield a feasible solution.

The two theorems in Appendix A reveal the relationship between Problem (P ) and Problem (Pσ).

Theorem 2 in Appendix A shows that there exists a threshold σ̄, such that for all σ ≥ σ̄, any local

solution of Problem (Pσ) is also a local solution of Problem (P ). This important property is not shared by the90

augmented Lagrangian penalty method [28], for which the penalty parameter is, in principle, required to go

to infinity ensuring feasibility of the solution obtained. Since global solutions are included in local solutions, a

global solution of Problem (Pσk) will yield a global solution of Problem (P ). From this observation together

with Theorem 1 and Theorem 2 in Appendix A, the exact penalty method (EPM) is utilized to convert

Problem (P ) into Problem (Pσ). In Section 3, an algorithm is proposed to solve Problem (P ) through solving95

a sequence of Problem (Pσ). This algorithm is referred to as Algorithm 1.

To continue, we denote, for notational simplicity, z = (x, ε) and Ω = X × [0, ε̄]. Then, Problem (Pσ) can

be written as:

min
z∈Ω

Fσ(z). (8)

3. Two Hybrid Methods For Problem (Pσ)

Algorithm 1 Exact Penalty Method (EPM) for Problem (P )

Initialization:

Initialize σ0 > 0, maximum penalty parameter σmax, scale factor ς > 1 and tolerance ε1 > 0; Set k = 0.

Iteration:

1: Use Algorithm L-GDS or L-RGDS to solve Problem (Pσk) and output the optimal solution (xk,∗, εk,∗).

2: If εk,∗ ≤ ε1, then stop and output xk,∗ as the optimal solution of Problem (P ); otherwise, set σk+1 = ςσk.

3: If σk+1 ≤ σmax, set k = k + 1 and go to Step 1. Otherwise, stop and output “algorithm cannot find a

solution of Problem (P )”.

Note: Algorithm L-GDS and Algorithm L-RGDS in Algorithm 1 will be defined in Section 3.3.
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Two hybrid methods will be introduced to solve Problem (Pσ). These two hybrid methods are constructed100

based on two different strategies of combining limited memory BFGS (L-BFGS) and a novel stochastic search

method. Let us briefly introduce L-BFGS as reported in [34].

3.1. Limited Memory BFGS method

L-BFGS is an adaptation of the BFGS method for large-scale problems. For the box-constrained opti-

mization problem, we define the following projection.105

PΩ(zi) =


zi, if zi < zi;

zi, if zi ≤ zi ≤ z̄i;

z̄i, if zi > z̄i,

(9)

where zi is the i-th element of z, zi = Li, i = 1, · · · , n, zn+1 = 0, z̄i = Ui, i = 1, · · · , n, and z̄n+1 = ε̄.

L-BFGS has superlinear convergence, and requires less storage than BFGS. Thus, L-BFGS has attracted

considerable attention and has been used to solve many practical problems. For further information, see

[35, 36, 37] for general methods and [38, 39] for applications.

As the original BFGS, L-BFGS uses an approximation to the Hessian matrix to steer its search through110

variable space. BFGS stores a dense approximation to the inverse Hessian while L-BFGS stores only a few

vectors that represent the approximation implicitly. Instead of updating the inverse Hessian Hk at every

iteration, L-BFGS maintains a history of the past m̂ updates and then updates, where the history size m̂ is

generally small. L-BFGS starts with an initial point z(0) ∈ Ω and generates iterations z(k+1) by the process

z(k+1) = z(k) + λkp
(k), where p(k) is the direction vector and λk ≥ 0 is a step-length, usually chosen in such115

a way that it satisfies the Wolfe inexact line search conditions (see [1])

Fσ(z(k+1))− Fσ(z(k)) ≤ ζλkgTk p(k), gTk+1p
(k) ≥ ηgTk p(k) (10)

where 0 < ζ < 1
2 , ζ < η < 1, gk = ∇Fσ(z(k)), and p(k) = −Hkgk with a symmetric positive definite matrix

Hk. Usually H0 is a multiple of I and Hk+1 is obtained from Hk by a variable metric update to satisfy the

quasi-Newton condition

Hk+1yk = sk (11)

where sk = z(k+1) − z(k) = λkp
(k) and yk = gk+1 − gk. Then, we have120

Hk+1 = V Tk HkVk + ρksks
T
k (12)

with

ρk =
1

yTk sk
, Vk = I − ρkyksTk
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Therefore, Hk+1 in L-BFGS can be updated as follows:

Hk+1 = V Tk HkVk + ρksks
T
k

= V Tk [V Tk−1Hk−1Vk−1 + ρk−1sk−1s
T
k−1]Vk + ρksks

T
k

= · · ·

= [V Tk · · ·Vk−m̂+1]Hk−m̂+1[Vk−m̂+1 · · ·Vk]

+ ρk−m̂+1[V Tk−1 · · ·V Tk−m̂+2]sk−m̂+1s
T
k−m̂+1[Vk−m̂+2 · · ·Vk−1]

+ · · ·+ ρksks
T
k . (13)

Now, we modify the L-BFGS method for unconstrained optimization in [34] to box-constrained optimiza-

tion problem as given in Algorithm 2 below.

Algorithm 2 Limited memory BFGS (L-BFGS) for box-constrained problem

Initialization:

Choose z(0) ∈ Ω;H0 ∈ R(n+1)×(n+1) positive definite; 0 < ζ < 1
2 ; ζ < η < 1;m ∈ N+; ε2 ≥ 0; Set k = 0.

Iteration:

1: If ||gk|| ≤ ε2, stop.

2: Compute p(k) = −Hkgk.

3: If λk = 1 satisfies Eq. (10), go to the next step. Otherwise, run the Wolfe line search to find λk such

that Eq. (10) is satisfied.

4: Set z(k+1) = z(k) + λkp
(k).

5: Run the projection operator given by Eq. (9).

6: Let m̂ = min{k + 1,m}. Update H0 for m̂ times to get Hk+1 according to Eq. (13).

7: Set k = k + 1.

It is worth mentioning that Algorithm 2 is as simple as L-BFGS for unconstrained optimization problem

as described in [34] since the computation of the projection operation (9) is simple.

3.2. A new stochastic search strategy - Greedy Diffusion Search125

Although L-BFGS has excellent performance for local search, the solution obtained is often a local optimal

solution for multimodal functions. To escape from the local optimal basin, we propose a new stochastic search

strategy, called Greedy Diffusion Search (GDS ), as described below:

After an initial point z(0) ∈ Ω is chosen, q1 additional points, which constitute a generation, will be

generated according to the formulas given below:130

z̃
(l+1)
i = (1− θl,i)z(l) + θl,iξ

(l)
i , i = 1, 2, · · · , q1, (14)

with

θl,i =
1

1 + e
l−tN
a

, (15)
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where the search direction ξi is randomly generated with a uniform distribution in the box Ω, and θl,i is

the step-length determined by Eq. (15). l and N are the current generation number and the maximum

generation number, respectively. Since z(l) ∈ Ω and ξ
(l)
i ∈ Ω, i = 1, · · · , q1, z̃

(l+1)
i ∈ Ω. To ensure that the

algorithm is having the descent property, we further choose z(l+1) according to the following greedy rule:135

z(l+1) = arg min{Fσ(z(l)), Fσ(z
(l+1)
i ) : i = 1, 2, · · · , q1} (16)

i.e., z(l+1) is the best point among the current z̃
(l+1)
i .

