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Abstract 

A continuous time non-homogenous linear growth pure birth Markov model was used to predict the future 

pit depth distribution of internally corroded oil and gas pipelines. A negative binomial distribution was used 

for calculating the transition probability functions of the pit depths whilst pit depths growth was estimated 

for low, moderate, high and severe pitting corrosion rates using field measured data of pit depths, 

temperatures, CO2 partial pressures, pH and flow rates. The Markov predicted results agreed well with field 

measured pit depth data from X52 grade pipeline and L-80 and N-80 grades offshore well tubing. 

Keywords: A. Mild steel; B. Modelling studies; C. Pitting Corrosion  

1.0 Introduction 

Pitting process can be metastable in nature - a situation in which a pitting process starts and stops after a 

while or immediately [1, 2] or it can be a stable pitting that nucleates and grows indefinitely. Stable pits 

generally show stochastic behaviour [1, 3] and are the focus of many researches. Pitting corrosion is 

initiated due to: 

i. Electrochemical reactions of the carbon steel surfaces with the environment resulting in 

formation of surface layers. 

ii. Discontinuity of the carbon steel material as a result of inclusions. 

iii. Removal of already formed surface layer due to erosion [4].  

Forecasting of pitting corrosion rate has been done by modelling, extrapolation or using expert judgement 

[5]. Modelling technique can follow either probabilistic, deterministic or both approaches and has 

widespread application as exemplified by numerous publications [1, 6-7, 8, 9]. Yusof et al. [6] studied pitting 

corrosion of offshore pipelines with Markov chain model and discovered that the prediction was not 

conservative due to the assumption that the model is linear. The data for the analysis was from repeated 

in-line inspection (ILI) of internal corroded offshore pipelines.  
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The authors assumed time of initiation of internal pitting corrosion as 2.9 years (after Velazquez et al. (10)) 

which is time of initiation of underground pipeline external pitting corrosion. This assumption may 

invalidate the result of these authors since the environmental condition of the soil is definitely different 

from that inside the pipeline. Although the future predicted pit depth distribution in this work was based 

on the exponential parameter (Vp) of power law being 1, the authors proposed Equation (1) for predicting 

the value of V for future pit depth distribution if the initial pit depth (𝑃𝑑1) and time (t1) and future pit depth 

(𝑃𝑑2) and time (t2) are known with the pitting initiation time (tint). 

𝑉𝑝 =

𝑙𝑜𝑔 (
𝑃𝑑2

𝑃𝑑1
)

𝑙𝑜𝑔 (
𝑡2 − 𝑡𝑖𝑛𝑡

𝑡1 − 𝑡𝑖𝑛𝑡
)
                                                                                                   (1) 

 

The work of Valor et al. [1] focused on pitting corrosion of underground pipelines and corrosion coupons. 

The authors used discrete pit depths in non-homogenous, continuous time Markov chain modelling to 

determine the transition probability function by correlating the stochastic mean pit depth with the 

empirical deterministic pit depth. They used Weibull process for simulation of the pitting induction time. 

Other researchers such as Bolanos-Rodriguez et al. [11], Valor et al. [12] and Rodriguez III et al. [13] also 

applied non-homogenous, continuous time pure birth Markov chain modelling to estimate the pit depth 

distribution of pipelines by using a closed form of Kolmogorov forward equation for computation of the 

transition probability function whilst assuming that the pit depth follows a stochastic process. Similarly, 

Camacho et al. [14] applied Fokker-Planck equation for transition probability function estimate of pitting 

corrosion of underground pipelines based on a continuous time, non-homogenous pit depth evolution and 

Hong [15] worked on pit initiation and growth processes by modelling pit initiation as a homogenous 

Poisson process whilst estimating the pit growth with time as a non-homogenous, continuous time Markov 

process. 

 

Pipeline failures resulting from pitting have been attributed to pin-hole type pit [8] hence, the need for 

extreme value modelling of maximum pit depths of corroded pipelines to predict the distribution in the 

future. Valor et al. [8] applied a stochastic modelling approach to estimate the extreme value distribution 

of corroded low carbon steel using API-5L X52 pipeline corrosion coupons experimental data.  Melchers 

[16] showed that extreme value analysis can be carried out with limited data if it is combined with Bayesian 

approach and demonstrated this feat with carbon steel coupons exposed to marine environment. Similarly, 

Melchers [17] used a bi-modal probability density function to represent the maximum pit depth distribution 

of mild steel exposed to marine environment and concluded that maximum pit depth distribution is better 
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represented with Fretchet distribution for a long-time exposure of the material than Gumbel distribution 

that is traditionally used for the extreme value distribution plotting [1-3, 5, 18-19] however, Sheikh et al. 

[9] showed that the initial pitting corrosion followed a normal distribution and lognormal distribution for 

long-time exposure of carbon steel material to a corrosive environment.  

 

Sulphate Reducing Bacteria (SRB) are the most active contributor to pitting in long-time exposure of carbon 

steel materials to marine environment [2] because their metabolic activities results in sulphate ion 

reduction to hydrogen and sulphide. The sulphide ion attacks the steel electrochemically causing more 

pitting corrosion due to an increase in anodic/cathodic reactions necessitated by sulphate reduction. Other 

researchers also found out experimentally that sulphur reducing bacteria starved of organic energy sources 

cause severe pitting corrosion of carbon steel materials [20]. Although cathodic protection and other forms 

of coating have the ability of protecting marine infrastructures like pipelines from external pitting corrosion, 

ageing infrastructures exposed to marine environment have serious problem of pitting corrosion which can 

predominantly cause assets failures. Rivas et al. [3] used block maxima and peak over threshold approach 

for extreme value analysis of laboratory simulated field data of buried carbon steel pipeline and concluded 

that the peak over threshold approach was more robust in estimating the maximum pit depth of the 

samples. In their own work, Valor et al. [21] described pit initiation and propagation as a stochastic process 

of non-homogenous Poisson process and non-homogenous continuous time Markov process respectively. 

They used extreme value statistics for modelling maximum pit growth for data obtained from literature. 

Although the work produced better results than those obtained from available literature (see ref [21]), 

however, the assumption that the entire pits tested nucleates instantaneously may not always be the case 

practically. 

 

Corrosion can result in unscheduled downtime especially for pitting corrosion, crevice corrosion, stress 

corrosion cracking and fatigue corrosion since they occur without outward signs on the facilities [22]. 

