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Abstract  

There are many fundamental and unanswered questions on the structure and evolution 

of the Venusian lithosphere, which are key issues for understanding Venus in the 

context of the origin and evolution of the terrestrial planets. Here we investigate the 

lithospheric structure of Venus by calculating its crustal and effective elastic thicknesses 

(Tc and Te, respectively) from an analysis of gravity and topography, in order to improve 

our knowledge of the large scale and long-term mechanical behaviour of its lithosphere. 

We find that the Venusian crust is usually 20-25 km thick with thicker crust under the 

highlands. Our effective elastic thickness values range between 14 km (corresponding to 

the minimum resolvable Te value) and 94 km, but are dominated by low to moderate 

values. Te variations deduced from our model could represent regional variations in the 

cooling history of the lithosphere and/or mantle processes with limited surface 

manifestation. The crustal plateaus are near-isostatically compensated, consistent with a 

thin elastic lithosphere, showing a thickened crust beneath them, whereas the lowlands 

exhibit higher Te values, maybe indicating a cooler lithosphere than that when the 

Venusian highlands were emplaced. The large volcanic rises show a complex signature, 

with a broad range of Te and internal load fraction (F) values. Finally, our results also 

reveal a significant contribution of the upper mantle to the strength of the lithosphere in 

many regions. 
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1. Introduction 

Venus and the Earth share a similar size, nearly equivalent density and bulk 

composition, and close proximity to the Sun. Despite these similarities, Venus's 

tectonics and dynamic evolution are very different from those of the Earth. The 

Venusian lithosphere is stagnant and shows no evidence for present-day global plate 

tectonics (e.g., Solomon and Head, 1982; Solomon et al., 1992). Recent data provided 

from the Venus Express Mission show evidence of geologically young, and even 

ongoing, volcanism on the Venusian surface (Smrekar et al., 2010). However, the 

thermal history of Venus remains an enigma and there are many fundamental and 

unanswered questions on the structure and evolution of its lithosphere (e.g., Smrekar et 

al., 1997; Stofan et al., 1997; Phillips et al., 1997; Grimm and Hess, 1997), which are 

key issues for understanding Venus in the context of the origin and evolution of the 

terrestrial planets (Garvin et al., 2009; Ghail et al., 2012; Sotin et al., 2014; VEXAG, 

2014). 

The analysis of gravity and topography data provides useful constraints to solve 

many fundamental questions on the geodynamics of terrestrial planets, probing the 

structure and mechanical behaviour of their lithospheres, for example how they respond 

to loading and unloading (Wieczorek, 2007; Audet, 2011, 2014; Watts et al., 2013). In 

particular, a useful parameter that describes this behaviour is the effective elastic 

thickness (Te) of the lithosphere, which, in turn, can be used to constrain the thermal 

structure and evolution of a planetary body (e.g., Zuber et al., 2000; McGovern et al., 

2002; Ruiz et al., 2011). Te is a proxy for the strength of the lithosphere, integrating 

contributions from brittle and ductile layers and from elastic cores of the lithosphere 

(for a review see Watts and Burov, 2003). 

Although previous research provided important constraints on the effective 
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elastic thickness of Venus (e.g., Johnson and Sandwell, 1994; Smrekar, 1994, Simons et 

al., 1994, 1997; McKenzie and Nimmo, 1997; Smrekar and Stofan, 1999; Barnett et al., 

2000, 2002; Hoogenboom et al., 2004, 2005), work on global mapping of Te is very 

scarce. Anderson and Smrekar (2006) presented the first global map of Te for Venus 

based on the spatio-spectral localization technique of Simons et al. (1997) by using 

three end-member models of loading (top loading, bottom loading, or hot spot) and 

fitting their results to specified classes of results. Recently, Audet (2014) used a 

spherical wavelet analysis of gravity and topography and thin shell loading models, and 

presented preliminary mappings of Te for the Moon, Mars and Venus, in order to 

analyse both the promises and the limitations of fully spherical techniques. 

Recent advances in joint spectral analysis of gravity and topography and 

improvements in lithospheric modelling of the Earth have led to mapping of Te at an 

unprecedented resolution (for reviews see Audet, 2014; Kirby, 2014). Given these 

recent methods developed for the Earth, it is a natural step to make a reliable Te map for 

Venus at high resolution. Performing this task would be of interest to re-evaluate 

regional variations in, and improve the characterization of, the structure and rheological 

behaviour of the lithosphere of this planet. 

Thus, we have calculated maps of the spatial variations of Venusian Te, as well 

as of their associated surface and subsurface loading mechanisms, from the analysis of 

the Bouguer coherence using a wavelet transform (Kirby and Swain, 2009, 2011), 

modelled with a simple thin elastic plate subject to both surface and subsurface loads, 

following the load deconvolution procedure of Forsyth (1985). We have performed our 

mapping in the Cartesian domain, dividing the surface of Venus into 36 overlapping 

areas (or ‘tiles’). This procedure is useful: indeed, the radius of curvature of Venus is 

large enough for the elastic plate and shell formulations to produce equivalent 
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coherence spectra for the expected range of Te values (see Audet, 2014). Also, Audet 

(2014) showed that the Cartesian analysis is robust over small regions if the data edges 

of the Cartesian grid are excluded. Prior to estimating Te, we present a global model of 

crustal thickness, which is required for the lithospheric analysis, derived from 

topography and gravity. Finally, we discuss the implications of our results for the large 

scale and long-term evolution and behaviour of the Venusian crust and lithosphere. 

