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Abstract: In this paper, we study generalized minimax inequalities in a Haus-

dorff topological vector space, in which the minimization and the maximization of a

two-variable set-valued mapping are alternatively taken in the sense of vector opti-

mization. We establish two types of minimax inequalities by employing a nonlinear

scalarization function and its strict monotonicity property. Our results are obtained

under weaker convexity assumptions than those existing in the literature. Several

illustrative examples are given to illustrate our results.

Keywords: Minimax inequality, set-valued mapping, minimal point, maximal point,

nonlinear scalarization function.
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1 INTRODUCTION

Throughout the paper, let 𝑋,𝑍 and 𝑉 be real Hausdorff topological vector spaces.

Let 𝑆 ⊂ 𝑉 be a closed, convex and pointed cone such that 𝑖𝑛𝑡𝑆 ∕= ∅, and let

𝑉 ∗ denote the topological dual space of 𝑉 . Some fundamental terminologies are

presented as follows.

Definition 1.1 Let 𝐴 ⊂ 𝑉 be a nonempty subset.

(i) A point 𝑦 ∈ 𝐴 is called a minimal point of 𝐴 if 𝐴
∩
(𝑦 − 𝑆) = {𝑦}; and Min𝐴

denotes the set of all minimal points of 𝐴.

(ii) A point 𝑦 ∈ 𝐴 is called a weakly minimal point of 𝐴 if 𝐴
∩
(𝑦 − 𝑖𝑛𝑡𝑆) = ∅; and

Min𝑊𝐴 denotes the set of all weakly minimal points of 𝐴.

(iii) A point 𝑦 ∈ 𝐴 is called a maximal point of 𝐴 if 𝐴
∩
(𝑦 + 𝑆) = {𝑦}; and Max𝐴

denotes the set of all maximal points of 𝐴.

(iv) A point 𝑦 ∈ 𝐴 is called a weakly maximal point of 𝐴 if 𝐴
∩
(𝑦+ 𝑖𝑛𝑡𝑆) = ∅; and

Max𝑊𝐴 denotes the set of all weakly maximal points of 𝐴.

Definition 1.2 [1] Let 𝐹 : 𝑋 → 2𝑉 be a set-valued mapping.

(i) 𝐹 is said to be upper semicontinuous (u.s.c.) at 𝑥0 ∈ 𝑋 if, for any neighborhood

𝑁(𝐹 (𝑥0)) of 𝐹 (𝑥0), there exists a neighborhood 𝑁(𝑥0) of 𝑥0 such that

𝐹 (𝑥) ⊂ 𝑁(𝐹 (𝑥0)) ∀𝑥 ∈ 𝑁(𝑥0).

(ii) 𝐹 is said to be lower semicontinuous (l.s.c.) at 𝑥0 ∈ 𝑋 if, for any sequence

{𝑥𝑛} ⊂ 𝑋 such that 𝑥𝑛 → 𝑥0, and any 𝑦0 ∈ 𝐹 (𝑥0), there exists a sequence

𝑦𝑛 ∈ 𝐹 (𝑥𝑛) such that 𝑦𝑛 → 𝑦0.

(iii) 𝐹 is said to be continuous at 𝑥0 ∈ 𝑋 if 𝐹 is both u.s.c. and l.s.c. at 𝑥0.
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Minimax theorems for real-valued functions were discussed in [5, 6, 12]. Let

𝑋0 ⊂ 𝑋,𝑍0 ⊂ 𝑍, and 𝑓 : 𝑋0 × 𝑍0 → 𝑅 be a real-valued function. Under suitable

conditions, the following equality holds:

inf
𝑧∈𝑍0

sup
𝑥∈𝑋0

𝑓(𝑥, 𝑧) = sup
𝑥∈𝑋0

inf
𝑧∈𝑍0

𝑓(𝑥, 𝑧). (1)

In recent years, investigations on vector minimax theorems have attracted a lot of

attention. Many papers have dealt with this subject under various assumptions (see,

e.g., [18, 7, 8, 9, 17, 19, 16]). For vector-valued functions, the two terms in (1) are

two sets, not singleton. Thus, the equality in (1) does not, in general, hold. But

one may get an inclusion relation between these two sets. In [8, 9], under condi-

tions that the vector-valued function 𝑓(𝑥, .) is 𝑆-convex for each 𝑥 ∈ 𝑋0, −𝑓(., 𝑧)

is properly 𝑆-quasiconvex for each 𝑧 ∈ 𝑍0 and Max
∪

𝑥∈𝑋0
Min𝑊

∪
𝑧∈𝑍0

𝑓(𝑥, 𝑧) ⊂
Min𝑊

∪
𝑧∈𝑍0

𝑓(𝑥, 𝑧) + 𝑆 ∀𝑥 ∈ 𝑋0, Ferro established that the following vector mini-

max inequalities:

Max
∪

𝑥∈𝑋0

Min𝑊

∪
𝑧∈𝑍0

𝑓(𝑥, 𝑧) ⊂ Min
∪

𝑧∈𝑍0

Max𝑊
∪

𝑥∈𝑋0

𝑓(𝑥, 𝑧) + 𝑆. (2)

In [9], Ferro raised an open problem: (2) may not hold if 𝑆-convexity of 𝑓(𝑥, .) is

relaxed.

In this paper, we study vector minimax inequalities (2) for set-valued mappings.

With properties of a strictly monotone function, we derive two types of vector min-

imax inequalities: one type gives that the max-min set of a two-variable set-valued

mapping is contained in the sum of the min-max set of the set-valued mapping and

a positive cone, and another type shows that the min-max set of a two-variable

set-valued mapping is contained in the sum of the max-min set of the set-valued

mapping and the complement of a positive cone. Our results include the corre-

sponding ones for vector-valued functions in [8, 9] as special cases. In particular,

we show in Section 3 that Theorem 3.1(i) of [9] is a special case of Corollary 3.1.

Therefore, Corollary 3.1 solves a part of the open problem raised by Ferro in [9]. We

also show that Theorem 1 of [16] is a special case of our results. Several illustrative

examples are given to clarify our results. Some preliminary results are presented as

follows.
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Lemma 1.1 [13, Lemma 2.2] Let 𝑋0 and 𝑍0 be compact subsets of 𝑋 and 𝑍, re-

spectively. Let 𝐹 : 𝑋0 × 𝑌0 → 2𝑉 be a continuous set-valued mapping such that for

each (𝑥, 𝑧) ∈ 𝑋0 × 𝑌0, 𝐹 (𝑥, 𝑧) is a compact set. Then Γ(𝑥) = Min𝑊
∪

𝑧∈𝑍0
𝐹 (𝑥, 𝑧)

and 𝐿(𝑧) = Max𝑊
∪

𝑥∈𝑋0
𝐹 (𝑥, 𝑧) are u.s.c. on 𝑋0 and 𝑍0, respectively.