To maintain exploration capability at a later stage, we choose q2 points randomly with a uniform distri-

bution in Ω, denoted by ẑ
(l+1)
j ∈ Ω, j = 1, 2, · · · , q2, and integrate them with the current generation in the

lth iteration by Eq. (14). Generally, q2 is chosen such that q2 < q1. Based on the greedy rule, (16) becomes:

z(l+1) = arg min{Fσ(z(l)), Fσ(z̃
(l+1)
i ), Fσ(ẑ

(l+1)
j ) : i = 1, 2, · · · , q1, j = 1, 2 · · · , q2} (17)

There are two parameters in (15): the translation parameter t and the accuracy parameter a.140

Translation parameter (t): This parameter reflects the relationship between step-length and iteration

number. According to Eq. (15), if a is fixed, the step-length θl,i will vary with respect to t, l and the constant

N . In particular, t acts as a translation scalar. Figure 1 plots the curve of θl,i with a = 20 for t = 1
3 ,

4
7 and

3
4 . This figure shows that the larger the t is, the more diverging the points are searched according to the rule

given by Eq. (14).145
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Figure 1: θ versus l with different t

Accuracy parameter (a): The parameter a in Eq. (15) plays an important role to determine the

accuracy of the solution obtained. Figure 2 demonstrates that if the value of a is large, then the step-length

is small in earlier stage of the iteration process but becomes larger in the later stage, and vice versa. It can

be preset as a constant relating to the tolerance ε2 ≥ 0 (for example, a = 2 log 1
ε2

).

The two main features of any stochastic algorithm are exploration and exploitation. Exploration is to150

generate diverse solutions and exploitation is to focus on the search in a local region. At the initial stage, the

step-length θl,i is large. The diffusion points z̃
(l)
1 , · · · , z̃(l)

q1 from the current points as well as ẑl1, · · · , ẑlq2 will

explore the search space. As the generation increases, the step-length θl,i will decrease. The first q1 diffusion

points z̃
(l)
1 , · · · , z̃(l)

q1 will play the role of exploitation, while the last q2 points ẑl1, · · · , ẑlq2 maintain the role

of exploration. Since at each iteration, the best solution among q points is maintained, Algorithm GDS is a155

descent algorithm.
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Based on the above analysis, we now formally stated GDS in Algorithm 3.

Algorithm 3 Greedy Diffusion Search (GDS)

Initialization:

Choose z̃(0) ∈ Ω; q1 > 0, q2 > 0, N ∈ N+; ε3 ≥ 0. Set l = 0.

Iteration:

1: while l ≤ N do

2: Generate the step-lengths θl,i satisfying Eq. (15), i = 1, · · · , q1.

3: Calculate z̃
(l+1)
i according to Eq. (14), i = 1, · · · , q1.

4: Choose ẑ
(l+1)
j , j = 1, · · · , q2, randomly in Ω.

5: Output the elitist solution according to Eq. (17).

6: Set l = l + 1.

7: end while

8: Output result.

The updating rule (14) in GDS is simpler than most of the existing population-based stochastic search

methods, such as Genetic Algorithm, Particle Swarm Optimization, Firefly Algorithm and Artificial Bee

Colony. Intuitively, the performance of GDS may be inferior to these existing methods. Through our160

extensive experiments, we observe that GDS is good at exploration, but weak in exploitation. To improve

its exploitation, we will propose two different strategies to combine L-BFGS with GDs. Thus, two hybrid

algorithms are obtained to solve Problem (Pσ).

3.3. Two hybrid algorithms

The first hybrid algorithm which is referred to as L-GDS, is to combine L-BFGS with GDS such that the165

exploitation capability is strengthened. This algorithm is formally stated as Algorithm 4.

In Algorithm L-GDS, GDS is used to obtain a good local minimizer z(k). Then, L-BFGS is carried out to

refine the local search around this local minimizer z(k). To jump out the current local minimizer, Algorithm

GDS is carried out to obtain a better initial point for L-BFGS to be executed again. This process is repeated

until the convergence is achieved.170
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Algorithm 4 Hybridizing L-BFGS with GDS (L-GDS)

Initialization:

Choose z(0) ∈ Ω, y(0) = z(0), the tolerance ε4 > 0 and the maximum iteration number K ∈ N+. Set

parameters in Algorithms L-BFGS and GDS. Set k = 1.

Iteration:

1: while k ≤ K do

2: Run Algorithm GDS and output z(k).

3: Take z(k) as an initial point and run Algorithm L-BFGS, output y(k).

4: if ||Fσ(y(k+1))− Fσ(y(k))|| < ε4 then

5: Return

6: end if

7: Set k = k + 1.

8: end while

9: Output result.

To avoid excessive local search, the tolerance ε in L-BFGS should not be set too small. However, in some

applications, an accurate solution is required. Thus, to increase accuracy while maintaining low computational

burden, we propose the following algorithm, which is referred as Algorithm L-RGDS, in which GDS is

triggered by a random number. If this random number is smaller than a given threshold, GDS will be

skipped and L-BFGS will be in action. This algorithm is stated as Algorithm 5.175

3.4. Convergence of the two algorithms

Based on some appropriate assumptions, the sequence z(k) obtained by L-GDS (respectively, L-RGDS)

converges with probability one to the region Ωε for any ε > 0, where Ωε = {z ∈ Ω : |Fσ(z) − Fσ(z∗)| ≤ ε}.

Moreover, Algorithm L-GDS (respectively, L-RGDS) converges with probability one to a global minimum.

Several convergence theorems and proofs are given in Appendix B.180

4. Numerical experiments

In this section, we will investigate numerical performances of our algorithms and compare them with

those obtained by other methods. Numerical comparison will be conducted with reference to the following

three aspects:

• Comparing performances of GDS, L-GDS and L-RGDS on box-constrained problems;185

• Comparing performances of L-GDS, L-RGDS, the filled function methods in [40, 41], HPSO in [42] and

HABC (ABC in [27] + L-BFGS) on box-constrained problems;

• Comparing performances of L-GDS, L-RGDS and smoothing penalty methods in [43, 44, 45] for general

constrained problems.
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Algorithm 5 L-BFGS with random exploration search (L-RGDS)

Initialization:

Choose z(0) ∈ Ω, the tolerance ε4 > 0, the maximum iteration number K ∈ N+ and a random constant

r0 ∈ [0, 1]; Set parameters in Algorithms L-BFGS and GDS. set k = 1.

Iteration:

1: while k ≤ K do

2: Generate a random number 0 < r < 1.

3: if r > r0 then

4: Run Algorithm GDS and output z(k).

5: else

6: Set z(k) = y(k)

7: end if

8: Take z(k) as an initial point and run Algorithm L-BFGS, output y(k).

9: if ||Fσ(y(k+1))− Fσ(y(k))|| ≤ ε4 then

10: Return

11: end if

12: Set k = k + 1.

13: end while

14: Output result.