 

2. Global gravity and topography of Venus 

Gravity and topography data acquired by the Magellan spacecraft between 1990 

and 1994 remain the most complete set for constraining the structure of the Venusian 

lithosphere. We apply potential theory to model the crustal thickness of Venus from the 

relationship between gravity and topography data (Section 3). This analysis has been 

developed in spherical coordinates making use of spherical harmonics. Thus, we use the 

spherical harmonic models SHTJV360u (Rappaport et al., 1999) and SHGJ180u 

(Konopliv et al., 1999) for topography and gravity respectively (available at http://pds-

geosciences.wustl.edu; see Fig.1).   

While SHTJV360u and SHGJ180u are supplied to degree and order 360 and 

180, respectively, the topography and gravity used in spectral flexural analyses must 

have the same bandwidth, because the coherence (and admittance) compares these data 

in the spectral domain. Therefore we expand the gravity and topography coefficients up 

to degree and order 180 only, which corresponds to a minimum wavelength of ≈211 km 

at the Venusian equator. This corresponds to a flexural wavelength such that the 

minimum resolvable Te is ≈14 km (estimated through λ flex≈ 29T e
3/4

; see Swain and 

Kirby, 2003), which is useful taking into account the limited data resolution and large 

errors in the gravity model (see Audet, 2014). However, we note that the accuracy of the 

http://pds-geosciences.wustl.edu/
http://pds-geosciences.wustl.edu/
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SHGJ180u gravity data is quite low, with large uncertainties at spherical harmonics 

beyond 60-70 (see for example, Anderson and Smrekar, 2006; Wieczorek, 2007; James 

et al., 2013); we will return to this issue in the Results Section. 

Effective elastic thickness modelling has been developed in the Cartesian 

domain by using a continuous planar wavelet analysis of gravity and topography data 

(see Section 4). Although Audet (2011, 2014) recently developed a continuous spherical 

wavelet transform for estimating Te, he found that the differences between the spherical 

and planar methods were small (<10% of the absolute Te value) for Earth-size planets 

and concentrated at the data area edges (Audet, 2014). In order to reduce the effects of 

distortion from curvature of a planet’s surface, we divide the surface of Venus into 36 

overlapping areas (or ‘tiles’) from north to south and west to east (Fig. 2a), and project 

the gravity and topography in each of them to a Cartesian frame using an oblique 

Mercator map projection, providing a global coverage. Each tile has dimensions of 6000 

km (easting) x 6000 km (northing), and a grid spacing of 20 km in both directions. The 

Bouguer gravity anomaly and topography are mirrored about their edges prior to 

Fourier transformation with the purpose of reducing leakage, which, when used with the 

wavelet transform, does not generally bias the results significantly (see Kirby and 

Swain, 2008, for a discussion on mirroring). The planar wavelet analysis for coherence 

and subsequent inversion for Te were then carried out on each tile. Inversions for Te and 

subsurface-to-surface load ratio (f; see Section 4) were performed only on observed 

coherences with wavelengths >211 km (accordingly, both gravity and topography data 

were truncated to degree and order 180 in our analysis; see above). After inversion, Te 

and F data at the edges of each tile (10% of a side length) were removed to mitigate 

possible remnant edge effects near the grid boundaries (see Fig. 2b).  As a final step, Te 

and F results were back-projected onto geographic 1º × 1º grids, and merged and 
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gridded using GMT’s ‘surface’ algorithm (Smith and Wessel, 1990) to produce global 

Te and F maps that combine the information from all tiles.  

All maps are generated using GMT (Wessel et al., 2013), and are presented in 

Robinson projection with east-positive longitude convention and centred on 180° 

longitude. 

 

3. Crustal thickness modelling 

We use the relationship between global topography and gravity data to model 

the crustal thickness (Tc) of Venus following the potential theory procedure of 

Wieczorek and Phillips (1998), which was originally derived for estimating Tc of the 

Moon and later used in other crustal thickness modelling of the Moon (Wieczorek, 

2007), Mars (Zuber et al., 2000; Neumann et al., 2004; Wieczorek, 2007; Cheung and 

King, 2014), and Venus (Wieczorek, 2007; James et al., 2013). To constrain the 

thickness of the Venusian crust, we assume (1) that the observed gravitational 

anomalies arise only from a combination of surface topography and variations at the 

crust–mantle interface (i.e., the “Moho”), and (2) constant crustal and mantle densities 

to overcome the non-uniqueness associated with potential modelling. Under these 

assumptions, we first calculate the Bouguer gravity anomaly from surface topography 

and the free air anomaly, and then calculate by downward continuation the relief along 

the crust–mantle interface necessary to explain the observed Bouguer gravity anomaly 

(for reviews see Wieczorek and Phillips, 1998; Wieczorek, 2007). In order to mitigate 

errors in downward continuing the Bouguer anomaly, we applied a minimum amplitude 

filter (see Wieczorek and Phillips, 1998) for the Moho relief at degree l = 70. Finally, 

we obtain the crustal thickness by subtracting the relief on the Moho from surface 

topography.  
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Since we cannot constrain the crustal thickness model with a given value at a 

specific location on Venus (for example, by using the minimum Tc at deep impact 

basins as Hellas or Isidis on Mars; e.g., Neumann et al., 2004), we assume a mean Tc to 

“anchor” our model satisfying the condition that the inverted crustal thickness is not 

negative anywhere on the planet. Furthermore, the phase transition from basalt to dense 

eclogite limits large Tc values such that they cannot result in crust anywhere extending 

below the basalt–eclogite phase change depth, predicted to occur at depths of ~70-120 

km depending on the temperature gradient (e.g., Namiki and Solomon, 1993; Jull and 

Arkani-Hamed, 1995; Ghent et al., 2004). With these constraints, we assume an average 

crustal thickness of 25 km consistent with the range of 5-50 km obtained by previous 

studies (e.g., Zuber, 1987; Grimm, 1994; Phillips, 1994; Konopliv and Sjogren, 1994; 

Simons et al., 1994, 1997; Grimm and Hess, 1997).  