Lemma 1.2 [19] Let 𝐴 ⊂ 𝑉 be a nonempty compact subset. Then (i) Min𝐴 ∕= ∅;
(ii) 𝐴 ⊂ Min𝐴+ 𝑆; (iii) Max𝐴 ∕= ∅; and (iv) 𝐴 ⊂ Max𝐴− 𝑆.

Remark 1.1 In this paper, 𝑆 is assumed to be a pointed cone with a nonempty

interior. Thus, Min𝐴 ⊂ Min𝑊𝐴 and Max𝐴 ⊂ Max𝑊𝐴. Consequently, Lemma 1.2

holds for the weakly minimal point set and the weakly maximal point set.

The rest of the paper is organized as follows: In Section 2, we introduce some

notation and preliminary results. On this basis, we discuss properties of 𝜉-function

and set-valued mappings. In Section 3, we state two types of minimax theorems for

set-valued mappings.

2 SET-VALUEDMAPPINGS ANDMONOTONE

FUNCTIONS

Definition 2.1 Given 𝑘 ∈ 𝑖𝑛𝑡𝑆 and 𝑎 ∈ 𝑉 , the Gerstewitz’s function (see [10, 11])

𝜉𝑘𝑎 : 𝑉 → 𝑅 is defined by

𝜉𝑘𝑎(𝑦) = min{𝑡 ∈ 𝑅∣𝑦 ∈ 𝑎+ 𝑡𝑘 − 𝑆}.

Definition 2.2 A function Ψ : 𝑉 → 𝑅 is called strictly monotone if

𝑦1 − 𝑦2 ∈ 𝑖𝑛𝑡𝑆 ⇒ Ψ(𝑦1) > Ψ(𝑦2).

Lemma 2.1 [3, Theorem 2.1] Let 𝑘 ∈ 𝑖𝑛𝑡𝑆 and 𝑎 ∈ 𝑉 . The following properties

hold:

(i) 𝜉𝑘𝑎(𝑦) < 𝑟 ⇐⇒ 𝑦 ∈ 𝑎+ 𝑟𝑘 − 𝑖𝑛𝑡𝑆;
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(ii) 𝜉𝑘𝑎(𝑦) ≤ 𝑟 ⇐⇒ 𝑦 ∈ 𝑎+ 𝑟𝑘 − 𝑆;

(iii) 𝜉𝑘𝑎(𝑦) = 0 ⇐⇒ 𝑦 ∈ 𝑎− ∂𝑆, where ∂𝑆 is the topological boundary of 𝑆;

(iv) 𝜉𝑘𝑎(𝑦) > 𝑟 ⇐⇒ 𝑦 ∕∈ 𝑎+ 𝑟𝑘 − 𝑆;

(v) 𝜉𝑘𝑎(𝑦) ≥ 𝑟 ⇐⇒ 𝑦 ∕∈ 𝑎+ 𝑟𝑘 − 𝑖𝑛𝑡𝑆;

(vi) 𝜉𝑘𝑎(.) is a convex function;

(vii) 𝜉𝑘𝑎(.) is a strictly monotone function;

(viii) 𝜉𝑘𝑎(.) is a continuous function.

Let 𝐵 ⊂ 𝑉 . The cone generated by 𝐵 is defined by

𝑐𝑜𝑛𝑒(𝐵) := {𝑡𝑐∣𝑡 ≥ 0, 𝑐 ∈ 𝐵}.

Lemma 2.2 𝐶 ⊂ 𝑉 is a closed and convex cone if and only if there exists a subset

Γ ⊂ 𝑉 ∗∖{0} such that

𝐶 = {𝑦 ∈ 𝑉 ∣𝑓(𝑦) ≤ 0 ∀𝑓 ∈ Γ}. (3)

Proof. Assume that 𝐶 is a closed and convex cone. We take any 𝑦 ∕∈ 𝐶. Then

cone(𝑦) is a pointed, closed and convex cone. Obviously, cone(𝑦) is locally compact

( i.e., it has a compact neighborhood base with respect to the relative topology on

cone(𝑦)) and

𝑐𝑜𝑛𝑒(𝑦)
∩

𝐶 = {0𝑉 }.

Therefore, by Proposition 3 of [2], there exists 𝑓𝑦 ∈ 𝑉 ∗ such that

𝑓𝑦(𝑧) > 0 ∀𝑧 ∈ 𝑐𝑜𝑛𝑒(𝑦)∖{0𝑉 };
𝑓𝑦(𝑧) ≤ 0 ∀𝑧 ∈ 𝐶.

Let Γ = {𝑓𝑦 ∈ 𝑉 ∗∣𝑦 ∕∈ 𝐶}. Define

𝑃 := {𝑦 ∈ 𝑉 ∣𝑓(𝑦) ≤ 0∀𝑓 ∈ Γ}.
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Now we prove that 𝐶 = 𝑃 . Let 𝑦 ∈ 𝐶. By the construction of Γ, we have

𝑓(𝑦) ≤ 0 ∀𝑓 ∈ Γ.

Thus, 𝑦 ∈ 𝑃 .

Conversely, let 𝑦 ∈ 𝑃 and 𝑦 ∕∈ 𝐶. Then there exists a 𝑓𝑦 ∈ 𝑉 ∗ such that

𝑓𝑦(𝑦) > 0;

𝑓𝑦(𝑧) ≤ 0 ∀𝑧 ∈ 𝐶.

Obviously, 𝑓𝑦 ∈ Γ, which contradicts 𝑦 ∈ 𝑃 . Thus, 𝑃 = 𝐶.

If 𝐶 is defined by (3), it is clear that 𝐶 is a closed and convex cone. The proof

is complete. □

Proposition 2.1 Let 𝑆 ⊂ 𝑉 be a closed and convex cone with 𝑖𝑛𝑡𝑆 ∕= ∅. Let

𝑘 ∈ 𝑖𝑛𝑡𝑆. Then there exists a Γ ⊂ 𝑉 ∗∖{0𝑉 } such that

𝜉𝑘𝑎(𝑦) = sup
𝑓∈Γ

{𝑓(𝑦)− 𝑓(𝑎)

𝑓(𝑘)
}.

Proof. By Proposition 2.3 of [4] and Lemma 2.2, the conclusion holds. □

Example 2.1 Let 𝑉 = 𝑅2, 𝑆 = {(𝑥, 𝑦) ∈ 𝑉 ∣(−3, 1)

⎛⎝ 𝑥

𝑦

⎞⎠ ≥ 0, (1,−3)

⎛⎝ 𝑥

𝑦

⎞⎠ ≥ 0},

and Γ = {𝑓1, 𝑓2}, where

𝑓1(𝑧) = −3𝑥+ 𝑦,

𝑓2(𝑧) = 𝑥− 3𝑦;

𝑧 = (𝑥, 𝑦).