Hence, corrosion modelling is used for integrity management via prediction of expected time of pipeline 

failure so that mitigation actions that could include inspection and repairs will be initiated [7-8, 23-24]. To 

establish the time dependent reliability of corroded high pressure offshore pipelines, Zhang and Zhou [25] 

determined the expected future internal corrosion wastage distribution due to internal pressure using 

Poisson square wave process. The authors established the time of pipeline failure with respect to small leak, 

large leak and rupture by using in-line inspection data after modelling stochastic pit depth growth with 

homogenous gamma distribution according to Equation (2): 

 

𝑓𝐺(𝑃𝑑(𝑡)|𝛼(𝑡 − 𝑡𝑖𝑛𝑡), 𝛽) =
𝛽𝛼(𝑡 − 𝑡𝑖𝑛𝑡) ∗ 𝑃𝑑(𝑡)

𝛼(𝑡−𝑡0)−1 ∗ 𝑒−𝑃𝑑(𝑡)𝛽 ∗ 𝐼(𝑡)

𝛤(𝛼(𝑡 − 𝑡𝑖𝑛𝑡))
                                        (2) 
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where 𝑓𝐺(𝑃𝑑(𝑡)|𝛼(𝑡 − 𝑡0), 𝛽) is the probability density function of the pit depth at time t, 𝛼(𝑡 − 𝑡0) is the 

time dependent shape parameter, 𝛤( . ) is the gamma function, 𝐼(𝑡) is an indicator function with values 

given in Equation (3).            

 

𝐼(𝑡) = {

1                        𝑖𝑓    𝑡 > 𝑡𝑖𝑛𝑡

0                   𝑖𝑓  0 ≤ 𝑡 ≤ 𝑡𝑖𝑛𝑡

                                                                                                         (3) 

Bazán and Beck [26] also used Poisson square wave process to model external pitting corrosion of 

underground pipelines and concluded that power model gave a more conservative estimate of the future 

corrosion wastage than random linear model after comparing the results with field inspection data. 

Similarly, Valor et al. [27] used historic data to determine the reliability of corroded non-piggable upstream 

pipelines exposed to external corrosion by statistically analysing the acquired data, determining the 

corrosion distribution at a future time and correlating the results with the designed pipeline failure 

pressure. The aim of these researchers is to establish a mitigation program aimed at enhancing the lifecycle 

of the pipelines [27]. The work of Rodriguez III et al. [28] was also aimed at mitigation and control of pitting 

corrosion by applying Markov chain modelling to determine the future pit depth whilst predicting the 

remaining useful life of the pipeline at future times based on the pit depth distribution.  

 

Other pitting corrosion related researches that are noteworthy includes the work of Valor et al. [23] that 

used  Monte Carlo reliability framework to model different corrosion distributions that included linear 

growth model, time dependent and time independent models ,Markov model and single value distribution 

model. They utilized both synthetic and field data in evaluating these models whilst considering defect sizes, 

age and depth of corrosion with time. They concluded that Markov chain predictive model was best for 

describing the corrosion distributions [23]. Caleyo et al. [19] also used Monte Carlo simulation to model pit 

depth growth of underground pipelines in different soil conditions and fitted the three maximal extreme 

value distributions - Weibull, Fretchet and Gumbel to the resulting best fit models of the studied soils, 

however, Fretchet distribution was best for describing the best fit model over a long-time exposure as was 

already stated in this work. Again, another work on experimental determination of internal pitting rate in 

pipelines concluded that increases in pitting rate occurs due to increased chloride concentration, 

temperature, subcutaneous substances (such as sand) and flow rate whereas decrease in pitting rate was 

observed with increase in bicarbonate, CO2 and H2S partial pressures and operating pressure [4], however, 

the results in this research were validated with limited field data. Pitting corrosion rate has also been 

modelled by researchers using damage function analysis by considering pit nucleation, growth rate and re-

passivation of carbon steel in chloride solution [22].The pitting rate for underground pipelines was also 

predicted with lognormal linear model in consideration of environmental variables [29] and the time of 
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initiation of pitting has also been predicted for different soil categories using Monte Carlo simulation of 

field observed soil conditions [10].  

  

The above reviewed literatures show that limited work has been done on Markov modelling of internal 

pitting corrosion of oil and gas pipelines and the few works are either flawed due to limited field validation 

data or are not based on pure birth non-homogenous Markov modelling, hence, the need for a holistic field 

data analysis of pitting rate distribution using a continuous time non-homogenous linear growth pure birth 

Markov model. Since effective corrosion modelling requires a combination of electrochemical activities 

relating to water and oxides transport within the metal surface, macro-environment (such as temperature, 

pH, humidity, salinity, porosity) and external environment (such as rainfall, seasonal rainfall and 

temperature fluctuations) [30], it is possible to model internal pitting corrosion of oil and gas pipelines by 

considering the operating conditions of the pipelines and the pit depths at different ages. The present work 

is aimed at determining the future distribution of pit depths of internally corroded oil and gas pipelines by 

using non-homogenous, continuous time linear growth pure birth Markov process. A multivariate 

regression analysis of field data was used in a Monte Carlo simulation framework to estimate the time of 

initiation of the pitting for different categories of pitting rates based on NACE classification. The work used 

initial knowledge of pit depth distribution to determine the transition probability function of pit depth 

growth in future time based on the closed form of negative binomial distribution solution of Kolmogorov’s 

forward equation. 

 

2.0 Finite Markov Chain Modelling of internal pitting corrosion of pipelines 

 

A Markov process has no memory because future events are independent of past ones but dependent on 

the present event [31] hence, if the pit depth of oil and gas pipeline at time t is represented by (Pd), then 

the probability at such a time can be written as Equation(3): 

𝑃{𝑃𝑑(𝑡) = 𝑖} = 𝑃𝑖(𝑡), 𝑖 = 1,2, … ,𝑁                                                                                                           (3) 

where N represents the number of states the pipeline wall is divided, Pi(t) is the probability that the pit 

depth is at ith state at time t and can be determined by measuring the pit depth distribution at such a time 

or by expert knowledge[1,8 ]. 