The obtained global crustal thickness model is shown in Fig. 3a. Fig. 3b shows 

the gravity misfit (the difference between observed and calculated gravity), derived 

from the crustal thickness modelling, corresponding to the results in Fig. 3a and Fig. 4. 

The Venusian crust exhibits a good spatial correlation between topography and crustal 

thickness, with highland regions and crustal plateaus being locally thicker than the 

surrounding plains and lowland regions, and large volcanic rises characterized by 

intermediate to high Tc values. The crustal thickness variation pattern agrees well with 

results of previous global crustal thickness modelling (Anderson and Smrekar, 2006; 

Wieczorek, 2007; James et al., 2013). Our model (which is based upon the premise of 

an average crustal thickness of 25 km, and crust and mantle densities of, respectively, 

2900 and 3300 kg m-3) finds a crustal thickness that varies from ≈10 to ≈100 km, with 

the smallest values associated with Atalanta, Sedna and Lavinia planitiae, while 

Lakshmi Planum and Maxwell Montes (which reach a maximum elevation of 11 km) on 
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Ishtar Terra are characterized by the higher values of Tc.  

The global crustal structure is distinctly unimodal (Fig. 4a). It has one major 

peak at approximately 20-22 km, with a tail of values higher than the average crustal 

thickness of 25 km, and with less than 20% of crust being thinner than 20 km. Pole-to-

pole longitudinal transects of the crustal structure, as well as an equatorial transect (Fig. 

4b,c), clearly show the thickening beneath the highland plateaus, and thin crust beneath 

the lowland plains, where the transition in thickness between highlands and lowlands is 

relatively abrupt. In general, the Moho relief gives the impression of a crust usually 20-

25 km thick with superposition of thicker crust associated with the highlands. This 

suggests that most of the Venusian crust was emplaced under similar conditions, and 

different to those generating the crustal plateaus. 

As mentioned above, some ‘key’ assumptions in the crustal thickness modelling 

may lead to significant changes in the obtained results; the most important of those 

assumptions is the density contrast between the mantle and crust, which affects to both 

the overall average crustal thickness and the amplitude of crustal variations in our 

model (see Neumann et al., 2004; Baratoux et al., 2014). Since the crust–mantle density 

contrast was constrained to be 400 kg m-3 in our analysis, the assumed average crustal 

thickness of 25 km plays the most important role in the crustal thickness distribution. In 

Fig. 5 we plot the minimum and maximum crustal thickness as a function of the average 

crustal thickness. We found that, as expected, extreme values increase with increasing 

average crustal thickness; also the amplitude of crustal variations increases slightly with 

the average crustal thickness. 

 

4. Estimating the effective elastic thickness of the lithosphere 

To estimate the effective elastic thickness we calculate the coherence function 
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relating the topography and Bouguer anomaly (i.e., the Bouguer coherence) by using the 

wavelet transform (Kirby and Swain, 2009, 2011), modelled with a simple thin elastic 

plate subject to both surface and subsurface loads, following the load deconvolution 

procedure of Forsyth (1985). The Bouguer coherence gives information on the 

wavelength band over which topography and Bouguer anomaly are correlated, such that 

it generally tends to zero at short wavelengths, where the topography is not 

compensated and loads are supported predominantly by the elastic strength of the 

lithosphere (Forsyth, 1985). At long wavelengths, the response to loading approaches 

the Airy limit and the coherence tends to one. The wavelengths at which the coherence 

rapidly increases from 0 to 1 depend on the effective elastic thickness of the lithosphere, 

such that when the lithosphere is weak and Te is small, local compensation for loading 

occurs at relatively shorter wavelengths, and vice versa. 

First, as mentioned in Section 2, we divide the gravity and topography data into 

36 tiles, map-projected the data, and perform the following planar wavelet analysis on 

each tile. The wavelet coherence method convolves a range of scaled wavelets with the 

data under consideration to map and invert the coherence at each grid point, and 

achieves good wavenumber resolution over long length scales and good spatial 

resolution over short length scales. Here we employ a Morlet wavelet in the fan wavelet 

transform (Kirby and Swain, 2011). The wavelet coherence between the Bouguer 

gravity anomaly and topography is calculated from 
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where B and H are the fan wavelet transform of the Bouguer gravity anomaly and 
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topography, respectively. These are functions of spatial location (x), 2-D Morlet wavelet 

azimuth (θ), and wavelet scale (s), which may then be simply related to an equivalent 

Fourier wave number (κ) by the relation κ = |k0|/s, where |k0| is the central wave number 

of the Morlet wavelet (Kirby and Swain, 2011). The largest scale was chosen such that 

the longest equivalent Fourier wavelength was 6000 km (the side length of a tile); the 

smallest chosen scale corresponds approximately to the Nyquist wavelength of the 

gridded data (40 km), though we note that this is far less than the minimum wavelength 

of the data (211 km). The value of |k0| governs the resolution of the wavelet in the space 

and wavenumber domains (Kirby and Swain, 2011). Large values of |k0| give the Morlet 

wavelets a high wavenumber-domain resolution but poor space-domain resolution, 

while small values of |k0| give a poorer wavenumber-domain resolution but better 

space-domain resolution (Kirby and Swain, 2011, 2013). The |k0| value used in this 

study is 5.336, which has a good resolution in the wavenumber domain and a 

reasonably good resolution in the space domain (Kirby and Swain, 2011, 2013).  