Then we have

𝑆 = {𝑧 ∈ 𝑉 ∣𝑓(𝑧) ≥ 0∀𝑓 ∈ Γ}.

Take 𝑘 = (1, 1) ∈ 𝑖𝑛𝑡𝑆 and 𝑎 = 0. Then,

𝜉𝑘0(𝑥, 𝑦) =

⎧⎨⎩
1
2
(3𝑥− 𝑦), 𝑥 ≥ 𝑦;

1
2
(3𝑦 − 𝑥), 𝑦 ≥ 𝑥.
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Definition 2.3 Let 𝑋0 be a nonempty convex subset of 𝑋 and 𝐹 : 𝑋 → 2𝑉 a

set-valued mapping.

(i) 𝐹 is said to be properly 𝑆-quasiconvex on 𝑋0 if, for any 𝑥1, 𝑥2 ∈ 𝑋0 and 𝑙 ∈ [0, 1],

either 𝐹 (𝑥1) ⊂ 𝐹 (𝑙𝑥1 + (1− 𝑙)𝑥2)− 𝑆

or 𝐹 (𝑥2) ⊂ 𝐹 (𝑙𝑥1 + (1− 𝑙)𝑥2)− 𝑆.

(ii) 𝐹 is said to be naturally 𝑆-quasiconvex on 𝑋0 if for any 𝑥1, 𝑥2 ∈ 𝑋0 and

𝑙 ∈ [0, 1],

𝐹 (𝑙𝑥1 + (1− 𝑙)𝑥2) ⊂ 𝑐𝑜{𝐹 (𝑥1)
∪

𝐹 (𝑥2)} − 𝑆,

where 𝑐𝑜𝐴 denotes the convex hull of 𝐴.

Remark.2.1Definition 2.3 is a generalization of the concepts of proper 𝑆-quasiconvexity

and natural quasiconvexity in [8] and [19]. Note that if 𝑉 = 𝑅 and 𝑆 = 𝑅+ , then

both proper 𝑆-quasiconvexity and natural quasiconvexity are reduced to the ordi-

nary quasiconvexity.

Theorem 2.1 [13, Proposition 2.1] Let 𝑋0 ⊂ 𝑋 and 𝑍0 ⊂ 𝑍 be two nonempty,

compact and convex sets. Assume that 𝐹 : 𝑋0 ×𝑍0 → 2𝑅 is a continuous set-valued

mapping and, for each (𝑥, 𝑧) ∈ 𝑋0 ×𝑍0, 𝐹 (𝑥, 𝑧) is a compact set and 𝐹 satisfies the

following conditions:

(i) for each 𝑥 ∈ 𝑋0,−𝐹 (𝑥, .) is properly 𝑅+-quasiconvex on 𝑍0;

(ii) for each 𝑧 ∈ 𝑍0, 𝐹 (., 𝑧) is naturally 𝑅+-quasiconvex on 𝑋0;

(iii) for each 𝑡 ∈ 𝑍0, there exists 𝑥𝑡 ∈ 𝑋0 such that

Max𝐹 (𝑥𝑡, 𝑡) ≤ Max
∪

𝑧∈𝑍0

Min𝑊

∪
𝑥∈𝑋0

𝐹 (𝑥, 𝑧).

Then

Min
∪

𝑥∈𝑋0

Max𝑊
∪

𝑧∈𝑍0

𝐹 (𝑥, 𝑧) = Max
∪

𝑧∈𝑍0

Min𝑊

∪
𝑥∈𝑋0

𝐹 (𝑥, 𝑧).
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Remark 2.2 Since𝑋0 is compact and 𝐹 (., 𝑧) is compact-valued and u.s.c.,
∪

𝑥∈𝑋0
𝐹 (𝑥, 𝑧)

is compact. Thus, Min𝑊
∪

𝑥∈𝑋0
𝐹 (𝑥, 𝑧) is well defined. In fact, in the case, it reduces

to a single point for each 𝑧. By Lemma 1.1, Min𝑊
∪

𝑥∈𝑋0
𝐹 (𝑥, 𝑧) is u.s.c. with respect

to 𝑧. Next,
∪

𝑧∈𝑍0
Min𝑊

∪
𝑥∈𝑋0

𝐹 (𝑥, 𝑧) is compact and hence it admits a maximal

point. Therefore, all Max,Min,Max𝑊 and Min𝑊 are well defined.

Note that Max and Max𝑊 are the same in 2𝑅 , and so are Min and Min𝑊 . In

the rest of paper, max (respectively, min) will be used instead of Max and Max𝑊

(respectively, Min and Min𝑊 ) in 2𝑅

Remark 2.3 In [15], Theorem 2.1 is established, where condition (i) is replaced by

the assumption that 𝐹 (𝑥, .) is 𝑅+-concave.

Lemma 2.3 Let 𝐹 : 𝑋0 × 𝑍0 → 2𝑉 be a set-valued mapping, and let, for each 𝑥 ∈
𝑋0, 𝐹 (𝑥, .) be naturally S-quasiconvex on 𝑍0. Suppose that, for each 𝑧 ∈ 𝑍0,−𝐹 (., 𝑧)

is properly 𝑆-quasiconvex on 𝑋0. Then, 𝜉𝑘𝑎(𝐹 (𝑥, .)) is naturally 𝑅+-quasiconvex for

any 𝑥 ∈ 𝑋0 and −𝜉𝑘𝑎(𝐹 (., 𝑧)) is properly 𝑅+-quasiconvex for any 𝑧 ∈ 𝑍0.

Proof. Take any 𝑧1, 𝑧2 ∈ 𝑍0, 𝜆 ∈ [0, 1] and 𝑦 ∈ 𝐹 (𝑥, 𝜆𝑧1 + (1 − 𝜆)𝑧2). By the

natural 𝑆-quasiconvexity of 𝐹 (𝑥, .), there exist 𝑦𝑖 ∈ 𝐹 (𝑥, 𝑧1)
∪
𝐹 (𝑥, 𝑧2) and 𝛼𝑖 ≥

0, 𝑖 = 1, 2, . . . 𝑛, and 𝑠 ∈ 𝑆 such that

𝑛∑
𝑖=1

𝛼𝑖 = 1,

and

𝑦 =
𝑛∑

𝑖=1

𝛼𝑖𝑦𝑖 − 𝑠.

Therefore,

𝜉𝑘𝑎(𝑦) = 𝜉𝑘𝑎(
𝑛∑

𝑖=1

𝛼𝑖𝑦𝑖 − 𝑠).

By Lemmas 2.1(vi)-(viii), we have

𝜉𝑘𝑎(𝑦) ∈
𝑛∑

𝑖=1

𝛼𝑖𝜉𝑘𝑎(𝑦𝑖)−𝑅+ ⊂ 𝑐𝑜{𝜉𝑘𝑎(𝐹 (𝑥, 𝑧1))
∪

𝜉𝑘𝑎(𝐹 (𝑥, 𝑧2))} −𝑅+.