The box-constrained problems include two test sets composing of test problems from [22] and website190

(http://www.sfu.ca/~ssurjano/optimization.html). Appendix C shows the details of these test prob-

lems. The general constrained test problems are chosen from [43, 44, 45, 46]. The codes are written in Matlab

7.5 with double precision arithmetic. The algorithms are carried out on a PC (Intel Core Duo 2.6 GHz, 1GB

memory) with Windows 7 operation system.

For all test problems, we choose the initial matrix H0 = I (the identity matrix), ζ = 0.2, η = 0.25,195

ε1 = ε2 = ε3 = ε4 = 10−6 and the number of correction pairs m = 5 in L-BFGS, the parameter r0 = 0.3 in

Algorithm L-RGDS and the translation parameter t = 1
3 , q1 = 10, q2 = 5 and N = 10 in Algorithm GDS. We

initialize L-BFGS with a random starting point in the search region and maintain the best iteration solution.

During the execution of L-BFGS, numerical gradients are calculatedusing a two point computational formula.

Thus, the number of function evaluations for each gradient calculation is equal to the dimension of the200

optimization problem.

4.1. Comparison between GDS, L-GDS and L-RGDS for box-constrained optimization problems

We first apply Algorithms GDS, L-GDS and L-RGDS to solve some box-constrained optimization prob-

lems. Since Algorithm GDS can be applied directly to solve these problems, Fσ(z) is replaced by f(x) in

Algorithm GDS. For Test A8, the search routes generated by L-BFGS, GDS, L-GDS and L-RGDS from205

the same initial point are depicted in Figure 3. Within the feasible region, this test problem has four local

10
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minima and two global minima. Figure 3 (a) shows that L-BFGS is trapped at a local minimizer. Figure 3

(b) shows that GDS has the capability to steer the search direction towards global minimizer. However, it

suffers from slow local convergence. Figure 3 (c) and Figure 3 (d) show that both L-GDS and L-RGDS can

capture one of the global minimizers. However, the solution obtained by L-RGDS is more accurate. Since210

L-BFGS is a local search method, we will not present the numerical results obtained.
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Figure 3: Search route for Test A8 with 2-dimension within 20 iterations: (a) L-BFGS, (b) GDS, (c) L-GDS and (d) L-RGDS.

We depict a typical convergence trajectory for the test problems set B in a particular trial in Figure 4.

Here, the algorithm is said to have successfully captured a global solution in this trial if the error between

the optimal objective function value and that at the solution obtained by the algorithm is smaller than the

tolerance ε = 10−6.215

Table 1 shows that GDS, L-GDS and L-RGDS have the capability for global optimization. However, GDS

suffers from slow convergence. Through incorporating L-BFGS to L-GDS and L-RGDS, their convergence

rates are improved significantly. For example, for the test problem A2, GDS can only achieves the accuracy

of 10−2. After speed-up by L-BFGS, L-GDS can achieve the accuracy of 10−8 and L-RGDS can achieve the

accuracy of 10−9. Figure 4 shows that GDS has the capability to help L-BFGS jump out from local basin.220

Taking B6 in Figure 4 as an example, we can observe that after three runs of GDS, L-GDS captures a global

solution.

To evaluate the numerical performances of GDS, L-GDS as well as L-RGDS for higher dimensional

optimization problems, we apply GDS, L-GDS and L-RGDS to solve the test problems A4, A5 and A6 with

three different dimensions 10, 50 and 100, respectively. All the experiments are run 50 times independently.225

From the numerical results, we can compare the performance of these algorithms in terms of the mean of

the optimal objective function values obtained and the successful rate for finding a global minimizer. The
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Figure 4: Typical convergence trajectories generated by L-GDS and L-RGDS of the test problems from the test set B with

2-dimension.

Table 1: Numerical results for test problems with 2-dimension by GDS, L-GDS and L-RGDS for 50 independent runs. ”Dim.”

indicates the dimension of test function, ”Mean Eval.” indicates the average number of evaluations of the function and its

gradient.

Test Dim.
Mean of f(x∗) Mean Eval.

GDS L-GDS L-RGDS GDS L-GDS L-RGDS

A1

2

3.2625e-04 2.8490e-33 7.8506e-24 100 215 110

A2 1.7221e-02 1.1780e-08 3.0057e-09 100 2132 907

A3 4.9756e+00 9.1551e-15 2.8263e-13 100 2114 1299

A4 1.4799e-02 1.5503e-16 3.3307e-16 100 1677 647

A5 2.3962e-02 2.8663e-34 2.7075e-24 100 2097 853

A6 3.0014e+00 3.0000e+00 3.0000e+00 100 2114 1516

A7 -1.0000e+00 -1.0000e+00 -1.0000e+00 100 205 205

A8 -1.0239e+00 -1.0316e+00 -1.0316e+00 100 2101 1489

B1 -1.9206e+00 -2.0000e+00 -1.9980e+00 310 3043 2905

B2 4.2560e-05 5.1563e-24 1.2513e-12 310 2375 1553

B3 3.9900e-04 7.5877e-22 1.6667e-22 310 1080 1030

B4 2.1300e-03 6.0737e-25 2.6402e-23 310 1082 1026

B5 -1.8275e+02 -1.8673e+02 -1.8673e+02 310 3242 2109

B6 2.3558e-31 2.3558e-31 2.3558e-17 310 217 207
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numerical results are reported in Table 2. Table 2 clearly shows that for these test problems, GDS has the

capability to steer the search towards global solution. However, its convergence is slow and it has difficulty for

finding an accurate solution. After a certain number of iterations, for example, 1000 iterations, the median230

of the accuracy may still be under 10−2. During the calculation of success rate, the algorithm is regarded

as successful in a particular trial if the error between the optimal objective function value and that of the

solution obtained by the algorithm is smaller than the tolerance ε = 10−6. Comparing L-GDS and L-RGDS,

we can clearly observe from Tables 2 that L-GDS has a higher accuracy and a higher success rate than

L-RGDS under the same number of executions of L-BFGS. In fact, the success rate depends heavily on the235

number k of executions of L-BFGS. The larger the k, the better the chance for L-GDS to capture a global

solution. However, during the execution of L-RGDS, the search space is controlled by a random variable r

and the parameter r0. If r < r0, the exploration search is skipped and the local search is continued from the

previous iteration. This explains why L-RGDS has lower success rate but with less function evaluations. In

applications, if an accurate solution is not required, L-RGDS is a good option. Table 2 shows the numbers240

of function evaluations for GDS, L-GDS and L-RGDS in which we can see that L-GDS requires the largest

number of function evaluations, while GDS requires the least. Meanwhile, we can also observe that GDS has

the worst success rate and L-GDS has the best success rate.

Table 2: The performances of GDS, L-GDS and L-RGDS on 3 test problems with dimensions 10, 50 and 100. ”Dim.” indicates

the dimension of test function, ”Mean Eval.” indicates the average number of evaluations of the function and its gradient.