As shown by Kirby and Swain (2009), the coherence as given by equation (1) can 

sometimes be strongly biased by incoherent signals which manifest in the imaginary 

parts of the coherency. We follow Kirby and Swain (2009) and invert the squared real 

coherency (SRC) instead, because it is less sensitive to correlations between the initial 

loads on the plate and to the presence of topographically unexpressed internal loading 

(commonly known as “gravitational noise”), both of which can cause incorrect recovery 

of Te (e.g., McKenzie and Fairhead, 1997; McKenzie, 2003; Kirby and Swain, 2009; 

Audet and Bürgmann, 2011; Kirby, 2014). The complex wavelet coherency is given by 
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In the load-deconvolution method of Forsyth (1985), Te is estimated by comparing 

the observed coherence curve with coherence functions predicted for a range of Te 

values. Here we follow the same procedure but with SRCs instead of coherences (Kirby 

and Swain, 2009), and using wavelets rather than Fourier transforms (Swain and Kirby, 

2006). Briefly, load deconvolution estimates the initial surface and subsurface loads 

from the observed gravity and topography, assuming a certain Te value. The predicted 

SRC (coherence) between these initial loads can be directly compared with the observed 

SRC (coherence) between observed gravity and topography, and Te varied until the 

predicted SRC matches the observed SRC in a least squares sense. The initial loads for 

the chosen Te are used to find the wavenumber-dependent ratio between the spectra of 

initial subsurface and surface loads, f(k) (e.g., Forsyth, 1985; Kirby and Swain, 2008). 

Here we choose to follow McKenzie (2003) and represent the loading ratio f (which is 

unbounded) as F = f / (1+f), the subsurface load fraction, which is bounded. 

We use Brent’s method (Press et al., 1992) in the inversion to find the best-fitting 

predicted SRC, with the difference between observed and predicted SRCs weighted by 

the inverse of equivalent Fourier wavenumber (Kirby and Swain, 2006). This inverse-

wavenumber method generally gives smoother Te maps, as it down-weights the noisy 

SRCs that sometimes occur at high wavenumbers. Errors on Te are given as 95% 

confidence limits on the best-fitting value. Unfortunately, load-deconvolution cannot 

give errors on F, nor can it utilise errors on the observed gravity or topography data. 

This latter shortcoming is mitigated perhaps by the inverse-wavenumber weighting we 

use in the inversion of the coherence. 

Load deconvolution requires detailed information on the internal structure of the 

lithosphere. We follow Forsyth’s (1985) original formulation of the predicted coherence 
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method, assuming that all internal loading occurs at the crust-mantle interface. To 

define the lateral variation of the Moho relief, we use the global crustal thickness model 

obtained in this study (see Section 3). Table 1 shows the values of the crustal and 

mantle densities used in the SRC inversion, together with the values of other required 

constants. 

The Te and F values in each tile were then merged to provide seamless coverage 

over the planet, as described in Section 2. 

Table 1 
 
Symbols and values of constants 

Constant Symbol Value Units 
Young’s modulus E 100 GPa 
Poisson’s ratio  υ 0.25  
Newtonian gravitational constant G 6.67259 x 10-11 m3 kg-1 s-2 
Gravity acceleration g 8.87 m s-2 
Mean planetary radius R 6052 km 
Mean crustal thickness Tc 25 km 
Crust density ρc 2900 kg m-3 
Mantle density ρm 3300 kg m-3 

 

 

5. Results of effective elastic thickness mapping 

5.1 Description of the Te map 

The effective elastic thickness results are shown in Fig. 6a. Te values range 

between 14 (the minimum resolvable Te value; see Section 2) and 94 km, although low 

to moderate values clearly dominate (Fig. 7a). The most noticeable feature on the Te 

map is the extensive low to moderate Te (<40 km) region associated with Ishtar, western 

Aphrodite (Ovda Regio) and Lada terrae, Alpha, Bell, Tellus and Eistla regiones, and 

parts of Lavinia, Atalanta and Niobe planitiae. Otherwise, the Beta-Atla-Themis (BAT) 

region and the southern planitiae show more variable Te results, including very high 

values. In western Aphrodite Terra, Thetis Regio is characterized by a slightly higher 
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Te, and the Artemis region (following the terminology of Hansen, 2002) is also 

characterized by moderate Te values (~45 km). These Te values increase toward 

Nsomeka Planitia, which along with Aino and Helen planitiae show a complex pattern, 

with patches and regions of high to low Te. In the northern hemisphere of Venus, 

Guinevere Planitia also shows this pattern. On the other hand, the large volcanic rises 

show a complex signature. Atla and Themis regiones seem to be uniformly strong (Te > 

50 km), Dione Regio is characterized in large part by low Te values (<30 km), and Beta, 

Imdr and Laufey regiones exhibit a more complex Te pattern. Within the BAT region, 

our results show low to high Te values associated with Phoebe Regio. Our results also 

show a zone of high Te associated with Dali Chasma and the Atahensik Corona region. 