Thus, for each 𝑥 ∈ 𝑋0, 𝜉𝑘𝑎(𝐹 (𝑥, .)) is naturally 𝑅+-quasiconvex. By the Lemma

2.1(vii) and proper 𝑆-quasiconvexity of −𝐹 (., 𝑧), it is clear that −𝜉𝑘𝑎(𝐹 (., 𝑧)) is

properly 𝑅+-quasiconvex for any 𝑧 ∈ 𝑍 . The proof is complete. □
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Lemma 2.4 Let 𝑋0 and 𝑍0 be compact and convex subsets of 𝑋 and 𝑍, respectively.

Let 𝐹 : 𝑋0 × 𝑍 → 2𝑉 be a continuous set-valued mapping with compact values.

Suppose that 𝐹 (𝑥, 𝑧) fulfills the following hypothesis:

(H) for any 𝑢 ∈ 𝑋0, there exists 𝑣 ∈ 𝑍0 such that

𝐹 (𝑢, 𝑣) ⊂ Max
∪

𝑥∈𝑋0

Min𝑊

∪
𝑧∈𝑍0

𝐹 (𝑥, 𝑧)− 𝑆.

Then

max 𝜉𝑘𝑎(𝐹 (𝑢, 𝑣)) ≤ max
∪

𝑥∈𝑋0

min
∪

𝑧∈𝑍0

𝜉𝑘𝑎(𝐹 (𝑥, 𝑧)).

Proof. By the condition (H), for any 𝑢 ∈ 𝑋0, there exists 𝑣 ∈ 𝑍0 such that

𝐹 (𝑢, 𝑣) ⊂ Max
∪

𝑥∈𝑋0

Min𝑊

∪
𝑧∈𝑍0

𝐹 (𝑥, 𝑧)− 𝑆.

Take any 𝑦 ∈ 𝐹 (𝑢, 𝑣). Then there exist 𝑤 ∈ max
∪

𝑥∈𝑋0
min

∪
𝑧∈𝑍0

(𝐹 (𝑥, 𝑧)) and

𝑠 ∈ 𝑆 such that

𝑦 = 𝑤 − 𝑠.

By Lemma 2.1(vii) and (viii), one has

𝜉𝑘𝑎(𝑦) ≤ 𝜉𝑘𝑎(𝑤).

Thus,

𝜉𝑘𝑎(𝑦) ≤ max
∪

𝑥∈𝑋0

𝜉𝑘𝑎(Min𝑊

∪
𝑧∈𝑍0

𝐹 (𝑥, 𝑧))

It follows from Lemma 2.1(vii) that, for any 𝑑 ∈ Min𝑊
∪

𝑧∈𝑍0
𝐹 (𝑥, 𝑧),

𝜉𝑘𝑎(𝑑) = min
∪

𝑧∈𝑍0

𝜉𝑘𝑎𝐹 (𝑥, 𝑧).

Therefore,

𝜉𝑘𝑎(𝑦) ≤ max
∪

𝑥∈𝑋0

min
∪

𝑧∈𝑍0

𝜉𝑘𝑎(𝐹 (𝑥, 𝑧)).

This completes the proof. □

Remark 2.4 Clearly, if 𝐹 is a vector-valued mapping, then hypothesis (H) always

holds. Therefore, for a vector-valued function 𝑓(𝑥, 𝑧), we always have that, for any

𝑢 ∈ 𝑋0, there exists 𝑣 ∈ 𝑍0 such that

max 𝜉𝑘𝑎(𝑓(𝑢, 𝑣)) ≤ max
∪

𝑥∈𝑋0

min
∪

𝑧∈𝑍0

𝜉𝑘𝑎(𝑓(𝑥, 𝑧)).
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3 MINIMAX THEOREMS FOR SET-VALUED

MAPPINGS

In this section, we present two types of minimax theorems for set-valued mapping.

Theorem 3.1 Let 𝑋0 and 𝑍0 be compact and convex subsets of 𝑋 and 𝑍, respec-

tively, and let 𝑘 ∈ 𝑖𝑛𝑡𝑆. Suppose that the following conditions are satisfied:

(i) 𝐹 : 𝑋0 × 𝑍0 → 2𝑉 is a continuous set-valued mapping with compact values;

(ii) for each 𝑥 ∈ 𝑋0, 𝐹 (𝑥, .) is naturally 𝑆-quasiconvex on 𝑍0;

(iii) for each 𝑧 ∈ 𝑍0,−𝐹 (., 𝑧) is properly 𝑆-quasiconvex on 𝑋0;

(iv) there exists an 𝑥0 ∈ 𝑋0 such that

Min𝑊

∪
𝑧∈𝑍0

𝐹 (𝑥0, 𝑧) ⊂ Min𝑊

∪
𝑧∈𝑍0

𝐹 (𝑥, 𝑧) + 𝑆 ∀𝑥 ∈ 𝑋0;

(v) for any 𝑢 ∈ 𝑋0, there exists 𝑣 ∈ 𝑍0 such that

𝐹 (𝑢, 𝑣) ⊂ Max
∪

𝑥∈𝑋0

Min𝑊

∪
𝑧∈𝑍0

𝐹 (𝑥, 𝑧)− 𝑆.

Then

Min𝑊

∪
𝑧∈𝑍0

𝐹 (𝑥0, 𝑧) ⊂ Min
∪

𝑧∈𝑍0

Max𝑊
∪

𝑥∈𝑋0

𝐹 (𝑥, 𝑧) + 𝑆. (4)

Furthermore, if

(vi) Max
∪

𝑥∈𝑋0
Min𝑊

∪
𝑧∈𝑍0

𝐹 (𝑥, 𝑧) ⊂ Min𝑊
∪

𝑧∈𝑍0
𝐹 (𝑥, 𝑧) + 𝑆, ∀𝑥 ∈ 𝑋0,

then

Max
∪

𝑥∈𝑋0

Min𝑊

∪
𝑧∈𝑍0

𝐹 (𝑥, 𝑧) ⊂ Min
∪

𝑧∈𝑍0

Max𝑊
∪

𝑥∈𝑋0

𝐹 (𝑥, 𝑧) + 𝑆. (5)

Proof. Set Γ(𝑧) = Max𝑊
∪

𝑥∈𝑋0
𝐹 (𝑥, 𝑧). Suppose 𝛼 ∈ 𝑉 and 𝛼 ∕∈ Γ(𝑍0) + 𝑆, i.e.,

Γ(𝑍0)
∩
(𝛼 − 𝑆) = ∅. By Lemma 2.1, 𝜉𝑘𝛼 is continuous, convex, strictly monotone

and

𝜉𝑘𝛼(𝛽) > 0 ∀𝛽 ∈ Γ(𝑍0). (6)
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Consider the set-valued mapping:

𝐺 = 𝜉𝑘𝛼(𝐹 ) : 𝑋0 × 𝑍0 → 2𝑅.