Test Dim.
Mean of f(x∗) Mean Eval. Success rate (%)

GDS L-GDS L-RGDS GDS L-GDS L-RGDS GDS L-GDS L-RGDS

A4
10

4.3832e-02 7.6106e-03 7.4585e-03 1000 30841 26281 15 93 92

A5 1.0376e-06 1.6042e-29 3.6082e-16 1000 20843 8372 5 100 95

B6 10.5159 3.110e-08 3.1650e-02 1420 30268 22686 10 98 88

A4
50

1.0276e+00 9.0262e-01 9.5823e-01 2500 52111 21511 4 94 92

A5 1.2013e-07 1.1547e-26 1.2991e-19 5000 104124 16010 1 100 93

B6 2.0000e-00 1.9970e-20 5.808e-20 6010 60168 39934 3 88 85

A4
100

1.0960e+00 8.4023e-01 8.0670e-01 10000 508221 457821 3 90 85

A5 2.4486e-08 3.3930e-24 4.3598e-21 10000 508224 203613 1 100 97

B6 2.0000e-00 3.1100e-04 6.6222e-03 18030 153049 87537 2 85 70

4.2. Comparison of L-GDS and L-RGDS with existing algorithms for box-constrained optimization problems

In this subsection, we will apply L-GDS and L-RGDS to solve some box-constrained optimization problems

and compare their performance with some existing algorithms. Seven test problems chosen from the literature

are solved by using our proposed hybrid algorithms. We then compare our results with those obtained by

other existing methods which are the hybrid PSO algorithm (HPSO) in [42], hybrid original ABC with L-

BFGS (denoted by HABC), and two filled function methods in [40, 41]. In HPSO, simplex search and PSO

are integrated together to solve global optimization problems. HABC is the integration of ABC in [27] with

L-BFGS. The population size of ABC is set as 10 and the maximal iteration number is set as q2 = 10 for
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inner cycle (i.e. ABC cycle) in HABC. For the filled function method, an auxiliary function, referred to as

filled function, is defined by

P (x, x∗) = −sign(f(x)− f(x∗)) arctan(‖ x− x∗ ‖),

where sign(t) =

1, t ≥ 0

−1, t < 0

, and x∗ is the current minimizer (i.e. local minimizer). Then, minimize

P (x, x∗) along several directions dj , j = 1, 2, · · · , from the iteration point xk by the iterative formula

xl+1 = xl + λ
dj
‖ dj ‖

with step size λ and search direction dj (see [40, 41] for details). The corresponding numerical results are245

presented in Tables 3 and 5.

Table 3: Numerical results of HPSO, L-GDS and L-RGDS. ”Dim.” indicates the dimension of test function, ”Mean Eval.”

indicates the average number of evaluations of the function and its gradient, ”Mean Err.” indicates the average error between

the best successful point achieved and the known global optimum.

Test Dim.
Mean Eval. Mean Err.

HPSO [42] HABC L-GDS L-RGDS HPSO [42] HABC L-GDS L-RGDS

A1 3 291 346 171 132 5.00e-05 2.3100e-06 3.2736e-23 1.6540e-22

A2 2 339 392 208 101 3.00e-05 1.6742e-05 3.6000e-05 1.7500e-04

A3 10 NA 392 301 164 NA 3.6442e-08 1.4921e-13 0.000e+00

A4 8 1354 2333 3235 1321 4.10e-04 3.0120e-04 2.2386e-06 1.9230e-05

A5 5 1394 2392 1433 2421 2.60e-05 1.3512e-05 5.3736e-11 1.5839e-06

A6 2 217 1476 1121 807 3.00e-05 5.5233e-06 2.5373e-08 6.0042e-07

A7 2 165 213 178 137 4.00e-05 8.5380e-06 3.5083e-09 4.7296e-06

A8 2 151 181 183 145 4.00e-05 3.0000e-05 3.5083e-07 4.7296e-05

A9 2 165 213 253 199 4.00e-05 8.5380e-06 2.8420e-07 4.7296e-06

A10(H3,4) 3 271 213 432 354 2.40e-05 8.5380e-06 2.1335e-07 2.0016e-06

A10(H6,4) 6 1541 213 1736 1576 2.50e-03 8.5380e-03 2.4177e-04 6.4376e-04

A11(S4,5) 4 1177 213 1654 1312 2.00e-04 8.5380e-05 3.2097e-07 7.4716e-05

A11(S4,7) 4 1130 213 1020 936 1.70e-04 8.5380e-06 4.7716e-05 4.2617e-04

A11(S4,10) 4 1179 213 1874 1293 1.50e-04 8.5380e-05 1.9212e-05 7.9296e-05

In addition, we apply statistical significance test, which is a meaningful way to study the difference

between any two stochastic algorithms, to do comparison among five algorithms. Wilcoxon signed rank test

is applied to determine the difference between paired scores. Based on the data from Tables 1 - 3, the

statistical results based on the mean function values are presented in Table 4, where R = R− or R+ is the250

sum of ranks based on the absolute value of the difference between two test algorithms. The sign of the

difference between two independent samples is used to classify the two samples: the differences is above zero

(positive rank R+), or the difference is below zero (negative rank R−).

Based on the statistical results in Table 1, Table 2 and Table 3, we introduce Wilcoxon Sign Rank with

a statistical significance value α = 0.05 to compare the statistical numerical performances of the algorithms.255
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Table 4: Wilcoxon sign rank results on mean error of optimum values obtained by GDS, L-GDS, L-RGDS, HPSO and HABC,

where Wilcoxon sign rank test for L-GDS vs GDS, L-RGDS vs GDS is based on Table 1 and Table 2, and the others are based

on Table 3.

Algorithm R− R+ p value Decision Algorithm R− R+ p value Decision

L-GDS to GDS 78 0 0.002 + L-RGDS to GDS 90 1 0.002 +

L-GDS to L-RGDS 103 2 0.002 +

L-GDS to HPSO 90 1 0.002 + L-RGDS to HPSO 69 22 0.100 −

L-GDS to HABC 84 21 0.048 + L-RGDS to HABC 39 66 0.397 −

The null hypothesis is “there is no significant difference between the best or the mean values of the two

samples”. We use the well-known statistical software packages SPSS 19 to compute the p-value for these

tests. Based on the test results/rankings, we assign one of the three signs (+, − and ≈), where the sign

“+” (respectively, “−”) means that the first algorithm is significantly better (respectively, worse) than the

second algorithm and the sign ≈ means no significant difference between the two algorithms. The comparison260

results in Table 4 show that compared L-GDS with GDS, L-RGDS, HPSO and HABC, the null hypothesis is

rejected. That is to say, the alternative hypothesis is accepted and the performance of L-GDS is better than

the others.

Table 5: Numerical performances of filled function methods, L-GDS and L-RGDS. ”Dim.” indicates the dimension of test

function, ”Mean Eval.” indicates the average number of evaluations of the function and its gradient. ”NA” indicates that this

method is not applicable to solve this problem. ”Mean Eval.” for L-GDS and L-RGDS are the average of 50 independent runs.

Test Dim
Mean Eval.

Filled Function [40] Filled Function [41] L-GDS L-RGDS

B1 2 11435 6579 1853.2 1074.6

B2 2 1269 7651 2204.3 969.7

B3 2 14269 NA 2138.8 1074.1

A8 2 3572 3527 2204.5 1186.1

B4 2 3113 3303 2177.6 1130.5

B5 2 8499 60577 2241.2 1064.5

B6 2 87115 NA 2204.5 1105.3

B6 3 136026 NA 3253.5 1571.5

B6 5 347184 155820 5016.7 2942.7

B6 7 246973 NA 5161.7 2939.9

B6 10 309379 861652 49946 34870

Comparing with the hybrid method in [42], we can clearly observe from Table 3 that L-GDS and L-RGDS

achieve higher accuracy for all the test problems. For the test problems A4 and A5, L-GDS and L-RGDS265

achieves better performances at the expense of the larger mean number of function and gradient evaluations.