Otherwise, the graben-fissure systems in Hecate Chasma and Ulfrun Regio areas, as 

well as Beta Regio and Devana Chasma areas, are also associated with a wide range of 

Te values. 

Fig. 6b shows best fitting F values at the SRC transition wavenumber 

corresponding to the Te results in Fig. 6a (see also the histogram in Fig 7b). 

Interestingly, surface loads dominate a large part of the BAT region (associated with 

moderate to high Te values; see Fig. 6), with some exceptions as south of Atla Regio or 

surrounding of Phoebe Regio. Themis, Laufey, and western and central Eistla regiones 

are also dominated by surface loads. Nevertheless, Tellus, Alpha, Dione, Imdr and 

eastern Eistla regiones exhibit a more complex signature, characterized by moderate F 

values. On the other hand, our load ratio estimates indicate that subsurface loading 

dominates (at least slightly) on Aphrodite Terra (associated with low to moderate Te 

values). Ishtar Terra is also dominated by subsurface loads; nonetheless, Lakshmi 

Planum is associated with a small load ratio, indicating that surface loads dominate. 

Lada Terra exhibits a more complex signature, with a broad range of F values. Finally, 
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planitiae and lowlands regions in both hemispheres show a wide range of F values.  

 

5.2. Caveats and limitations 

As mentioned in Section 4, the load deconvolution and inversion methods allow 

for the estimation of errors on Te via 95% confidence limits on its best-fitting value. Fig 

8a shows the spatial distribution of Te errors, and it can be seen that they are uniformly 

low (< 8 km) and show very little correlation with the absolute Te values in Fig 6a. This 

is unusual in Te-mapping by spectral methods where Te error most often increases with 

Te value (e.g., Kirby, 2014). Earth elastic thicknesses, however, exhibit much higher 

values (>100 km) over larger areas, especially in cratons, and Fig. 7a shows that 

approximately 94% of the Venusian Te is < 60 km, a value considered middling on 

Earth’s continents. The lack of correlation between Venusian Te and its uncertainty may 

be related to the smaller Te values compared to Earth. 

Unfortunately the spectral method of Te estimation does not allow for data errors 

to be propagated through to Te, or even coherence, so the error map in Fig 8a takes no 

account of these. On Earth's continents this does not present such an issue due to high 

data density from many independent sources. Of particular note are the large errors in 

the SHGJ180u harmonic coefficients of the gravity field beyond degrees 60-70. While 

one could band-limit the gravity and topography data (excluding coefficients beyond 

degree 60 for instance) and perform the Te estimation again, the results might not be 

instructive. Truncation at degree 60 gives a minimum wavelength in the data of 

approximately 630 km, which, if taken as a flexural wavelength implies a minimum 

resolvable Te of 60 km, using the formula in Section 2. Such a Te map would be highly 

artificial. However, our choice to include higher harmonic degrees in the inversion does 

imply that some caution is required in the interpretation of the results, due to errors in 
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the data at such degrees. Also, note that the spherical harmonic coefficients were biased 

towards a global power law (i.e., a ‘Kaula rule’; Wieczorek, 2007), affecting the lower 

range of Te values (Audet, 2014). 

In addition, the tesseral harmonics (l ≠ m) have large errors due to the near-polar 

orbit of the Magellan spacecraft (Konopliv et al., 1999). This phenomenon will generate 

a directional bias in the gravity data, leading to artificially anisotropic coherencies at the 

corresponding harmonics (wavenumbers). We suggest, however, that the azimuthal-

averaging performed by the fan wavelet will reduce this error, though we do not know 

by how much. The variance of the resulting isotropic coherency may also be larger, 

owing to these errors. 

The load deconvolution and inversion methods used here cannot provide errors 

on the loading ratio, f, since this is not an inversion parameter. We can, however, plot 

the spatial variation of the chi-squared statistic minimised in the inversion, where 
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(e.g., Press et al., 1992), where the summation is over wavenumber, k, 2
,, RoBΓ  is the 

observed Bouguer SRC, 2
,, RpBΓ  is the predicted Bouguer SRC, and 2

,, RoBΓ
ε  are the errors 

on the observed Bouguer SRC. Such a map is shown in Fig 8b, and provides a measure 

of how well the observed and best-fitting predicted SRCs fit one another. It therefore 

contains qualitative information about both Te and f (or F) errors, and shows regions 

where the model may be inappropriate and/or the data errors have been underestimated. 

Unfortunately the map is noticeably biased by the tile shape for two of the tiles (see Fig 

2). In addition, we check the robustness of the inversion in Appendix A. Fig. A1 and 



17 
 

Fig. A2 show the results of inverting wavelet squared-coherency profiles for the 

parameters Te and F in various locations. We used the normalized imaginary component 

of the free-air coherency for identifying coherence-biasing noise when inverting the 

Bouguer coherence (SRC); large values near the transition from low to high Bouguer 

SRC indicate a Te estimate biased by gravitational noise (see e.g., Kirby and Swain, 

2009 for details). We note that the Bouguer SRCs are greatly affected by gravitational 

noise in many cases, and may lead to the biased estimation of lithospheric parameters, 

especially near the poles. As mentioned above, the spatial resolution of the gravity and 

topography data varies dramatically with the position on the surface, and large errors in 

gravity data closer to the poles may affect the accuracy of the results obtained in these 

zones, which may therefore be biased by noise; however, we also note that much more 

work is required to explore the noise issue in detail. 