It is clear that all conditions in Theorem 2.1 are satisfied for this mapping, and

hence we have

min
∪

𝑧∈𝑍0

max
∪

𝑥∈𝑋0

𝐺(𝑥, 𝑧) = max
∪

𝑥∈𝑋0

min
∪

𝑧∈𝑍0

𝐺(𝑥, 𝑧). (7)

By the continuity of 𝜉𝑘𝛼 and 𝐹 (., 𝑧) and Proposition 6 of Ch.3, Sec.1 in [1], we

have that 𝐺(., 𝑧) = 𝜉𝑘𝛼(𝐹 (., 𝑧)) is upper semicontinuous. Since 𝜉𝑘𝛼 is a scalar-

valued continuous function, 𝐺(., 𝑧) also is lower semicontinuous. Therefore, 𝐺(., 𝑧) =

𝜉𝑘𝛼(𝐹 (., 𝑧)) is continuous for each 𝑧 ∈ 𝑍0. By the compactness of 𝑋0, there exist

𝑥𝑧 ∈ 𝑋0 and 𝑦𝑧 ∈ 𝐹 (𝑥𝑧, 𝑧) such that

𝜉𝑘𝛼(𝑦𝑧) = max
∪

𝑥∈𝑋0

𝜉𝑘𝛼(𝐹 (𝑥, 𝑧)).

By Lemma 2.1(vii), we have

𝑦𝑧 ∈ Γ(𝑧) = Max𝑊
∪

𝑥∈𝑋0

𝐹 (𝑥, 𝑧).

Hence, it follows from (6) that, for each 𝑧 ∈ 𝑍0,

max
∪

𝑥∈𝑋0

𝐺(𝑥, 𝑧) = 𝜉𝑘𝛼(𝑦𝑧) > 0.

Thus,

min
∪

𝑧∈𝑍0

max
∪

𝑥∈𝑋0

𝐺(𝑥, 𝑧) > 0.

By (7),

max
∪

𝑥∈𝑋0

min
∪

𝑧∈𝑍0

𝐺(𝑥, 𝑧) > 0.

By Lemma 1.1, min
∪

𝑧∈𝑍0
𝐺(., 𝑧) is u.s.c. on 𝑋0. Thus, by the compactness of 𝑋0,

there exists an 𝑥′ ∈ 𝑋0 such that

min
∪

𝑧∈𝑍0

𝐺(𝑥′, 𝑧) > 0.
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By Lemma 2.1(iv), we have

𝑦 ∕∈ 𝛼− 𝑆 ∀𝑦 ∈ 𝐹 (𝑥′, 𝑧) and 𝑧 ∈ 𝑍0.

Hence,

𝛼 ∕∈ Min𝑊

∪
𝑧∈𝑍0

𝐹 (𝑥′, 𝑧) + 𝑆. (8)

If

𝛼 ∈ Min𝑊

∪
𝑧∈𝑍0

𝐹 (𝑥0, 𝑧),

then, by (iv), we have

𝛼 ∈ Min𝑊

∪
𝑧∈𝑍0

𝐹 (𝑥, 𝑧) + 𝑆∀𝑥 ∈ 𝑋0,

which contradicts (8). Thus, 𝛼 ∈ Min𝑊
∪

𝑧∈𝑍0
𝐹 (𝑥0, 𝑧) implies

𝛼 ∈ ∪
𝑧∈𝑍0

Max𝑊
∪

𝑥∈𝑋0

𝐹 (𝑥, 𝑧) + 𝑆.

Since
∪

𝑧∈𝑍0
Max𝑊

∪
𝑥∈𝑋0

𝐹 (𝑥, 𝑧) is a compact set, it follows from Lemma 1.2 that

Min𝑊

∪
𝑧∈𝑍0

𝐹 (𝑥0, 𝑧) ⊂ Min
∪

𝑧∈𝑍0

Max𝑊
∪

𝑥∈𝑋0

𝐹 (𝑥, 𝑧) + 𝑆.

Thus (4) holds. Clearly, by (vi), (5) holds. □

Remark 3.1 The condition (iv) is similar to the one used in [8]. Clearly, this

condition holds if 𝐹 is a scalar set-valued mapping.

Remark 3.2 Suppose that 𝑋 and 𝑍 are two metric spaces and 𝑉 is 𝑅𝑝. Assuming

that the following conditions are satisfied:

(i) 𝐹 : 𝑋0 × 𝑍0 → 2𝑉 is a continuous set-valued mapping with compact values;

(ii) for each 𝑥 ∈ 𝑋0, 𝐹 (𝑥, .) is 𝑆-convex on 𝑍0;

(iii) for each 𝑧 ∈ 𝑍0, 𝐹 (., 𝑧) is naturally 𝑆-quasiconvex on 𝑋0;

(iv) there exists an 𝑥0 ∈ 𝑋0 such that

Min𝑊

∪
𝑧∈𝑍0

𝐹 (𝑥0, 𝑧) ⊂ Min𝑊

∪
𝑧∈𝑍0

𝐹 (𝑥, 𝑧) + 𝑆 ∀𝑥 ∈ 𝑋0;
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(v) for any 𝑡 ∈ 𝑍0, there exists 𝑥𝑡 ∈ 𝑋0 such that

𝐹 (𝑥𝑡, 𝑡)−Min
∪

𝑧∈𝑍0

Max𝑊
∪

𝑥∈𝑋0

𝐹 (𝑥, 𝑧) ⊂ 𝑆.

Li et al (see Theorem 3.2 in [15]) established that

Min𝑊

∪
𝑧∈𝑍0

𝐹 (𝑥0, 𝑧) ⊂ Min

⎧⎨⎩𝑐𝑜

⎛⎝ ∪
𝑧∈𝑍0

Max𝑊
∪

𝑥∈𝑋0

𝐹 (𝑥, 𝑧)

⎞⎠⎫⎬⎭+ 𝑆.

It follows readily that Theorem 3.2 of [15] and Theorem 3.1 obtain a similar result

under the different assumption conditions.