For the filled function methods in [40, 41], all the methods have good chance to capture global solution.

However, the computational complexity of the filled function methods is much higher than that of L-GDS

or L-RGDS. For example, for the test problem B1, the number of function evaluations of the filled function
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method in [40] is 11435. However, the numbers of function evaluations for L-GDS and L-RGDS are 1853270

and 1074, respectively. This indicates a reduction of 83% on the number of function evaluations for L-GDS,

while the reduction for L-RGDS is about 90%. However, we should point that in every execution, each of the

filled function methods has captured a global solution, while L-GDS and L-RGDS can only capture global

solution in the sense of probability one.

4.3. Integrating EPM and L-GDS or L-RGDS for general constrained optimization problems275

We will evaluate the numerical performance of the two algorithms through solving constrained optimiza-

tion problems. Let us consider four optimization problems listed in Appendix D. These optimization problems

have been studied in some existing literature. During the implementation process, we set α = 2, β = 2 and

ε̄ = 1. All the results for each problem presented in Tables 6 - 9 are the best results achieved by L-GDS and

L-RGDS among 5 independent trials.280

The smoothing l1 exact penalty function method (SOPFA) proposed in [43] is used to solve Example 1 in

Appendix D. The main idea of SOPFA is to transform Problem (P ) into the minimization of a continuously

differentiable function on Rn defined by:

F (x, σ, ε) = f(x) + σ

l+m∑
i=1

pε(gi(x)),

where pε(t) =


3
2εe

t
ε − 2ε, t ≤ 0

t− 1
2εe
− tε , t > 0

for an ε > 0, and a σ > 0. Next, choose an initial point x0. Set

ε0 > 0, σ0 > 0, 0 < η < 1, and ς > 1. Then, xk is used as the starting point to minimize F (x, σk, εk) by a

quasi-Newton method. After which, let σk+1 = ςσk and εk+1 = ηεk. The process is repeated until no further

improvement is achieved.

Let the initial point x0 be generated randomly in the feasible region Ω, σ0 = 10, σmax = 102 and ς = 3 in285

our Algorithm 1. Numerical results obtained by L-GDS and L-RGDS are presented in Table 6. This table

shows that the solution obtained by L-GDS is better than that obtained by SOPFA. However, for only one

run of L-RGDS, it cannot obtain a better solution than that in [43]. This is partly caused by the random

nature in the running of GDS in L-RGDS. If we increase to 5 runs, L-RGDS can capture a solution better

than that in [43] in most of the trials.

Table 6: Numerical results obtained by L-GDS, L-RGDS and SOPFA for Example 1

Algorithm σ ε f(x∗) g(x∗) x∗

L-GDS 30 8.265412e-04 1.837615 (-0.774352, -0.000001) (0.724702, 0.399076)

L-RGDS 30 5.802941e-05 1.837749 (-0.777405, -0.000077) (0.726019, 0.399458)

SOPFA [43] 90 1.837623 (-0.7760112, -0.000044) (0.7254170, 0.3992834)

290

For Example 2 considered in [44, 45], we set σ0 = 10 and ς = 10. The numerical results obtained by

L-GDS, L-RGDS as well as Algorithm I in [44] and Algorithm I in [45] are shown in Table 7. From this table,

we can observe that both Algorithm I in [44] and Algorithm I in [45] cannot find a feasible solution even the
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penalty parameter is increased to 1000. On the other hand, all solutions obtained by L-GDS and L-RGDS

are feasible even when the penalty parameter is only set as σ = 10.295

Table 7: Numerical results obtained by L-GDS, L-RGDS, Algorithm I in [44] and Algorithm I in [45] for Example 2, where best

results are presented for L-GDS and L-RGDS over 5 independent runs.

Algorithm σ ε f(x∗) g(x∗)

L-GDS

10 1.136400e-02 -44.206878 (-5.478152e-03, -1.765023e-03, -1.682682e+00)

100 1.001994e-08 -44.213915 (-7.897230e-03, -1.151412e-04, -2.107105e+00)

L-RGDS

10 9.836367e-02 -44.223817 (-3.545977e-03, 3.962968e-03, -1.887517e+00)

100 1.000000e-08 -44.221052 (-8.360936e-06, -2.346339e-03, -1.994742e+00)

1000 4.381713e-03 -44.208249 (-1.440614e-03, -1.625671e-03, -2.062844e+00)

Alg. I in [44]

10 -44.455547 ( 3.764288e-02, 9.8054105e-02, -1.773709e+00)

100 -44.256315 ( 3.743516e-03, 9.9164819e-03, -1.871979e+00)

Alg. I in [45]

10 -44.547342 ( 2.368187e-02, 1.505667e-01, -1.706287e+00)

100 -44.237119 ( 2.219450e-04, 1.569493e-03, -1.880785e+00)

1000 -44.233877 ( -3.236100e-07, 2.029069e-05, -1.883000e+00)

We consider Example 3 in [44] and Example 4 in [46] by using the same values of the parameters for

those given in Example 2. The numerical results obtained are reported in Table 7 and Table 8, respectively.

From the four tables above, we can clearly observe that our algorithm, L-GDS and L-RGDS, achieve more

accurate solutions than those obtained in the existing literature in terms of satisfying feasibility tolerance of

the constraints.300

Table 8: Results of L-GDS, L-RGDS and other algorithm in literatures for Example 3

Algorithm σ ε f(x∗) g(x∗)

L-GDS

10 8.242863e-03 944.251600 ( 9.264565e-05, 1.135775e-04, -5.486185e-01)

100 1.496411e-02 944.238079 ( 7.135391e-03, 3.362558e-04, -1.280594e+00)

1000 4.740569e-03 944.234918 ( 9.000140e-04, 3.100654e-04, -2.819471e+00)

10000 2.971434e-03 944.219625 ( 5.073684e-04, 2.475933e-04, -1.371761e+00)

L-RGDS

10 4.899230e-03 945.705218 ( 7.009727e-04, 1.724624e-03, -8.497550e+00)

100 6.309856e-03 944.211001 ( 3.198315e-03, 1.475358e-03, -2.167139e+00)

1000 7.974351e-03 944.158110 ( 3.169335e-02, 1.589298e-02, -1.244968e+00)

10000 2.203397e-02 944.002748 ( 1.367182e-01, 3.290986e-02, -2.841818e-02)

Alg. II in [44]
10 944.980301 ( 1.082548e-01, 6.634798e-03, -1.945075e+00)

100 944.192098 ( 1.083098e-02, 6.509816e-04, -1.866579e+00)

5. Conclusion

Deterministic optimization methods, such as BFGS method, are known for their fast convergence for

solving convex optimization problems. However, they tend to be trapped in local minima for non-convex

problems. In this paper, we proposed two hybrid algorithms for constrained global optimization. Based
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Table 9: Results of L-GDS, L-RGDS and other algorithm in literatures for Example 4

Algorithm σ ε f(x∗) g(x∗)

L-GDS

100 3.835429e-02 123.955332 (1.3210e-02, 1.1490e-02, 2.1951e-02, -6.5167e-03, -6.2642e+00)