We find, though, that there is not an obvious correlation between Te and F, 

shown in Fig 7c. Many studies on earth have found a spatial correlation between maps 

of Te and F (e.g., Tassara et al, 2007; Kirby and Swain, 2008) that would produce an 

approximately straight line in plots such as Fig 7c. For our Venus results we see very 

little evidence of such correlation, with a wide distribution in Te-F space. The points are 

bounded quite strongly on the lower-Te side though, perhaps reflecting the correlation 

seen on Earth. 

In summary, we acknowledge the limitations of our analysis due to data quality. 

We believe that any Te-estimation method would be hampered by these limitations until 

better data acquired by future geophysical exploration of Venus are available. 

5.3. Comparison with previous results 

Our pattern of Te variations is consistent with previous studies. However, we 

found some important differences in the results, related to the different approach and 
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parameters used in the analysis. Anderson and Smrekar (2006) estimated Te from a 

global mapping of the admittance using the spatio-spectral localization technique of 

Simons et al. (1997) and three end-member models of loading (top loading, bottom 

loading, or hot spot), fitting their results to specified classes of results. The authors 

found Te values varying between 0 and 100 km, with Te < 20 km for approximately half 

of the planet, while our results show a similar range but predominantly dominated by 

moderate Te values, peaking around 35-40 km. We suggest that our approach is more 

rigorous due to (1) spectral biases in their method (Wieczorek and Simons, 2005), and 

(2) their fixing of F prior to inversion.  

Our results also show differences with the global Te and F maps recently 

obtained by Audet (2014) for Venus. However, there are also differences between the 

methods in these two studies. (a) Audet (2014) used 5-degree mean gravity anomalies 

and topography; we used data on a 20 km grid with Te averaged onto a 1-degree grid. 

(b) Audet (2014) used the spherical wavelet transform on unprojected data; we use a 

planar version on projected data [though as Audet (2014) showed, this analysis method 

difference yields small Te differences]. (c) Audet (2014) used equations for the flexure 

of a thin elastic shell; we use those for a thin elastic plate. (d) Audet (2014) performed a 

joint inversion of the admittance and coherency with analytical expressions (the so-

called ‘uniform-f’ method); we use load deconvolution with the SRC and retrieve a 

wavenumber-dependent F. While it is not possible to point to a ‘better’ Te result, the 

spherical approach is undoubtedly more rigorous than a planar approximation, while 

load-deconvolution is more realistic than uniform-f inversion.  

 

6. Discussion 

The patterns of Te and F variations show a high variability. This could suggest 
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that Venus remains an active planet with complex geologic processes, as previously 

suggested by Anderson and Smrekar (2006). However, this might be true only taking 

into account the relatively young ages typical of the Venusian surface (e.g., Basilevsky 

and Head, 1998; Guest and Stofan, 1999; Ivanov and Head, 2011), because a very high 

range of Te values could be indicating a temporal trend. Indeed, the range of Te values 

obtained for Mars (for a compilation see Ruiz, 2014) is larger than for Venus, but it 

seems mostly to be a consequence of secular planetary evolution (e.g., McGovern et al., 

2002), related to cooling and thickening of the lithosphere (Ruiz, 2014). This can be so 

because the observed Te values derive from the state of the lithosphere when the 

topography was formed (or, in the case of the Te calculated from spectral methods, 

when the relation between topography and gravity was established) (Watts, 2001). 

There is evidence that crustal plateaus are the oldest (or at least slightly older) terrains 

on Venus (e.g., Ivanov and Head, 2011), which would be consistent with a lower elastic 

thickness and near-isostatic compensation (see Fig. 6). This is consistent with their 

small gravity anomalies, low geoid-to-topography ratios (GTRs), and shallow apparent 

depths of compensation (ADCs); all indicating a thickened crust beneath them (e.g., 

Smrekar and Phillips, 1991; Kucinskas and Turcotte, 1994; Grimm, 1994; Simons et al., 

1997; Anderson and Smrekar, 2006; James et al., 2013).  

Fig. 9 shows an equatorial transect of our crustal thickness and effective elastic 

thickness models. Higher Te values generally occur in areas of normal crustal thickness 

(≈20-25 km), which is consistent with the lowland topography being formed when the 

lithosphere of Venus was cooler than at the time of the formation of the crustal plateaus. 

In general, most Te estimates are higher than the crustal thickness, suggesting a 

significant contribution of the upper mantle to the strength of the lithosphere in many 

areas. It must be recalled that the effective elastic thickness does not, in general, 
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represent an actual layer, rather it is a measurement of lithospheric strength which 

integrates contributions from mechanically strong portions of the crust and mantle (see 

Watts and Burov, 2003). Mantle rocks are stronger than crustal rocks, but being under 

higher temperatures, their strength is reduced. For a sufficiently high heat flow the 

upper mantle does not contribute to Te, and the lithosphere is thin and restricted to the 

crust; conversely, if the heat flow is sufficiently low, the upper mantle is cold and 

strong, and contributes to the strength of the lithosphere, and hence to the effective 

elastic thickness, which is therefore higher. Thus at least part of the regional variations 

of Te could be due to differences in the cooling history of the lithosphere in these 

regions, although deep geodynamic processes with little surface manifestation could 

also be operating (see Anderson and Smrekar, 2006). In this sense, mantle processes 

could produce a pattern of low to moderate Te associated with a large region enclosing 

very different geological features, such as crustal plateaus and planitiae, with different 

relative surface ages. 