If Figure 1 represents a portion of pipeline with wall thickness (w), the time of pit depth distribution shown 

as a state space variable is represented with Equation(4): 

{𝑃𝑑(𝑡), 𝑡 ∈ 𝑇}                                                                                                                                                   (4) 

It should be noted that the pit depth at any time t is an integral part of the pipeline wall thickness whilst T 

is the time set for the observation of the pit depth. If small change in the pipeline wall thickness (δw) results 

in a pit depth at ith state represented by (𝑃𝑑𝑖), then 
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Figure 1: Model of pipeline pitting corrosion 

 

{
 
 

 
 

𝑃𝑑(𝑡) ≤ 𝑃𝑑𝑖
+ 𝛿𝑤

𝑃𝑑(𝑡) > 𝑃𝑑𝑖
            

𝑓𝑜𝑟 𝑖 = 1,2, … ,𝑁

                                                                                                                                         (5)                 

Assuming 𝑃𝑑𝑖
  is uniformly distributed with δw corresponding to individual states in the pipeline wall 

thickness such that the sum of each limit of observable pit depth 𝑃𝑑𝑖
 is given by 𝑆(𝑃𝑑)𝑖  then     

𝑃{𝑃𝑑𝑖
(𝑡) ∈ 𝑆(𝑃𝑑)𝑖

} = {

𝑃{𝑃𝑑𝑖
(𝑡) > 𝑃𝑑𝑖

}          

𝑃{𝑃𝑑(𝑡) ≤ 𝑃𝑑𝑖
+ 𝛿𝑤}

                                                                                                (6)                              

It follows therefore that the probability of observed corrosion pit depth at any increase in pipeline wall 

thickness at time t will satisfy the condition in Equation (7) as shown in literature [13]. 

{
 
 

 
 
0 ≤ 𝑃{𝑆(𝑃𝑑)𝑖

} ≤ 1                         

𝑃{𝑤} = 1                                        

𝑃{∑ 𝑆(𝑃𝑑)𝑖
𝑁
𝑖=1 } = ∑ 𝑃{𝑆(𝑃𝑑)𝑖}

𝑁
𝑖=1

                                                                                                            (7)                                            

For any finite collection of time t1, t2,…, tn and pit depth , 𝑃𝑑(𝑡1), 𝑃𝑑(𝑡2), … , 𝑃𝑑(𝑡𝑛) , the time variation of 

pit depth growth shown in Equation(4) is a stochastic process if the condition in Equation(8) is met. 

𝑃{𝑃𝑑(𝑡𝑛+1) = 𝑗|𝑃𝑑(𝑡𝑛) = 𝑖, 𝑃𝑑(𝑡𝑛−1) = 𝑖𝑛−1 , … , 𝑃𝑑(𝑡0) = 𝑖0}

= 𝑃{ 𝑃𝑑(𝑡𝑛+1) = 𝑗|𝑃𝑑(𝑡𝑛) = 𝑖}𝑖,𝑗∈𝑁                                                                       (8) 

where i and j are variables showing the various state of the pit depth at different times. 

2.1 Time Evolution of Pit depth 

For transition of the pit depth from state i to j in time interval (t, t+δt), 

δw 

Pd1
      Pd2

      Pd3
                             Pdi−1     

      Pdi
   

1

2

3

4 

  

 

N 

S

T

A

T

E

S 
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𝑃 {{[𝑃𝑑(𝑡 + 𝛿𝑡) = 𝑗|𝑃𝑑(𝛿𝑡) = 𝑖] = 𝑃𝑖,𝑗(𝛿𝑡, 𝑡)}
0≤𝛿𝑡<𝑡

                                                     (9) 

For the transition probability in Equation (9) to satisfy a Markov process, the condition in equation (10) 

will hold. 

{
 
 
 

 
 
 
0 ≤ 𝑃𝑖𝑗(𝑡 + 𝛿𝑡) ≤ 1,              𝑓𝑜𝑟   𝑖, 𝑗, 𝛿𝑡, 𝑡 ≥ 0

∑ 𝑃𝑖𝑗(𝑡 + 𝛿𝑡) = 1,𝑁
𝑗=1      𝑓𝑜𝑟  𝑖, 𝛿𝑡, 𝑡 ≥ 0 

𝑃𝑖𝑗(0,0) =       {
1,  𝑓𝑜𝑟    𝑖 = 𝑗

0, 𝑓𝑜𝑟 𝑖 ≠ 𝑗
                

                                                                           (10)    

It is expected that the pit depth in state i at a given time δt will remain in the state until a later time [32] 

however, it can move to another state j by passing through an arbitrary state h in s time (see Figure 2) 

whilst obeying the time-dependent probability condition of Chapman-Kolmogorov equation shown in 

Equation (11) [32]: 

𝑃𝑖𝑗(𝛿𝑡, 𝑡) = ∑ 𝑃𝑖ℎ(𝛿𝑡, 𝑠) ∗ 𝑃ℎ𝑗(𝑠, 𝑡),

𝑁

ℎ=1

   𝑓𝑜𝑟 𝛿𝑡 < 𝑠 < 𝑡; 𝑠𝜖(𝛿𝑡, 𝑡); 𝑖, 𝑗, ℎ휀𝑁                         (11) 

Assuming that for this small increase in time δt, the probability of transition of the pit depth from state i 

to j at time t+δt is given by the expression in equation (12). 

𝑃𝑖𝑗(𝑡, 𝑡 + 𝛿𝑡) = 𝜆𝑖𝑗(𝑡)𝛿𝑡 + 𝑂(𝛿𝑡)                                                                                  (12) 

where λ is the intensity of the Markov process and can be represented by Equation(13)[32,8]. 

𝜆𝑖(𝑡) = 𝑖𝜆(𝑡)                                                                                                           (13) 

Since O(δt) is a limiting state and tends to zero, if a continuous function is assumed such that λi(t)≥0, then 

{
 
 

 
 𝜆𝑖(𝑡) = 𝑙𝑖𝑚

𝛿𝑡→0
(
1 − 𝑃𝑖𝑖(𝑡, 𝑡 + 𝛿𝑡)

𝛿𝑡
) , 𝑖 = 1,2, … , 𝑁

𝜆𝑖𝑗(𝑡) = 𝑙𝑖𝑚
𝛿𝑡→0

(
𝑃𝑖𝑗(𝑡, 𝑡 + 𝛿𝑡)

𝛿𝑡
) , 𝑖, 𝑗 = 0,1,2, … ,𝑁; 𝑖 ≠ 𝑗

                         (14) 
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Figure 2: Graphical representation of Chapman-Kolmogorov equation of three stage Markov process 
[adopted from [32]] 

 

Manipulating Equation (14) will give the Kolmogorov forward and backward equations, however, for a 

continuous time non-homogenous linear growth Markov process which the pit depth is assumed to follow 

in this research, the probability that a process at state i will be in state j for j≥i at a later time follows 

Kolmogorov forward equation shown in Equation (15) [1, 8, 13]. 