1000 7.871252e-03 124.200553 (1.0136e-02, 3.3292e-04, 1.0962e-03, -5.2929e-02, -6.9748e+00)

10000 2.261166e-02 122.79290 (6.1642e-02, 6.9071e-02, 2.6990e-02, -4.0147e-02, -6.6558e+00)

L-RGDS

80 8.559575e-03 124.039196 (4.5024e-05, 8.4472e-04, 2.5680e-03, -2.3834e-02, -6.7553e+00)

100 3.342463e-02 123.964508 (7.7168e-03, 1.6201e-02, 3.9011e-04, 2.4601e-03, -5.7714e+00)

1000 4.995991e-02 123.98075 (2.8058e-02, 1.4849e-02, 5.2620e-02, 2.5179e-02, -1.9501e+00)

Alg. in[46] 80 1.75e-03 123.99 (-1.0000e-10 -1.0000e-10 -1.0000e-10 3.0000e-03 -8.7690e+00)

on the exact penalty function method, the constrained optimization problems were transformed into box-305

constrained optimization problems. Then, a novel reposition technique, Greedy Diffusion Search (GDS), is

proposed to integrate with limited memory BFGS (L-BFGS) under two different strategies, where GDS is to

enable the algorithm to escape from local minima. We have shown that our algorithms are convergent to a

global minimizer with probability one. 18 box constrained optimization problems and 4 general constrained

optimization problems are solved by the proposed methods. The results obtained were compared with those310

obtained by existing methods. Comparisons show that our methods can achieve higher accuracy with less

number of function evaluations. However, as L-BFGS is used in our two hybrid methods, the functions

involved in Problem (P ) are required to be smooth. It is clearly an important task to develop effective hybrid

algorithms to solve non-smooth optimization problems.
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Appendix A. Two theorems for Section 2

Theorem 1. Let (x∗, ε∗) be a solution of Problem (Pσ). Then x∗ is a solution of Problem (P ) if and only if

ε∗ = 0.

Proof. The proof is similar to that given for Lemma 3 in [31]. �425
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Theorem 2. Suppose that Mangasarian-Fromovitz constraint qualification is satisfied at every solution x∗

of Problem (P ). Let {σk}∞k=1 be an increasing sequence of penalty parameters such that σk →∞ as k →∞.

Furthermore, let (xk,∗, εk,∗) be a local solution of Problem (Pσk). Suppose that {Fσk(xk,∗, εk,∗)}∞k=1 is bounded.

Then, for all sufficiently large k, xk,∗ is also a local solution of Problem (P ).

Proof. The proof is similar to that given for Theorem 4 in [31]. �430

Appendix B. Theorems for Section 3.4

In this appendix we will establish the convergence of Algorithm L-GDS and Algorithm L-RGDS. To achieve

this task, we first need to establish the convergence of Algorithm GDS with probability one. More specifically,

we will show that the sequence z(k) obtained by either L-GDS or L-RGDS converges with probability one to

the region Ωε for any given ε > 0, where Ωε = {z ∈ Ω : |Fσ(z)− Fσ(z∗)| ≤ ε}.435

To proceed further, we require the following assumptions:

• A1: The function Fσ(z) is continuously differentiable with respect to z for any given σ > 0.

• A2: minz∈Ω Fσ(z) > −∞.

Let z(k), k = 1, 2, · · · , be the sequence generated by Algorithm GDS. By virtue of the greedy rule given

by (17), Algorithm GDS is descent. In addition, minz∈Ω Fσ(z) > −∞ by Assumption A2, limk→∞ Fσ(z(k))440

exists. Now the convergence with probability one is defined formally in the following definition:

Definition 1. Let z(k), k = 1, 2, · · · , be the minimizing sequence obtained by Algorithm GDS. Suppose that

z∗ is one of the global optimal solutions of Problem (Pσ). If

lim
k→∞

P
(
Fσ(z(k)) = Fσ(z∗)

)
= 1, (18)

then the algorithm is said to converge with probability one to a global minimum.

Lemma 1. Let z(k) be generated by Algorithm GDS and let z∗ be one of the global optimal solutions of445

Problem (Pσ). Then, (18) holds if and only if for any given ε > 0,

lim
k→∞

P
(
ρ(z(k),Ωε) ≥ δ

)
= 0, for any given δ > 0, (19)

where ρ(z(k),Ωε) = infz∈Ωε ‖z − z(k)‖.

Proof: Note that

Fσ(z(k)) ≥ Fσ(z(k+1)) ≥ Fσ(z∗),

and hence

ρ(z(k),Ωε) ≥ ρ(z(k+1),Ωε) ≥ 0.

Thus, limk→∞ ρ(z(k),Ωε) exists. Note that

lim
k→∞

Fσ(z(k)) = Fσ(z∗) if and only if lim
k→∞

ρ(z(k),Ωε) = 0, for any ε > 0.

The result follows readily. �

For Algorithm GDS, we have the following convergence theorem.
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Theorem 3. Algorithm GDS converges with probability one to a global minimum.450

Proof: We will adapt the proof given for the main theorem in [47] to prove this theorem. In light of Defini-

tion 1 and Lemma 1, we only need to prove that for any given ε > 0 and δ > 0, liml→∞ P
(
ρ(z(l),Ωε) ≥ δ

)
= 0.

By virtue of Assumption (A1), Fσ(z) is continuously differentiable in the box set Ω. Thus, Fσ(z) is

uniformly continuous. This means that there exists a δ̃, such that for any z̄ ∈ Ω, if z satisfies ‖z − z̄‖ ≤ δ̃,

we have |Fσ(z)− Fσ(z̄)| ≤ ε/2. In particular, if z satisfies ‖z − z∗‖ ≤ δ̃, we have 0 ≤ Fσ(z)− Fσ(z∗) ≤ ε/2.455

Define the ball Bδ̃(z
∗) = {z ∈ Ω : ‖z − z∗‖ ≤ δ̃}. If z(l) /∈ Bδ̃(z

∗), z(l) ∈ Ω and z(l+1) ∈ Bδ̃(z
∗), then there

exists a z̄ ∈
⋃q1
i=1 z̃

(l+1)
i

⋃q2
j=1 ẑ

(l+1)
j such that z̄ ∈ Bδ̃(z

∗), where z̃
(l+1)
i , i = 1, · · · , and ẑ

(l+1)
j , j = 1, · · · , q2,

are defined in Algorithm GDS. Note that z̃
(l+1)
i ∈ Ω, i = 1, · · · , and ẑ

(l+1)
j ∈ Ω, j = 1, · · · , q2, are generated

randomly with the uniform distribution in Ω, we have

P
(
z(l+1) ∈ Bδ̃(z

∗)|z(l) /∈ Bδ̃(z
∗), z(l) ∈ Ω

)
≥ P

(
ẑ

(l+1)
1 ∈ Bδ̃(z

∗)|z(l) /∈ Bδ̃(z
∗), z(l) ∈ Ω

)
= P

(
ẑ

(l+1)
1 ∈ Bδ̃(z

∗)
)

=
m
(
Bδ̃(z

∗)
)

m(Ω)
, (20)

where m
(
Bδ̃(z

∗)
)

is the volume of the set Bδ̃(z
∗) and m(Ω) is the volume of the set Ω. The last inequality460

in (20) is valid due to the independency of ẑ
(l+1)
1 and z(l). Through choosing δ̃ appropriately, we have

m(Bδ̃(z
∗))

m(Ω) < 1. For notational brevity, let 0 < γ =
m(Bδ̃(z

∗))
m(Ω) < 1.