The large volcanic rises show a complex Te signature, which, along with their 

large ADCs and GTRs (e.g., Kucinskas and Turcotte, 1994; Smrekar, 1994; Moore and 

Schubert, 1997; James et al., 2013), suggests that the topography may be supported 

through a combination of several mechanisms (see also Kucinskas and Turcotte, 1994; 

Moore and Schubert, 1997; Vezolainen et al., 2004; Pauer et al., 2006). James et al. 

(2013) recently found that the topography of certain regions, such as Atla and Eistla 

regiones, is mainly supported by dynamic loading, or in the case of Thetis Regio, by 

contributions from both crustal thickening and dynamic support from the mantle. 

We have examined the effective elastic thickness in relation to the crater density 

(Fig. 10) by using a global database of impact craters on its surface (Schaber et al., 

1998). The impact crater population on Venus, which gives a mean surface age of 300-
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1000 Myr (McKinnon et al., 1997), shows a nearly uniform spatial distribution (Schaber 

et al., 1992; Phillips et al., 1992; Strom et al., 1994). In Fig. 10 we plot the crater 

density (points) obtained with sampling windows of 106 km2 against the mean value of 

Te in each window. We found that most of the craters are located in regions with low or 

moderate Te, although this possible correlation could be biased by the distribution of Te, 

clearly dominated by that range of low to moderate values. Alternatively, we also plot a 

second analysis of the crater density (superposed white squares and black line) 

calculated by counting the number of craters for Te intervals of 10 km providing the 

crater density of each interval (in 106 km2), to avoid the effect of windowing. This 

analysis shows a higher (at least relatively) crater density associated with moderate to 

high Te values. Although the high Te intervals show a comparatively low number of 

craters, the corresponding areas are so small that the crater density is slightly increased; 

therefore these results may be biased upward. This implies that there is no evidence of a 

clear correlation between Te and the crater density, consistent with the previous 

observations of Barnett et al. (2002).  

The spatial and temporal distribution of surface volcanism (as expressed by 

Venusian volcanoes and coronae) also might provide essential information on the 

geologic history and geodynamic evolution of Venus. We compare our Te and F 

frequency estimates (Fig. 11a) with volcanoes (from the USGS Venus Volcano Catalog; 

Schaber et al., 1998) and coronae (Stofan et al., 2001) frequency distributions (Fig. 

11b,c). We find that there is not a significant correlation between lithospheric 

parameters and the frequency distribution of volcanoes and coronae, whose patterns 

closely mimic the distribution of Te and F on the surface. Although we do not show it 

here for brevity, there are no significant differences in lithospheric properties between 

Type 1 and Type 2 coronae (see Coronae Type definition by Stofan et al., 2001), 
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confirming the previous observations of Smrekar and Stofan (2003). The only 

noticeable difference is a slight trend toward smaller F values, and maybe toward higher 

Te values, in the frequency distribution of coronae. We note that these patterns may be 

largely controlled by the spatial distribution of the volcanic features on the planetary 

surface, where the BAT region is characterized by a concentration of volcanic activity 

(see e.g., Crumpler et al., 1997). Indeed, surface loads dominate a large part of this 

region, associated with a wide range of Te values; including higher values (see Fig. 6). 

However, it is important to keep in mind that Te and F values in Fig. 11b,c derive from 

the global mapping, not from estimates for each individual feature, especially taking 

into account the high number of coronae (more than 50%) with a smaller diameter than 

the minimum flexural wavelength used in our analysis (211 km; see Section 2). Thus, 

these results should be interpreted in a general sense. 

 

7. Conclusions 

In this paper we investigate the lithospheric strength of Venus by calculating its 

effective elastic thickness from the analysis of gravity and topography. We first present 

a crustal thickness model, in which the majority of Venusian crust is 20-25 km thick, 

with thicker crust under the highlands. This suggests that most of the Venusian crust 

was emplaced under similar conditions, and different to those generating the crustal 

plateaus. 

We find effective elastic thickness values up to ≈95 km for Venus, but they are 

mostly of low to moderate value. Te variations and patterns could represent regional 

variations in the cooling history of the lithosphere and/or mantle processes with limited 

surface manifestation. The crustal plateaus are near-isostatically compensated, 

consistent with a thin elastic lithosphere, showing a thickened crust beneath them, 
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whereas the lowlands exhibit higher Te values, maybe indicating a cooler lithosphere 

than that when the Venusian highlands were emplaced. The large volcanic rises show a 

complex signature, with a broad range of Te and F values. Our results also reveal a 

significant contribution of the upper mantle to the strength of the lithosphere. 

We find that there is not an obvious correlation between Te and crater density on 

the Venusian surface, as well as between the lithospheric parameters and the 

distribution of volcanoes and coronae. 

The effective elastic thickness is a very useful indicator of the strength and 

mechanical behaviour of the lithosphere. Recent advances in mapping of Te represent a 

great opportunity, as well as a great challenge, for future work. Limitations due to 

resolution of the available data emphasize the importance of future missions to map out 

the gravity and topography of Venus with sufficiently high resolution in order to 

produce regional lithospheric models and solve key gaps in the understanding of the 

lithospheric structure and evolution of Venus. 
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Appendix A. One-dimensional profiles of the squared-coherency 

Fig. A1 and Fig. A2 show the results of inverting wavelet squared-coherency 

profiles (|k0| = 5.336) for the parameters Te and F in several locations, to check the 

robustness of the inversion. Rather than computing the coherency at each of the 20 × 20 

km grid nodes (see Section 2), we spatially averaged the autospectra and cross-spectra 

over 25 × 25 grid nodes, giving a 500 × 500 km spatially averaged coherency. 