𝑑𝑃𝑖𝑗(𝑡)

𝑑𝑡
= {

𝜆𝑗−1(𝑡)𝑃𝑖,𝑗−1(𝑡) − 𝜆𝑗(𝑡)𝑃𝑖,𝑗(𝑡), 𝑓𝑜𝑟  𝑗 ≥ 𝑖 + 1

−𝜆𝑖(𝑡)𝑃𝑖,𝑖(𝑡)                                                                    
                                   (15) 

 

The transition probability function of the pit depth defined by Kolmogorov forward equation can be solved 

with a negative binomial distribution function [1,6, 8]hence  the conditional probability (𝑃𝑛,𝑛0
) of moving 

from state n0 to n (n≥n0) in time interval (t0,t) can be represented with the relationship in Equation (16). 

𝑃𝑛,𝑛0
= 𝑃{𝑃𝑑(𝑡) = 𝑛|𝑃𝑑(𝑡0) = 𝑛0}                                                                                                              (16) 

Parzen [33] showed that Equation (16) can be represented in a closed form of negative binomial distribution 

(Equation(17)) for  the distribution of pit depths with initial state n0 and n being the probability density of 

the smallest and deepest pit depths respectively of the pipeline at time to. 

𝑃𝑛,𝑛0
= (

𝑛 − 1

𝑛 − 𝑛0
) ∗ 𝑒−(𝛾(𝑡)−𝛾(𝑡0))𝑛0 ∗ (1 − 𝑒−(𝛾(𝑡)−𝛾(𝑡0)))

𝑛−𝑛0
                                                 (17) 

δt                                 s                                    t                     time 

i                               h                                 j                

States 
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where , 

𝛾(𝑡0 , 𝑡) = ∫ 𝜆(𝑡)𝑑𝑡                                                                                                                           (18)
𝑡

𝑡0

 

The time-dependent pit depth growth can be expressed as a function of the intensity of the Markov 

process and change in time ∆t [34] as shown in Equation (19): 

𝑃𝑑(𝑡 + ∆𝑡) = 𝑃𝑑(𝑡) + 𝑃𝑑(𝑡) ∗ 𝜆∆𝑡                                                                                                   (19) 

Since  

𝑑(𝑃𝑑(𝑡))

𝑑𝑡
= 𝑙𝑖𝑚

∆𝑡→0

𝑃𝑑(𝑡 + ∆𝑡) − 𝑃𝑑(𝑡)

∆𝑡
                                                                                               (20) 

Solving Equation (19) and (20) will yield the non-probabilistic pit depth (Equation (21)) at any change in 

time interval (∆𝑡 = 𝑡 − 𝑡0) assuming that the pit depth at time t0 is in the initial state n0. 

𝑃𝑑(𝑡) = 𝑛0𝑒
𝜆∆𝑡                                                                                                                                    (21) 

The time dependent stochastic mean pit depth growth (M (t)) is equivalent to the non-probabilistic pit 

depth and can be expressed as follows: 

𝑀(𝑡) = 𝑛0𝑒
𝜆(𝑡−𝑡0)                                                                                                                              (22) 

If the deterministic corroded pit growth in this work is assumed to follow a linear random model which 

have been used by researchers to model different kinds of physical systems including pipelines 

deterioration [26, 35-38], then the progression of the deterministic pit depth (𝑃𝑑𝑑
(𝑡)) will be of the form 

shown in Equation (23). 

 𝑃𝑑𝑑
(𝑡) = 𝛽𝑑(𝑡 − 𝑡𝑖𝑛𝑡)                                                                                                                       (23) 

where βd represents the deterministic pitting rate, tint is the time of initiation of the pitting process (this is 

explained later in this work). The time of pitting initiation on the pipeline depends on the physical and 

chemical characteristics of the environment exposed to the pipeline [10, 30] and the corrosion resistance 

ability of the pipeline material. The rate of change of deterministic pit depth (∆𝑃𝑑𝑑
(𝑡) ) can be expressed 

in terms of the deterministic intensity (λd) and change in time interval as follows: 

∆𝑃𝑑𝑑
(𝑡) = 𝜆𝑑(𝑡)𝑃𝑑𝑑

(𝑡)∆𝑡                                                                                                                (24) 

According to Cox and Miller (1965) (as cited by Valor et al. [1]) the stochastic corroded pit growth rate is 

assumed to be equal to the deterministic pit growth rate. Then solving Equations (18), (22) and (24) and 

simplifying will yield the following relationships: 

𝛾(𝑡) = 𝑙𝑛(𝛽𝑑(𝑡 − 𝑡𝑖𝑛𝑡))                                                                                                                       (25) 

𝜆(𝑡) =
1

𝑡 − 𝑡𝑖𝑛𝑡
                                                                                                                                      (26) 

𝛾𝑠 =
𝑡0 − 𝑡𝑖𝑛𝑡

𝑡 − 𝑡𝑖𝑛𝑡
    , 𝑡 ≥ 𝑡0 ≥ 𝑡𝑖𝑛𝑡                                                                                                         ( 27) 
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Where 𝛾(𝑡) represents the pitting corrosion damage with time whilst 𝛾𝑠 represents the probability of 

pitting evolution with time.  

2.2 Estimation of the Probability Distribution of the Corroded pitting depth 

Caleyo et al. [12] has shown that the probability distribution (FD (π)) over the time interval (t, t0) at state 

n0 can be related to the probability density function (f (π)) according to Equation (28): 

𝐹𝐷(𝜋) = ∫ 𝑓(𝜋), 𝑡 > 0                                                                                                                        (28)
𝑡

𝑡0

 

If the pitting corrosion rate (π) is continuously distributed with f (π), FD (π) and ∆t, then Equation (28) can 

be expressed below after taking the limiting states and simplifying: 

𝑃{𝜋(𝑡) < 𝑇 ≤ 𝜋(𝑡) + 𝜋(∆𝑡)} ≅ 𝑓(𝜋) ∗ ∆𝑡                                                                                       (29) 

𝑓(𝜋, 𝑛0 , 𝑡0 , 𝑡) = 𝑃𝑛0
(𝑡0) ∗ 𝑃𝑛0,𝑛0+𝜋∆𝑡(𝑡0, 𝑡) ∗ ∆𝑡                                                                               (30) 

For an oil and gas pipeline with a measured total pitting population, the pitting distribution for the entire 

pitting states (N) of the pit depths can be expressed as Equation (31): 

𝑓(𝜋, 𝑡0 , 𝑡) = ∑ 𝑓(𝜋, 𝑛0 , 𝑡0, 𝑡)                                                                                                               (31)

𝑁

𝑛0=1

 

Different researchers have shown that if the initial probability distribution of the pit depth at time t0 is 

known, the future probability distribution of the pit depth can be estimated [ 1, 6, 8, 12] and reliability of 

the pipeline established. Equation (32) is used to compute the future distribution of the pit depth (Pn (t)) 

[19]. 