Now we introduce the auxiliary variable y(l) defined by:

y(l) =

 1, if Fσ(z(l))− Fσ(z(l−1)) ≥ ε/2;

0, otherwise.
(21)

Denote K = b2(Fσ(z(0)) − Fσ(z∗))/εc + 1, where b·c is the floor function. Through direct verification, we

can show that z(l) ∈ Ωε if
∑l
i=1 y

(i) ≥ K. Equivalently, we have
∑l
i=1 y

(i) < K if z(l) /∈ Ωε.465

Note that if ẑ1(l) ∈ Bδ̃(z
∗), we have Fσ(ẑ

(l)
1 )−Fσ(z∗) ≤ ε/2. In addition, it follows from z(l−1) /∈ Ωε that

Fσ(ẑ
(l−1)
1 )− Fσ(z∗) ≥ ε. Thus, we have

P
(
y(l) = 1|z(l−1) ∈ Ω, z(l−1) /∈ Ωε

)
= P

(
Fσ(z(l))− Fσ(z(l−1)) ≥ ε/2 | z(l−1) ∈ Ω, z(l−1) /∈ Ωε

)
≥ P

(
ẑ

(l)
1 ∈ Bδ̃(z

∗)
)

= γ.

The above inequality is equivalent to

P
(
y(l) = 0|z(l−1) ∈ Ω, z(l−1) /∈ Ωε

)
≤ 1− γ. (22)

For any δ > 0,

P
(
ρ(z(l),Ωε) ≥ δ

)
= P

(
ρ(z(l),Ωε) ≥ δ | z(i) ∈ Ω, z(i) /∈ Ωε, i = 1, · · · , l − 1

)
≤ P

(
z(l) /∈ Ωε | z(i) ∈ Ω, z(i) /∈ Ωε, i = 1, · · · , l − 1

)
≤ P

(
l∑
i=1

y(i) < K | z(i) ∈ Ω, z(i) /∈ Ωε, i = 1, · · · , l − 1

)
. (23)
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Similar to the proof given in [47], we can show that470

lim
l→∞

P

(
l∑
i=1

y(i) < K | z(i) ∈ Ω, z(i) /∈ Ωε, i = 1, · · · , l − 1

)

≤ lim
l→∞

K−1∑
j=0

Cjl (1− γ)k−j = 0. (24)

where Cjl = j!
l!(l−j)! . Substituting (24) into (23), we obtain for any given ε > 0 and δ > 0, liml→∞ P

(
ρ(z(l),Ωε) ≥ δ

)
=

0. �

For Algorithm L-GDS and Algorithm L-RGDS, we have the following convergence theorem.

Theorem 4. Algorithm L-GDS (respectively, Algorithm L-RGDS) converges with probability one to a global

minimum.475

Proof. The results follow readily from the local convergence of Algorithm L-BFGS and Theorem 3. �

Appendix C. List of test functions for box constrained optimization

Separability: A function of p variables is called separable, if it can written as a sum of p functions of just

one variable [48]. Otherwise, a function is called nonseparable. In general, separable functions are relatively

easy to solve, when compared with nonseparable (for short, Insep.) functions.480

A 1. De Joung Function (n variables)

DJn =
n∑
i=1

x2
i ;

search domain: −100 ≤ xi ≤ 100, i = 1, 2, · · · , n;

no local minimum;

1 global minimum: x∗ = (0, · · · , 0), DGn(x∗) = 0;485

separable.

A 2. Rosenbrock (n variables)

Rn =
n−1∑
i=1

[
100(xi+1 − x2

i )
2 + (1− xi)2

]
;

search domain: −30 ≤ xi ≤ 30, i = 1, 2, · · · , n;;

no local minimum;490

1 global minima, x∗ = (1, · · · , 1); Rn(x∗) = 0;

nonseparable.

A 3. Rastrigin (n variables)

RTn(x) = 10n+
n∑
i=1

[
x2
i − 10 cos(2πxi)

]
search domain: −5.12 ≤ xi ≤ 5.12, i = 1, 2, · · · , n;495

several local minima;

1 global minimum, x∗ = (0, · · · , 0) , RTn(x∗) = 0

separable.
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A 4. Griewank (n variables)

GR(x) = 1 + 1
4000

n∑
i=1

x2
i −

n∏
i=1

cos xi√
i

500

search domain:−100 ≤ xi ≤ 100, i = 1, 2, · · · , n;

several local minima;

1 global minimum, x∗ = (0, · · · , 0) , GR(x∗) = 0

nonseparable.

A 5. Zakharov (n variables)505

Zn(x) =
n∑
i=1

x2
i + ( 1

2

n∑
i=1

ixi)
2 + ( 1

2

n∑
i=1

ixi)
4

search domain:−5 ≤ xi ≤ 10, i = 1, 2, · · · , n;

several local minima;

1 global minimum, x∗ = (0, · · · , 0) , Zn(x∗) = 0;

nonseparable.510

A 6. Goldstein-Price (2 variables)

GP (x) =
[
1 + (x1 + x2 + 1)

2 (
19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2

)][
30 + (2x1 − 3x2)

2 (
18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2

) ]
;

search domain:−2 ≤ xi ≤ 2, i = 1, 2;

several local minima;515

1 global minimum, x∗ = (0,−1) , GP (x∗) = 3;

nonseparable.

A 7. Easom (2 variables)

ES(x) = − cos(x1) cos(x2)e−(x1−π)2−(x2−π)2 ;

search domain:−100 ≤ xi ≤ 100, i = 1, 2, · · · , n;520

several local minima;

1 global minimum, x∗ = (π, π) , ES(x∗) = −1;

separable.

A 8. Six-Hump (2 variables)

SH(x) =
(

4− 2.1x2
1 +

x4
1

3

)
x2

1 + x1x2 +
(
4x2

2 − 4
)
x2

2;525

search domain:−5 ≤ xi ≤ 5, i = 1, 2;

several local minima;

2 global minima, x∗ = (±0.0898,∓0.7126), SH(x∗) = −1.0316;

nonseparable.

A 9. Branin RCOS (2 variables)530

RC(x) = (x2 − (5.1/4π2)x2
1 + (5/π)x1 − 6)2 + 10(1− (1/8π)) cos(x1) + 10;

Range of initial points: −5 < x1 < 10, 0 < x2 < 15;

3 global minima: (x∗) = (−π, 12.275), (π, 2.275), (9.42478, 2.475);RC(x∗) = 0.397887;

separable.