Corollary 3.1 Let 𝑋0 and 𝑍0 be compact and convex subsets of 𝑋 and 𝑍, respec-

tively, and let 𝑘 ∈ 𝑖𝑛𝑡𝑆. Suppose that the following conditions are satisfied:

(i) 𝑓 : 𝑋0 × 𝑍0 → 𝑉 is a continuous vector-valued mapping;

(ii) for each 𝑥 ∈ 𝑋0, 𝑓(𝑥, .) is naturally 𝑆-quasiconvex on 𝑍0;

(iii) for each 𝑧 ∈ 𝑍0,−𝑓(., 𝑧) is properly 𝑆-quasiconvex on 𝑋0; and

(iv) there exists an 𝑥0 ∈ 𝑋0 such that

Min𝑊

∪
𝑧∈𝑍0

𝑓(𝑥0, 𝑧) ⊂ Min𝑊

∪
𝑧∈𝑍0

𝑓(𝑥, 𝑧) + 𝑆 ∀𝑥 ∈ 𝑋0.

Then

Min𝑊

∪
𝑧∈𝑍0

𝑓(𝑥0, 𝑧) ⊂ Min
∪

𝑧∈𝑍0

Max𝑊
∪

𝑥∈𝑋0

𝑓(𝑥, 𝑧) + 𝑆. (9)

Furthermore, if

(v) Max
∪

𝑥∈𝑋0
Min𝑊

∪
𝑧∈𝑍0

𝑓(𝑥, 𝑧) ⊂ Min𝑊
∪

𝑧∈𝑍0
𝑓(𝑥, 𝑧) + 𝑆 ∀𝑥 ∈ 𝑋0,

then

Max
∪

𝑥∈𝑋0

Min𝑊

∪
𝑧∈𝑍0

𝑓(𝑥, 𝑧) ⊂ Min
∪

𝑧∈𝑍0

Max𝑊
∪

𝑥∈𝑋0

𝑓(𝑥, 𝑧) + 𝑆. (10)
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Proof. Since 𝑓 is a vector-valued mapping, it is clear that Theorem 3.1 (iv) holds.

Thus, by Theorem 3.1, the conclusion follows readily. □

Remark 3.3 If 𝑓(𝑥, .) is 𝑆-convex for every 𝑥 ∈ 𝑋0, then it is clear that 𝑓(𝑥, .) is

naturally 𝑆-quasiconvex for every 𝑥 ∈ 𝑋0. However, the converse is not valid. Thus,

Theorem 2.1 (i) of [9] is a special case of Corollary 3.1, which solves a part of the

open problem in [9].

Example 3.1 Let 𝑋0 = [0, 1], 𝑍0 = [0, 1],

𝑓(𝑥, 𝑧) = {(𝑥, 𝑦) ∈ 𝑅2∣𝑦 = 1− (𝑧 − 1)2},

and

𝑆 = {(𝑥, 𝑦) ∈ 𝑅2∣𝑥 ≥ 0, 𝑦 ≥ 0}.
Then 𝑓(𝑥, .) is naturally 𝑆-quasiconvex for every 𝑥 ∈ 𝑋 and −𝑓(., 𝑧) is properly 𝑆-

quasiconvex for every 𝑧 ∈ 𝑍0. Nevertheless, 𝑓(𝑥, .) is not 𝑆-convex for every 𝑥 ∈ 𝑋0.

Therefore, we cannot claim that (10) holds by Theorem 2.1 (i) of [9]. However, for

any 𝑥 ∈ 𝑋0, we have

Min𝑊

∪
𝑧∈𝑍0

𝑓(𝑥, 𝑧) = {(𝑥, 𝑦) ∈ 𝑅2∣𝑦 = 1− (𝑧 − 1)2, 𝑧 ∈ [0, 1]}.

Take 𝑥0 = 1 ∈ 𝑋0. We have

Min𝑊

∪
𝑧∈𝑍0

𝑓(𝑥0, 𝑧) = {(1, 𝑦) ∈ 𝑅2∣𝑦 = 1− (𝑧 − 1)2, 𝑧 ∈ [0, 1]}.

Then condition (iv) in Corollary 3.1 holds:

Min𝑊

∪
𝑧∈𝑍0

𝑓(𝑥0, 𝑧) ⊂ Min𝑊

∪
𝑧∈𝑍0

𝑓(𝑥, 𝑧) + 𝑆, ∀𝑥 ∈ 𝑋0.

Thus, all conditions of Corollary 3.1 hold. So, the inclusion (9) holds:

Min𝑊

∪
𝑧∈𝑍0

𝑓(𝑥0, 𝑧) ⊂ Min
∪

𝑧∈𝑍0

Max𝑊
∪

𝑥∈𝑋0

𝑓(𝑥, 𝑧) + 𝑆.

Furthermore, we also have

Max
∪

𝑥∈𝑋0

Min𝑊

∪
𝑧∈𝑍0

𝑓(𝑥, 𝑧) = Min𝑊

∪
𝑧∈𝑍0

𝑓(𝑥0, 𝑧)

= {(1, 𝑦) ∈ 𝑅2∣𝑦 = 1− (𝑧 − 1)2, 𝑧 ∈ [0, 1]}.
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Then condition (v) in Corollary 3.1 holds:

Max
∪

𝑥∈𝑋0

Min𝑊

∪
𝑧∈𝑍0

𝑓(𝑥, 𝑧) ⊂ Min𝑊

∪
𝑧∈𝑍0

𝑓(𝑥, 𝑧) + 𝑆, ∀𝑥 ∈ 𝑋0.

Thus, all conditions of Corollary 3.1 hold. So, the inclusion (10) holds:

Max
∪

𝑥∈𝑋0

Min𝑊

∪
𝑧∈𝑍0

𝑓(𝑥, 𝑧) ⊂ Min
∪

𝑧∈𝑍0

Max𝑊
∪

𝑥∈𝑋0

𝑓(𝑥, 𝑧) + 𝑆.

Indeed,

Min𝑊

∪
𝑧∈𝑍0

𝑓(𝑥0, 𝑧) = {(1, 𝑦) ∈ 𝑅2∣𝑦 = 1− (𝑧 − 1)2, 𝑧 ∈ [0, 1]},

Max
∪

𝑥∈𝑋0

Min𝑊

∪
𝑧∈𝑍0

𝑓(𝑥, 𝑧) = Min𝑊

∪
𝑧∈𝑍0

𝑓(𝑥0, 𝑧)

= {(1, 𝑦) ∈ 𝑅2∣𝑦 = 1− (𝑧 − 1)2, 𝑧 ∈ [0, 1]},

Min
∪

𝑧∈𝑍0

Max𝑊
∪

𝑥∈𝑋0

𝑓(𝑥, 𝑧) = {(0, 0)},

and

Min
∪

𝑧∈𝑍0

Max𝑊
∪

𝑥∈𝑋0

𝑓(𝑥, 𝑧) + 𝑆 = 𝑆.

Hence

Min𝑊

∪
𝑧∈𝑍0

𝑓(𝑥0, 𝑧) ⊂ Min
∪

𝑧∈𝑍0

Max𝑊
∪

𝑥∈𝑋0

𝑓(𝑥, 𝑧) + 𝑆

and

Max
∪

𝑥∈𝑋0

Min𝑊

∪
𝑧∈𝑍0

𝑓(𝑥, 𝑧) ⊂ Min
∪

𝑧∈𝑍0

Max𝑊
∪

𝑥∈𝑋0

𝑓(𝑥, 𝑧) + 𝑆.