𝑃𝑛(𝑡) = ∑𝑃𝑛0
(𝑡0) ∗ 𝑃𝑛0,𝑛

(𝑡0 , 𝑡)                                                                                            (32)

𝑛

𝑛0

 

Combining Equations (17), (25), (26) and (32) will give a general equation for determining the future pit 

depth distribution. 

𝑃𝑛0,𝑛
(𝑡0,𝑡) =

(𝑛 − 1)!

(𝑛0 − 1)! (𝑛 − 𝑛0)!
∗ (

𝑡0 − 𝑡𝑖𝑛𝑡

𝑡 − 𝑡𝑖𝑛𝑡
)
𝑛0

∗ (
𝑡 − 𝑡0
𝑡 − 𝑡𝑖𝑛𝑡

)
𝑛−𝑛0

                                  (33) 

 

3.0 Prediction of the Model parameters 

To predict the transition probabilities for the deterministic pit depth requires the estimation of the 

deterministic pitting rate and the time of initiation of the pitting in Equation (23). To estimate these 

parameters, pit depths and operating parameters (pH, temperature, flow rate and CO2 partial pressure) 

measurements of oil transmission pipelines obtained from a producing company in Nigerian Niger Delta 

region were used for numerical analysis and determination of the multivariate coefficients following the 

Monte Carlo framework shown in Figure 3.    
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 Figure 3: framework for Monte Carlo simulation of pitting initiation time 

The pitting rates in the pipelines were classified into four categories using NACE pitting corrosion guideline 

shown in Table 1 [39]. 

Select pitting corrosion data and operating variables from pipelines 

Start 

Generate 5000 discrete random numbers of: Maximum pit depth; Temperature of 
pipeline; CO

2
 partial pressure; Flow rate and pH. 

Using field data distribution information in Table 2. 

Calculate the pitting rate of the pitting corrosion categories using the relationship 

𝛽𝑑 = 𝛽0 + 𝛽𝑇𝑒𝑚𝑝(𝑇𝑚) + 𝛽𝑃𝐶𝑂2
(𝑃𝑚) + 𝛽𝑣(𝑣𝑚) + 𝛽𝑝𝐻(𝑃𝑝𝑚) 

where Tm, Pm,vm, Ppm represents the mean values of simulated temperature, CO2  partial pressure, flow rate 

and pH respectively whilst β0, βTemp, βPCO2, βv  and βpH represents the intercept, temperature, CO2 partial 

pressure, flow rate and pH coefficients respectively.  

  

Estimate the expected pipeline failure time (𝑡𝑓𝑎𝑖𝑙)  i.e. time to reach cumulative simulated pit depth 

(𝑃𝑑𝑠𝑖𝑚
 ) for Poisson Square Wave Process (PSWP) simulated times t

j
, . . ., t

kt 

𝑡𝑓𝑎𝑖𝑙 = ∑𝑡𝑗

𝑘𝑡

𝑗=1

 𝑃𝑑𝑠𝑖𝑚
= ∑𝑃𝑑𝑗

 

𝑘𝑡

𝑗=1

 

𝑡𝑗 = −
1

𝜆𝑡
. log(ξ) 𝑃𝑑𝑗

(𝑡𝑗+1) = {𝑃𝑑𝑗
(𝑡𝑗) + 𝑃𝑑𝑗

(𝑡𝑗+1 − 𝑡𝑗)}
𝑓𝑜𝑟 𝑗=0,1,..,𝑘𝑡

 

 

where k
t
 , λ

t
, ξ and 𝑃𝑑𝑗

 represents total number of pulses needed for the cumulative pit depth to be equal to 

100% of  pipe-wall thickness , the Poisson arrival interval, uniformly distributed random number  and 

simulated pit depths at times t
j
, . . ., t

kt
 respectively.  

  

Calculate the time of pitting initiation: 

𝑡𝑖𝑛𝑡 = 𝑡𝑓𝑎𝑖𝑙 −  
𝑃𝑊𝑇

𝛽𝑑
  

P
WT

: pipeline wall thickness 
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Table1: Qualitative categorization of carbon steel corrosion rate for oil production systems 

 Average Corrosion Rate Maximum Pitting Rate 

 mm/yr  mm/yr  

Low <0.025  <0.13  

Moderate 0.025-0.12  0.13-0.20  

High 0.13-0.25  0.21-0.38  

Severe >0.25  >0.38  

 

The pit depths of the pipelines were determined according to the relationship in Equation (34)-(36): 

𝑃𝑑𝑚𝑎𝑥
= {(𝛽0 + ∑𝛽𝑖𝑥𝑖

𝑚

𝑖=1

)(𝑡𝑖 − 𝑡𝑖𝑛𝑡)}

𝑖=1,2,…,𝑚

                                                                        (34) 

where 

𝛽𝑑 = {𝛽0 + ∑𝛽𝑖𝑥𝑖

𝑚

𝑖=1

}

𝑖=1,2,…,𝑚

                                                                                                         (35) 

𝛽𝑑 = 𝛽0 + 𝛽𝑇𝑒𝑚𝑝(𝑇𝑚) + 𝛽𝑃𝐶𝑂2
(𝑃𝑚) + 𝛽𝑣(𝑣𝑚) + 𝛽𝑝𝐻(𝑃𝑝𝑚)                                                  (36) 

 𝑃𝑑𝑚𝑎𝑥
 represents the maximum pit depth which is equivalent to the deterministic pit depth ( 𝑃𝑑𝑑

(𝑡)), 𝛽𝑖  

represents the coefficients of the operating variables of the pipelines and xi is used to represent the 

operating variables whilst m is the number of operating variables.  