Inversions for Te and F were performed on the spatially averaged observed coherencies, 

over wavelengths >211 km; more details can be found in the main text. The thin red 

lines show the normalized imaginary component of the free-air coherency. Large values 

near the transition from low to high Bouguer SRC indicate a Te estimate biased by 

gravitational noise. We also report estimates of the best fitting Te and F, as well as the 

value of the Te error and chi-squared misfit at all locations. 
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Figure 1. (a) Topography and (b) Bouguer gravity anomaly of Venus derived from the spherical 
harmonic models SHTJV360u (Rappaport et al., 1999) and SHGJ180u (Konopliv et al., 1999), 
respectively, to degree and order 180. The map projection is Robinson with east-positive longitude 
convention and centred on 180º longitude. Black contour is the zero topography contour. 
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Figure 2. (a) The surface of Venus divided into 36 overlapping tiles (shown in two different maps - top 
and bottom - for the sake of figure clarity), from north to south and west to east. We projected the gravity 
and topography in each of them to a Cartesian frame using an oblique Mercator map projection, providing 
a global coverage. Each tile had dimensions of 6000 km (easting) x 6000 km (northing), and a grid 
spacing of 20 km in both directions. (b) Example of a tile (black thick line) with the ten percent of each 
side length ignored to mitigate possible remnant edge effects near the grid boundaries of the Te results, 
showing its overlap with the surrounding tiles. 
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Figure 3. (a) Crustal thickness model for Venus assuming a mean crustal thickness of 25 km, and crust 
and mantle densities of, respectively, 2900 and 3300 kg m-3. (b) Gravity misfit (the difference between 
observed and calculated gravity), derived from the crustal thickness modelling at spherical harmonic 
degree and order 180, corresponding to the results in (a) and Fig. 4. Black contour is the zero topography 
contour. 
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Figure 4. (a) Histogram of crustal thickness. (b) Crustal thickness model in an orthographic projection 
centred on 120º longitude and 40º latitude. The red lines correspond to the crustal structure profiles 
shown in (c). (c) Pole-to-pole longitudinal transects of the crustal structure, as well as an equatorial 
transect, where light blue corresponds to crust and gray corresponds to mantle. 
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Figure 5. Minimum and maximum crustal thickness as a function of the average crustal thickness. For 
each crustal thickness inversion, the density contrast between the mantle and crust was constrained to be 
400 kg m-3. 
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Figure 6. Results of the inversion of the squared-real Bouguer coherency (|k0| = 5.336). (a) Effective 
elastic thickness, Te. (b) Internal load fraction, F, corresponding to the Te results in (a). Black contour is 
the zero topography contour. 
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Figure 7. (a, b) Histograms of Te and F, corresponding to the results in Fig. 6. Panel (c) shows Te against 
F. 
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Figure 8. Results of the inversion of the squared-real Bouguer coherency (|k0| = 5.336). (a) Te error and 
(b) chi-squared misfit, corresponding to the results in Fig. 6. Black contour is the zero topography 
contour. 
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Figure 9. Equatorial transect of our crustal thickness model (figure format is the same as Fig. 4c). The red 
line corresponds to the variation of the effective elastic thickness (right axis) along the same profile. 
 
 
 
 
 

 
 
 
Figure 10. Plot of crater density (N = 942; Schaber et al., 1998) obtained with sampling windows of 106 
km2 against the mean value of Te in each window (points); and crater density calculated counting the 
number of craters for Te intervals of 10 km (white squares and black line). 
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Figure 11. Frequency distributions of volcanoes (N = 1868; Schaber et al., 1998) and coronae (N = 513; 
Stofan et al., 2001) versus Te and F values. (a) Histograms of Te and F frequencies, corresponding to the 
results in Fig. 6, shown for reference. Histograms of volcanoes (b) and coronae (c) versus Te and F. 
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Figure A1. (a)  Robinson projection of Venus’ topography with 180º longitude at centre. Black contour is 
the zero topography contour. Yellow stars indicate the locations of 1D squared-coherency profiles shown 
below. (b-d) Example of curve fitting and inversion results using the squared-real Bouguer coherency (|k0| 
= 5.336). The autospectra and cross-spectra were averaged over spatial dimensions of 500 × 500 km and 
the observed coherency formed from these. Profiles were inverted only using observations with 
wavelengths >211 km. Left panels: The observed squared-real Bouguer coherency (blue circles with their 
error bars and blue lines); the observed squared-imaginary Bouguer coherency (orange circles with their 
error bars and orange lines); the best-fitting predicted squared-real Bouguer coherency (dark blue lines); 
and the observed normalized imaginary free-air coherency (thin red lines). Right panels: misfit curves 
(thick red lines) used to estimate Te using the squared-real Bouguer coherency; and the values of the best 
fitting Te and F, as well as the value of the Te error and chi-squared misfit at all locations. 
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Figure A2. Example of curve fitting and inversion results using the squared-real Bouguer coherency (|k0| 
= 5.336). Figure format is the same as Fig. A1. 

 