Theorem 3.2 Let 𝑋0 and 𝑍0 be compact and convex subsets in 𝑋 and 𝑍, respec-

tively, and let 𝑘 ∈ 𝑖𝑛𝑡𝑆. Suppose that the following conditions are satisfied:

(i) 𝐹 : 𝑋0 × 𝑍0 → 2𝑉 is a continuous set-valued mapping with compact values;

(ii) for each 𝑥 ∈ 𝑋0,−𝐹 (𝑥, .) is properly 𝑆-quasiconvex on 𝑍0;

(iii) for each 𝑧 ∈ 𝑍0, 𝐹 (., 𝑧) is naturally 𝑆-quasiconvex on 𝑋0;

(iv) for any 𝑢 ∈ 𝑋0, there exists 𝑣 ∈ 𝑍0 such that

𝐹 (𝑢, 𝑣) ⊂ Max
∪

𝑥∈𝑋0

Min𝑊

∪
𝑧∈𝑍0

𝐹 (𝑥, 𝑧)− 𝑆.
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Then

Min
∪

𝑥∈𝑋0

Max𝑊
∪

𝑧∈𝑍0

𝐹 (𝑥, 𝑧) ⊂ Max
∪

𝑧∈𝑍0

Min𝑊

∪
𝑥∈𝑋0

𝐹 (𝑥, 𝑧) + 𝑉 ∖(𝑆∖{0}). (11)

Proof. Set

𝐿(𝑥) = Max𝑊
∪

𝑧∈𝑍0

𝐹 (𝑥, 𝑧),

and let

𝑦0 ∈ Min
∪

𝑥∈𝑋0

Max𝑊
∪

𝑧∈𝑍0

𝐹 (𝑥, 𝑧) = Min 𝐿(𝑋0).

By the definition of a minimal point, we have

(𝐿(𝑋0)− 𝑦0)
∩
(−𝑆) = {0}.

That is,

(𝐿(𝑋0)∖{𝑦0})
∩
(𝑦0 − 𝑆) = ∅.

By Lemma 2.1 (iii)-(iv), we have

𝜉𝑘𝑦0(𝑦) > 0 ∀𝑦 ∈ 𝐿(𝑋0)∖{𝑦0}, (12)

and

𝜉𝑘𝑦0(𝑦0) = 0. (13)

Let 𝑥 ∈ 𝑋0. By the continuity of 𝜉𝑘𝑦0 and 𝐹 (𝑥, .) and the compactness of 𝑍0, there

exist 𝑧𝑥 ∈ 𝑍0 and 𝑦1 ∈ 𝐹 (𝑥, 𝑧𝑥) such that

max
∪

𝑧∈𝑍0

𝜉𝑘𝑦0(𝐹 (𝑥, .)) = 𝜉𝑘𝑦0(𝑦1).

By Lemma 2.1 (vii), we have

𝑦1 ∈ 𝐿(𝑥).

By (12) and (13),

max
∪

𝑧∈𝑍0

𝜉𝑘𝑦0(𝐹 (𝑥, .)) ≥ 0. (14)

Since 𝑥 is any element of 𝑋0, (14) implies that

min
∪

𝑥∈𝑋0

max
∪

𝑧∈𝑍0

𝜉𝑘𝑦0(𝐹 (𝑥, .)) ≥ 0. (15)
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Consider the set-valued mapping

𝐺 = 𝜉𝑘𝑦0(𝐹 ) : 𝑋0 × 𝑍0 → 2𝑅.

We see that all conditions of Theorem 2.1 are satisfied for 𝐺, and hence we have

min
∪

𝑥∈𝑋0

max
∪

𝑧∈𝑍0

𝐺(𝑥, 𝑧) = max
∪

𝑧∈𝑍0

min
∪

𝑥∈𝑋0

𝐺(𝑥, 𝑧).

So, there exist 𝑥0 ∈ 𝑋0, 𝑧0 ∈ 𝑍0 and 𝑦2 ∈ 𝐹 (𝑥0, 𝑧0) such that

min
∪

𝑥∈𝑋0

max
∪

𝑧∈𝑍0

𝐺(𝑥, 𝑧) = max
∪

𝑧∈𝑍0

𝐺(𝑥0, 𝑧)

= max
∪

𝑧∈𝑍0

min
∪

𝑥∈𝑋0

𝐺(𝑥, 𝑧)

= min
∪

𝑥∈𝑋0

𝐺(𝑥, 𝑧0) = 𝜉𝑘𝑦0(𝑦2). (16)

Therefore, by (16) and Lemma 2.1(vii), we have

𝑦2 ∈ 𝑀𝑎𝑥𝑊

∪
𝑧∈𝑍0

𝐹 (𝑥0, 𝑧) = 𝐿(𝑥0), (17)

and

𝑦2 ∈ Min𝑊

∪
𝑥∈𝑋0

𝐹 (𝑥, 𝑧0).

By (15) and (16), we get

𝜉𝑘𝑦0(𝑦2) ≥ 0.

If 𝑦0 = 𝑦2, then,

𝑦0 ∕∈ 𝑦2 + 𝑆∖{0𝑉 }. (18)

If 𝑦0 ∕= 𝑦2, then, by (12) and (17), we get

𝜉𝑘𝑦0(𝑦2) > 0.

By Lemma 2.1(iv), we have

𝑦2 ∕∈ 𝑦0 − 𝑆,

i.e.,

𝑦0 ∕∈ 𝑦2 + 𝑆∖{0𝑉 }. (19)
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¿From (18) and (19) we get

𝑦0 ∈ 𝑦2 + 𝑉 ∖(𝑆∖{0𝑉 })
⊂ Min𝑊

∪
𝑥∈𝑋0

𝐹 (𝑥, 𝑧0) + 𝑉 ∖(𝑆∖{0𝑉 })

⊂ ∪
𝑧∈𝑍0

Min𝑊

∪
𝑥∈𝑋0

𝐹 (𝑥, 𝑧) + 𝑉 ∖(𝑆∖{0𝑉 }).

Since 𝐹 (., .) is continuous and 𝑋0 and 𝑍0 are compact, it follows from Lemma 1.2

that ∪
𝑧∈𝑍0

Min𝑊

∪
𝑥∈𝑋0

𝐹 (𝑥, 𝑧) ⊂ 𝑀𝑎𝑥
∪

𝑧∈𝑍0

Min𝑊

∪
𝑥∈𝑋0

𝐹 (𝑥, 𝑧)− 𝑆.