To ensure that the random walk nature of the pit depth growth rate is maintained, a Poisson Square Wave 

Process (PSWP) was used to predict the time lapse for the pitting process. Although any positive random 

distribution can be used for realizing the pulse heights [26], Gamma distribution [26] as well as Gumbel 

distribution [25] have been used for estimating variables in PSWP by other authors, however, lognormal 

distribution is employed in this work because the best fitting distribution of the field data followed a 

lognormal distribution. In order to estimate the time of pitting initiation process (tint) using the procedure 

shown in Figure 3, a 5000 run random numbers simulation was carried out using the minimum and 

maximum values of the operating variables and the maximum pit depths for the corrosion categories shown 

in Table 2 as boundary conditions. By assuming that the maximum pit depth and operating parameters 

follows a lognormal distribution as earlier stated, the best fit distributions were obtained from the 

simulated data whilst a Poisson Square Wave Process (PSWP) shown in Figure 4 was used to calculate the 

pit depth growth with time using the relationship shown in Equation (37) [26]. 

𝑃𝑑𝑗
(𝑡𝑗+1) = {𝑃𝑑𝑗

(𝑡𝑗) + 𝑃𝑑𝑗
(𝑡𝑗+1 − 𝑡𝑗)}

𝑓𝑜𝑟 𝑗=0,1,..,𝑘𝑡

                                                         (37) 

where 𝑃𝑑𝑗
 represents the simulated pit depth at time tj and kt represents the expected number of 

time pulses needed for the cumulative pit depth to be 100% of the pipe-wall thickness. A 
multivariate regression analysis of the simulated data was used to obtain the regression 
coefficients of the operating variables and the intercept whereas the mean values of the operating 
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parameters computed from the simulation result were used for the computation of the pitting 
rates of the corrosion categories according to Equation (36).  

To estimate the excepted pipeline failure time (tfail), Poisson arrival rate (λt) was assumed to be 0.5 
and the statistical best fit parameters of the lognormal distribution estimated from the 5000 
simulation runs were used to predict pit depth for random times calculated for each Poisson 
arrival. Since the magnitude and duration of the generated pulses from the PSWP follow a Poisson 
distribution with the duration of individual pulses being independently exponentially distributed 
[25-26], the excepted pipeline failure time (tfail) can be computed as the cumulative simulated 
times for which the cumulative simulated pit depth (𝑃𝑑𝑠𝑖𝑚

) is equivalent to 100% of the pipe-wall 

thickness of the pipeline. 

As the deterministic pit depth at the expected time of pipeline failure (tfail) is assumed to be 
equivalent to 100% of the pipe-wall thickness (PWT) loss, then Equation (23) can be represented as 
shown in Equation (38) if t≈ tfail. 

 𝑃𝑊𝑇(𝑡𝑓𝑎𝑖𝑙) = 𝛽𝑑(𝑡𝑓𝑎𝑖𝑙 − 𝑡𝑖𝑛𝑡)                                                                                                                       (38) 

Hence the pitting initiation time can be simply simplified from Equation (38) to give the 
relationship expressed in Equation (39) at the time of failure of the pipeline. 

𝑡𝑖𝑛𝑡 = 𝑡𝑓𝑎𝑖𝑙 −  
𝑃𝑊𝑇

𝛽𝑑
                                                                                                                                      (39) 

 

Figure 4: Poisson Square wave Process (PSWP) for estimating pitting initiation time 

The summary of the field data for the pitting corrosion categories, the coefficients of regression for the 
linear regression model and Monte Carlo simulation predicted values of time for pitting initiation is shown 
in Table 2. In the table, “all data“ category represents the total number of collected data whereas low, 
moderate, high and severe pitting rate categories were determined according to the number of all the 
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sampled data that fell into the classifications shown in Table 1. After the simulation and estimation of the 
relevant variables in Equation (34), the transition probability function given in Equation (33) can be 
calculated for the pitting corrosion categories. 
 

 

4.0 Results and Discussion 

The minimum and maximum observed pit depths of each of the 60 pipelines were used as boundary 

conditions for a Monte Carlo simulation experiment aimed at predicting the variation of the pit depth 

growth with time of exposure of the pipelines for different categories of pitting rate shown in Table 1. This 

simulation executed in Matlab was used to obtain results for 1 year to 40 years exposure of the studied 

pipelines. The cumulative simulated pit depths for each of the simulated exposure years (5, 10, 15, 20, 25, 

30, 35 and 40 years) for the 60 pipelines were ranked in increasing order and the pit depth of each pipeline 

plotted against the ranked position. The distribution of the simulated pit depths for all the field data and 

the best fit equations for the exposure times are shown in Figure 5. 

Table 2: Variables and coefficients of the predictive for the pitting corrosion 

Variables Description Pitting corrosion category 

Low Moderate High Severe All data 
Pdmax

 min Maximum pitting depth 
(mm) 

0.049 0.132 0.204 0.396 0.049 

max 0.118 0.183 0.371 1.309 1.309 

θ min Temperature (0C) 24 21 27 21 21 
max 40 32 70 74 74 

PCO2 min CO2 partial pressure 
(MPa) 

0.01 0.01 0.02 0.03 0.01 
max 0.14 0.16 0.31 0.61 0.61 

V min Flow rate(ms-1) 0.07 0.04 0.05 0.07 0.04 
max 0.23 0.3 1.39 2.01 2.01 

pH min pH of fluid 6.21 6.78 6.21 6.73 6.21 

max 8.18 8.32 8.19 8.57 8.57 

No of sampled pipelines 8 7 15 30 60 

No of sampled pit depths 80 70 150 300 600 

Coefficient of parameters 
β0 Constant pitting rate 0.0836 0.1574 0.2859 0.8235 0.7303 

Standard error 0.0029 0.00278 0.0064 0.037 0.042 
 
βTemp 

Coefficient of temperature -0.0001 -0.0001 -0.0001 -0.0002 -0.0002 
Standard error 4.24e-05 4.24e-05 3.82e-05 0.0002 0.0002 

 
βPCO2 

Coefficient of CO2 partial pressure -0.003 -0.0019 -0.0033 0.0133 -0.0279 
Standard error 0.0053 0.0034 0.0057 0.0157 0.021 

βV Coefficient of flow rate 0.0002 -0.0001 -0.0001 -0.0026 0.0038 
Standard error 0.0042 0.0019 0.0012 0.0047 0.006 

βpH Coefficient of pH 0.0003 0.0003 0.0007 0.0046 -0.0049 
Standard error 0.0003 0.0003 0.0008 0.0049 0.005 

Estimated pitting parameters 

βd Pitting rate (mmyr-1) 0.0824 0.1568 0.2855 0.8506 0.6801 

tint pit initiation time(years) 1.56 0.58 1.03 1.89 3.60 
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Figure 5: Maximum pit depth plot for Monte Carlo simulated maximum pit depths for studied pipelines 

 

Figure 5 shows that the distributions were shifting towards the right in a clockwise direction as the values 

increased, which is an indication of experiment under control [28]. The trend shown in Figure 5 is similar to 

those of the simulated pit depth growth of the pitting corrosion categories not shown in this paper. 