25



A 10. Hartmann Function (H3,4) ( 3 variables)

H3,4(x) = −
4∑
i=1

cie
−

3∑
j=1

aij(xj−pij)2

;

Range of initial points: 0 < xj < 1, j = 1, 2, 3;

4 local minima;

1 Global minimum: x∗ = (0.114614, 0.555649, 0.852547), H3,4(x∗) = −3.86278;

nonseparable.

i aij ci pij

1 3.0 10.0 30.0 1.0 0.689 0.1170 0.2673

2 0.1 10.0 35.0 1.2 0.4699 0.4387 0.7470

3 3.0 10.0 30.0 3.0 0.1091 0.8732 0.5547

4 0.1 10.0 35.0 3.2 0.0381 0.5743 0.8828

A 11. Hartmann Function (H6,4, 6 variables)

H6,4(x) = −
4∑
i=1

cie
−

6∑
j=1

aij(xj−pij)2

;

Range of initial points: 0 < xj < 1, j = 1, . . . , 6;

6 local minima;

1 global minimum: x∗ = (0.201690, 0.150011, 0.476874, 0.275332, 0.311652, 0.657300), H6,4(x∗) = −3.32237;

nonseparable.

i aij ci pij

1 10.0 3.0 17.0 3.50 1.70 8.00 1.0 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886

2 0.05 10.0 17.0 0.10 8.00 14.00 1.2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991

3 3.00 3.50 1.70 10.0 17.00 8.00 3.0 0.2348 0.1451 0.3522 0.2883 0.3047 0.6650

4 17.00 8.00 0.05 10.00 0.10 14.00 3.2 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

A 12. Shekel Functions (S4,m, 4 variables)

S4,m(x) = −
m∑
i=1

(
4∑
j=1

(xj − aij)2 + c(i))−1;

3 functions are considered, namely: S4,5, S4,7 and S4,10;

Range of initial points: 0 < xj < 10, j = 1, . . . , 4;

m local minima;

1 global minimum: x∗ = (4, 4, 4, 4), S4,5(x∗) = −10.1532, S4,7(x∗) = −10.4029 and S4,10(x∗) = −10.5364;
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nonseparable.

i aij ci

1 4.0 4.0 4.0 4.0 0.1

2 1.0 1.0 1.0 1.0 0.2

3 8.0 8.0 8.0 8.0 0.2

4 6.0 6.0 6.0 6.0 0.4

5 3.0 7.0 3.0 7.0 0.4

6 2.0 9.0 2.0 9.0 0.6

7 5.0 5.0 3.0 3.0 0.3

8 8.0 1.0 8.0 1.0 0.7

9 6.0 2.0 6.0 2.0 0.5

10 7.0 3.6 7.0 3.6 0.5

B 1. Rastrigin (2 variables)535

RT (x) = x2
1 + x2

2 − cos(18x1)− cos(18x2);

search domain: −1 ≤ xi, x2 ≤ 1;

several local minima;

1 global minimum: x∗ = (0, 0), RT (x∗) = −2;

separable.540

B 2. 2-D Function (2 variables)

f(x) = [(1− 2x2 + c sin(4πx2)− x1]2 + [x2 − 0.5 sin(2πx1)]2, where c = 0.2, 0.5 and 0.05.;

search domain: 0 ≤ x1 ≤ 10, −10 ≤ x2 ≤ 0;

no local minimum;

1 global minima, x∗ = (1.8784,−0.3459), (1.0000, 0.0000) and (1.5975,−0.2874) for c = 0.2, 0.5 and 0.05,545

respectively. f(x∗) = 0;

nonseparable.

B 3. Three-Hump Camel Back (2 variables)

CB(x) = 2x2
1 − 1.05x4

1 + 1
6x

6
1 − x1x2 + x2

2;

search domain: −3 ≤ x1, x2 ≤ 3;550

several local minima;

1 global minimum,x∗ = (0, 0) , CB(x∗) = 0

separable.

B 4. Treccani (2 variables)

f(x) = x4
1 + 4x3

1 + 4x2
1 + x2

2;555

search domain: −3 ≤ x1, x2 ≤ 3;

several local minima;

1 global minimum,x∗ = (−2.0, 0.0) , f(x∗) = 0

separable.
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B 5. 2-D Shubert (2 variables)560

SH(x) =
( 5∑
i=1

i cos [(i+ 1)x1 + i]
)( 5∑

i=1

i cos [(i+ 1)x2 + i]
)

search domain: −10 ≤ x1, x2 ≤ 10;

several local minima;

1 global minimum,x∗ = (5.4829, 4.8581) , SH(x∗) = −186.7309

nonseparable.565

B 6. Levy (n variables)

LV (x) = π
n

{
10 sin2(πx1) + (xn − 1)2 +

n−1∑
i=1

[
(xi − 1)2(1 + 10 sin2(πxi+1))

] }
search domain: −1.0 ≤ xi ≤ 1.0, i = 1, 2, · · · , n;

several local minima;

1 global minimum,x∗ = (1, 1, · · · , 1) , LV (x∗) = 0570

nonseparable.
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Appendix D: Four test examples for general constrained optimization

Example 1. .

min f(x) = x2
1 + x2

2 − cos(17x1)− cos(17x2) + 3

s.t. g1(x) = (x1 − 2)2 + x2
2 − 1.62 ≤ 0

g2(x) = x2
1 + (x2 − 3)2 − 2.72 ≤ 0

0 ≤ x1, x2 ≤ 2

Example 2.

min f(x) = x2
1 + x2

2 + 2x2
3 + x2

4 − 5x1 − 5x2− 21x3 + 7x4

s.t. g1(x) = 2x2
1 + x2

2 + x2
3 + 2x1 + x2 + x4 − 5 ≤ 0

g2(x) = x2
1 + x2

2 + x2
3 + x2

4 + x1 − x2 + x3 − x4 − 8 ≤ 0

g3(x) = x2
1 + 2x2

2 + x2
3 + 2x2

4 − x1 − x4 − 10 ≤ 0

Example 3.

min f(x) = 1000− x2
1 − 2x2

2 − x2
3 − x1x2 − x1x3

s.t. g1(x) = x2
1 + x2

2 + x2
3 − 25 = 0

g2(x) = (x1 − 5)2 + x2
2 + x2

3 − 25 = 0

g3(x) = (x1 − 5)2 + (x2 − 5)2 + (x3 − 5)2 − 25 ≤ 0

0 ≤ xi ≤ 100, i = 1, 2, 3.

Example 4.

min f(x) = 10x2 + 2x3 + x4 + 3x5 + 4x6

s.t. g1(x) = x1 + x2 − 10 = 0

g2(x) = −x1 + x3 + x4 − x5 = 0

g3(x) = −x2 − x3 + x5 + x6 = 0

g4(x) = 10x1 − 2x3 + 3x4 − 2x5 − 16 ≤ 0

g5(x) = x1 + 4x3 + x5 − 10 ≤ 0

0 ≤ x1 ≤ 12

0 ≤ x2 ≤ 18

0 ≤ x3 ≤ 5

0 ≤ x4 ≤ 12

0 ≤ x5 ≤ 1

0 ≤ x6 ≤ 16.

29


	1 Introduction
	2 Exact Penalty Function Method (EPM)
	3 Two Hybrid Methods For Problem (P)
	3.1 Limited Memory BFGS method
	3.2 A new stochastic search strategy - Greedy Diffusion Search
	3.3 Two hybrid algorithms
	3.4 Convergence of the two algorithms

	4 Numerical experiments
	4.1 Comparison between GDS, L-GDS and L-RGDS for box-constrained optimization problems
	4.2 Comparison of L-GDS and L-RGDS with existing algorithms for box-constrained optimization problems
	4.3 Integrating EPM and L-GDS or L-RGDS for general constrained optimization problems

	5 Conclusion