Thus,

𝑦0 ∈ 𝑀𝑎𝑥
∪

𝑧∈𝑍0

Min𝑊

∪
𝑥∈𝑋0

𝐹 (𝑥, 𝑧)− 𝑆 + 𝑉 ∖(𝑆∖{0𝑉 })

= 𝑀𝑎𝑥
∪

𝑧∈𝑍0

Min𝑊

∪
𝑥∈𝑋0

𝐹 (𝑥, 𝑧) + 𝑉 ∖(𝑆∖{0𝑉 }).

Hence, inclusion (11) holds. This completes the proof. □

Corollary 3.2 Let 𝑋0 and 𝑍0 be compact and convex subsets in 𝑋 and 𝑍, respec-

tively, and let 𝑘 ∈ 𝑖𝑛𝑡𝑆. Suppose that the following conditions are satisfied:

(i) 𝑓 : 𝑋0 × 𝑍0 → 𝑉 is a continuous vector-valued mapping;

(ii) for each 𝑥 ∈ 𝑋0,−𝑓(𝑥, .) is properly 𝑆-quasiconvex on 𝑍0; and

(iii) for each 𝑧 ∈ 𝑍0, 𝑓(., 𝑧) is naturally 𝑆-quasiconvex on 𝑋0.

Then

Min
∪

𝑥∈𝑋0

𝑀𝑎𝑥𝑊

∪
𝑧∈𝑍0

𝑓(𝑥, 𝑧) ⊂ 𝑀𝑎𝑥
∪

𝑧∈𝑍0

Min𝑊

∪
𝑥∈𝑋0

𝑓(𝑥, 𝑧) + 𝑉 ∖(𝑆∖{0𝑉 }). (20)

Proof. Since 𝑓 is a vector-valued mapping, part (iv) of Theorem 3.2 holds. Thus,

the conclusion follows readily. □

Remark 3.4 Assuming that the following conditions are satisfied:

(i) 𝑆 has a compact base;
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(ii) for each 𝑧 ∈ 𝑍0, 𝑓(., 𝑧) is 𝑆-convex on 𝑋0; and

(iii) for each 𝑥 ∈ 𝑋0,−𝑓(𝑥, .) is properly 𝑆-quasiconvex on 𝑍0,

Li and Wang [16] established that

Min𝑃

∪
𝑥∈𝑋0

𝑀𝑎𝑥
∪

𝑧∈𝑍0

𝑓(𝑥, 𝑧) ⊂ 𝑀𝑎𝑥
∪

𝑧∈𝑍0

Min𝑊

∪
𝑥∈𝑋0

𝑓(𝑥, 𝑧) + 𝑉 ∖(𝑆∖{0𝑉 }), (21)

where Min𝑃𝐴 denotes the set of all Benson properly 𝑆-minimal points of 𝐴. Obvi-

ously, if, for any 𝑥 ∈ 𝑋0,𝑀𝑎𝑥𝑓(𝑥, 𝑍0) = 𝑀𝑎𝑥𝑊𝑓(𝑥, 𝑍0), then we have

Min𝑃

∪
𝑥∈𝑋0

𝑀𝑎𝑥
∪

𝑧∈𝑍0

𝑓(𝑥, 𝑧) ⊂ Min
∪

𝑥∈𝑋0

𝑀𝑎𝑥𝑊

∪
𝑧∈𝑍0

𝑓(𝑥, 𝑧).

Therefore, when 𝑀𝑎𝑥𝑓(𝑥, 𝑍0) = 𝑀𝑎𝑥𝑊𝑓(𝑥, 𝑍0) for any 𝑥 ∈ 𝑋0, Theorem 1 of [16]

is a special case of Corollary 3.2.

Example 3.2 Let 𝑋0 = [0, 1], 𝑍0 = [0, 1],

𝑓(𝑥, 𝑧) = {(𝑦𝑧, 𝑦𝑧) ∈ 𝑅2∣𝑦 = 1− (𝑥− 1)2}, 𝑥 ∈ 𝑋0, 𝑧 ∈ 𝑍0,

and

𝑆 = {(𝑢, 𝑣) ∈ 𝑅2∣𝑢 ≥ 0, 𝑣 ≥ 0}.
Then 𝑓(., 𝑧) is naturally 𝑆-quasiconvex for every 𝑧 ∈ 𝑍 and −𝑓(𝑥, .) is properly

𝑆-quasiconvex for every 𝑥 ∈ 𝑋0. Thus, all conditions of Corollary 3.2 hold. So, the

inclusion (20) holds:

Min
∪

𝑥∈𝑋0

Max𝑊
∪

𝑧∈𝑍0

𝑓(𝑥, 𝑧) ⊂ Max
∪

𝑧∈𝑍0

Min𝑊

∪
𝑥∈𝑋0

𝑓(𝑥, 𝑧) + 𝑉 ∖(𝑆∖{0𝑉 }).

Indeed,

Min
∪

𝑥∈𝑋0

Max𝑊
∪

𝑧∈𝑍0

𝑓(𝑥, 𝑧) = {(0, 0)},

Max
∪

𝑧∈𝑍0

Min𝑊

∪
𝑥∈𝑋0

𝑓(𝑥, 𝑧) = {(0, 0)},

and

Max
∪

𝑧∈𝑍0

Min𝑊

∪
𝑥∈𝑋0

𝑓(𝑥, 𝑧) + 𝑉 ∖(𝑆∖{0𝑉 }) =

{(𝑢, 𝑣) ∈ 𝑅2∣𝑢 ≥ 0, 𝑣 < 0, or 𝑢 < 0, 𝑣 ≥ 0, or 𝑢 ≤ 0, 𝑣 ≤ 0}.
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Thus,

Max
∪

𝑥∈𝑋0

Min𝑊

∪
𝑧∈𝑍0

𝑓(𝑥, 𝑧) ⊂ Min
∪

𝑧∈𝑍0

Max𝑊
∪

𝑥∈𝑋0

𝑓(𝑥, 𝑧) + 𝑉 ∖(𝑆∖{0𝑉 }).

Furthermore, for any 𝑥 ∈ 𝑋0, we have

Max
∪

𝑧∈𝑍0

𝑓(𝑥, 𝑧) = {(𝑥, 𝑦)∣𝑦 = 1− (𝑥− 1)2},

Max𝑊
∪

𝑧∈𝑍0

𝑓(𝑥, 𝑧) = {(𝑥, 𝑦)∣𝑦 = 1− (𝑥− 1)2},

and

Max
∪

𝑧∈𝑍0

𝑓(𝑥, 𝑧) = Max𝑊
∪

𝑧∈𝑍0

𝑓(𝑥, 𝑧).

Thus, it follows from Remark 3.2 that (21) holds. However, 𝑓(., 𝑧) is not 𝑆-convex

for every 𝑥 ∈ 𝑋0∖{0}. Therefore, we cannot claim that (21) holds by Theorem 1 of

[16].
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