The simulated pit depths and the exposure times for the pitting corrosion categories were fitted to the 

generalized extreme value (GEV) distribution shown in Equation (40). 

𝑓(𝑥) =  𝐸𝑥𝑝 [−(1 + 𝜎
𝑥 − 𝜑

𝛼
)
−

1
𝜎
] 𝑓𝑜𝑟 (1 + 𝜎

𝑥 − 𝜑

𝛼
) > 0                (40) 

where f(x) represents the GEV distribution, 𝜎 is the shape parameter, 𝜑 is the location parameter, α is the 

scale parameter. 

Figure 6a shows the GEV distribution of the simulated data for the entire field data used in this research. 

The pitting depth states were obtained by dividing the pipeline wall thickness into 100 states of 0.0841 mm-

thick with each state representing a damage penetration of the pipeline wall in the discretization process. 

The figure indicates that the variance and the mean of the pitting rate distribution decrease with the 

increase in time of exposure.  
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Figure 6a: GEV distribution of Monte Carlo simulated pit depth for all pitting corrosion data 

 

The stochastic internal pit depth growth was illustrated in Figure 6b using Monte Carlo simulated pit depth 

growth shown in Figure 6a. The pit depth distribution at 5 years was used for constructing the future pit 

depth distribution at 10 years, 15 years and 20 years as the pipeline wall thickness was divided into 100 

states of 0.0841 mm-thick per state. The constructed pit depth distribution shown in Figure 6b indicated 

that the pitting rate distribution decreased with the increase in time of exposure as was concluded by other 

researchers [1, 12]. 

 

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Maximum pitting depth(States)

P
ro

b
a
b
ili

ty
 d

e
n
s
ity

 f
u
n
c
tio

n
 (

1
/S

ta
te

s
)

 

 

5years

10 years

15 years

20 years

25 years

30 years

35 years

40 years



Page 17 of 34 
 

Figure 6b: Variation of pitting depth distribution with pipeline exposure time (years) 

Figures 7a and 7b represent the mean and variance of the simulated pit depths over different times of 

exposure. The figures indicate an increase in mean and variance of the pitting corrosion categories as the 

time of exposure increased. It could also be seen that severe pitting and ‘all data’ categories have higher 

values and showed more scatter than low, moderate and high pitting corrosion classes. This implies that 

the increase in pit depths resulted in higher mean and variance for pipelines with the same duration of 

exposure. 
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Figure 7a: Time evolution of the best fit mean of Monte Carlo simulated pit depth 

 

Figure 7b: Time evolution of the best fit variance of Monte Carlo simulated pit depth 

Figures 8a, 8b and 8c represent the variation of the shape, scale and location parameters of the pitting 

corrosion categories for the simulated data. As expected, there is increase in these variables with increased 
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duration of exposure with low, moderate and high categories giving lower values of the scale  and location 

parameters whilst shape parameters showed slight changes for high, severe and all data .  

 

Figure 8a: Time evolution of the best fit shape parameter of GEV distribution of the pit depth 

 

 

Figure 8b: Time evolution of the best fit scale parameter of GEV distribution of the pit depth 
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Figure 8c: Time evolution of the best fit location parameter of GEV distribution of the pit depth 

 

The variation of the pitting damage (𝛾(𝑡) ) and the probability parameter (𝛾𝑠 ) with time is also shown if 

Figures 9a and 9b respectively whereas Figure 9c shows the maximum pit depth growth with time as 

computed from the simulation result. The estimation of these parameters is vital for the computation of 

the transition probability function. The pitting corrosion damage increased with time as expected, with the 

least increase observed in low pitting corrosion category whereas severe pitting corrosion category 

accounted for the highest increase as was concluded by other researchers [1, 8]. Since higher pit depths 

resulted in lower probability parameter (Figure 9b), it follows that the reliability of the pipeline reduces 

with an increased risk of failure as exemplified by other authors in literature [9, 27]. 
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Figure 9a: Time evolution of the pitting corrosion damage (ϒ (t)) for GEV distribution of Monte Carlo 
simulated pit depth for different categories of pitting corrosion 

 

Figure 9b: Time evolution of probability parameter (ϒs) for GEV distribution of Monte Carlo simulated pit 
depth for different categories of pitting corrosion 

Figure 9c indicates that the cumulative rate of growth of the pit depth is maximum for severe corrosion 

rate as expected whereas low corrosion category showed the least cumulative pit growth with time of 
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pipeline exposure. Hence, to manage pipelines with these corrosion severities involves the application of 

varying quantities of corrosion inhibitors, however, if the maximum uninhibited corrosion rate is less than 

0.4mm/yr., there may not be any need for corrosion inhibitor seeing that this level of pipe-wall thickness 

loss is accommodated in corrosion allowance during pipeline design [40]. Although the pipelines studied in 

this work were treated with imidazoline-based corrosion inhibitor, however, to reduce the risk of pipeline 

failure due to corrosion rates greater than 0.4mm/yr., varying quantities of corrosion inhibitors are injected 

to the pipelines in accordance to the rate of corrosion. For instance, when the total uninhibited corrosion 

rate on a carbon steel pipeline is 0.7mm/yr., the maximum required inhibitor availability will be 50% [40]. 

Again, the concentration of the inhibitor is also vital in achieving the expected corrosion reduction seeing 

that at certain concentrations, corrosion is enhanced. This is evident in X52 grade pipeline which showed 

perfect corrosion reduction at 50ppm of amine type inhibitor but increased corrosion rate at 100 ppm 

under static condition [41]. This inhibitor application can be periodically reviewed after inspection of the 

pipelines to determine whether or not the quantity is sufficient or in excess. Imperatively, the quantity of 

corrosion inhibitor to be applied to the pipelines studied in this research will increase from low corrosion 

to moderate, high and severe corrosion categories in that order of listing. Again, the pipelines with higher 

pit depth growth rates are expected to continue growing at a higher pace than those with lower pitting 

rates hence, the failure risk expected for severe corroded pipelines are much higher than the risk inherent 

in low corroded pipeline.  

 

 

Figure 9c: Simulated maximum pit depth growth and pipeline exposure time for different 

corrosion categories. 
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4.1 Applications of the Pitting Prediction Model 

The Markov prediction model was tested on two sets of in-line inspection data of pit depth of offshore 

well tubing and onshore transmission pipelines. 

4.1.1 Predicting Future Pitting Corrosion Distribution of Well Tubing 

 

The proposed Markov model was used to predict the future pitting corrosion distribution of well tubes used 

for offshore production. The pit depths of these tubes were measured with Multi-finger Imagining Tool 

(MIT). The summary of the pit depths, the ages and the frequency of occurrences of the field measured 

data can be found in reference [42]. The pit depth frequency of occurrence was used to determine the 

transition probability function of the pit depths that were divided into 100 states of 0.0645 mm-thick per 

state. To apply the Markov prediction model, the pit depths were assumed to belong to all data category 

(see Table 2) with pitting initiation time of 3.6 years. 

 

For L-80 grade steel well tubing, the initial probability distribution function was taken as the pit depth 

distribution at age 5.1 years whilst the future pit depth distribution was calculated for 5.8 years and the 

result compared with the field measured pit depth distribution at 5.8 years. The result of the field measured 

and Markov predicted pit depth distribution is shown in Figure 10. The field and Markov predicted pit depth 

distributions were subjected to two-sample Kolmogorov Smirnov (K-S) test to prove the hypothesis that 

Markov predicted distributions of L-80 grade carbon steel’s pit depth is similar to the future field measured 

pit depth distribution in offshore location. The resulting p-value of 0.4496 from the K-S test shows that this 

hypothesis cannot be rejected. 
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Figure 10: Comparison of Markov model prediction and field measured pit depths distribution for L-80 
grade well tubing at 5.8 years from initial field distribution at 5.1 years 

 

Similarly, for the N-80 grade carbon steel well tubing, the initial pit depth at the age of 9.1 years was used 
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15.3 years, 18.2 years and 22.8 years. The results of the Markov predicted and field measured pit depth 

distribution is shown in Figures 11a, 11b and 11c. Again, a two-sample K-S test of the Markov and field 

measured pit depth were conducted to test the hypothesis that Markov predicted distributions of N-80 

grade carbon steel’s pit depth is similar to the future field measured pit depth distribution in offshore 

location. The p-values of 0.1976, 0.1438 and 0.1024 for 15.3 years, 18.2 years and 22.8 years respectively 

were enough not to reject the hypothesis. 

 

 

Figure 11a: Comparison of Markov model prediction and field measured pit depths distribution for N-80 
grade well tubing at 15.3 years from initial field distribution at 9.1 years 
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Figure 11b: Comparison of Markov model prediction and field measured pit depths distribution for N-80 
grade well tubing at 18.2 years from initial field distribution at 9.1 years 

 

Figure 11c: Comparison of Markov model prediction and field measured pit depths distribution for N-80 
grade well tubing at 22.8 years from initial field distribution at 9.1 years 
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4.1.2 Modelling Pitting Distribution of In-line Inspected transmission pipeline 

The prediction model developed in this research was further validated with magnetic flux leakage in-line 

inspection data of a 3.7 km X52 grade oil transmission pipeline inspected in August 2012. The inspection on 

this 203 mm external diameter and 8.7 mm thick pipeline commissioned in 1994 was carried out according 

to ASME BG31G standards [43]. A total of 1037 pit depths that ranged from 10% to 60% of the pipeline wall 

thickness were observed. The pipeline wall thickness was divided into 100 states of 0.087 mm-thick each 

and the transition probability distribution of the pit depth in 2012 was used as the initial distribution for 

predicting the future pit depth distribution, hence t0=18 years, for the pit depth distribution in 2022, ∆t=10, 

tint=3.6 years since the distribution was assumed to fall into all data pitting category as explained previously. 

To determine the future distribution of the pit depth in 2022, a Monte Carlo simulation framework shown 

in Figure 12 was utilized to predict the pit depth growth.  
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Figure 12: Monte Carlo simulation framework for estimation of future corroded pit depth distribution of a 
single in-line inspection 

 

Figure 13 shows the pit depths distribution for the field measured in-line inspection data of the pipeline in 

2012, Markov predicted and Monte Carlo simulated pit depth distribution in 2022. The goodness of fit test 

with two-sample K-S test showed that a p-value of 0.6828 made it possible to accept the hypothesis that 

Markov predicted pit depth distribution came from similar distribution with Monte Carlo simulated 

distribution of the transmission pipeline. 
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Figure 13: Comparison of Markov predicted and Monte Carlo simulated pit depth distribution in 2022 
from initial pitting distribution in 2012 

 

4.2 Validation of the Monte Carlo simulated pit depths 
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that a p-value of 0.995 is enough to accept the hypothesis that both simulated and field observed 

distributions are similar whereas a root mean square error of 0.0012  indicates that Monte Carlo simulated 

pit data has not varied much when compared with the field observed data. 
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Figure 14: Probability density function distribution of field measured data 
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Figure 15: Comparison of pit depth distribution for field and Monte Carlo simulated data 

 

4.3 Validation of the Markov Prediction Model 
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Table 3 indicates that the error in Markov estimation of the future pit depth of the tested field data is 

between 1.54% and 8.69%. This result implies that Markov model prediction of future pit depth distribution 

is over 90% accurate. 

5.0 Conclusions 

To estimate the future pit depth distribution of oil and gas pipelines, a non-homogenous, continuous time 

pure birth Markov process was used. The work focused on internal pitting corrosion of oil and gas pipelines 

by considering the effects of some operating parameters – temperature, CO2 partial pressure, pH and flow 

rate on the pit depth growth at different pitting categories stipulated by NACE. The pipeline wall thickness 

was divided into a number of states and the pit depths categorized into the states whilst the transition 

probability functions estimated by using a closed form of negative binomial distribution was used to 

estimate the future pit depths distribution. 

By analysing the operational parameters and pit depths of the pipelines, the pitting initiation times were 

estimated for different categories of pitting corrosion rates. The Markov predicted model was tested with 

field data from L-80 and N-80 grades of well tubing used in offshore oil and gas production and the results 

agrees well. Onshore oil and gas transmission pipeline inspection data for X52 grade pipe was also tested 

with the Markov prediction model and the result showed a good agreement with future pit depth 

distribution modelled with discrete events Monte Carlo simulation. 

The field data was also compared with data obtained from the Monte Carlo simulation experiment and the 

error in the prediction was less than 1%. The comparison of the Markov predicted model and the field data 

indicated an accuracy of 91.3%~ 98.5%. Since this model has predicted successfully the future pit depth 

distribution for similar materials in different oil and gas producing wells, it will be a vital tool for pipelines 

reliability management. 
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