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Abstract 

 

The purpose of this study was to investigate possible efflux mechanisms involved in amphetamine 

derivative transport such as for 3,4-methylenedioxymethamphetamine (MDMA), 3,4-

methylenedioxyethylamphetamine (MDEA), para-methoxyamphetamine (p-MA), dexamphetamine 

and pseudoephedrine, especially across pH gradients that exist in intestinal or kidney transport. This 

was determined using our Caco-2 subclone, CLEFF9. Transport of the amphetamine derivatives 

were evaluated at pH 7.4 and pH 6/7.4 ± efflux inhibitors. Na+-H+

 

 transporter inhibition via 

carbonyl cyanide-4-trifluoromethoxy phenylhydrazone (FCCP), and metabolic inhibition using Na-

azide and Na-orthovanadate were also conducted, as well as using noradrenalin, adrenalin and other 

inhibitors of a range of carrier mediated transport systems such as histamine, organic cation 

transporters and dopamine carrier systems, . At pH 7.4, the rate of transport for dexamphetamine, 

pseudoephedrine and MDMA in both apical to basolateral and reverse directions were all very rapid, 

confirming extensive passive diffusion at systemic pH. However, creating a pH 6.0/7.4 gradient 

showed marked increase in basolateral to apical transport of all amphetamines tested, with 

dexamphetamine, MDEA, MDMA and p-MA having a net efflux ratio of around 16, 14, 13 and 11 

respectively and this was not reversed with P-glycoprotein inhibitors. Azide, FCCP, adrenalin, 

noradrenalin and reserpine were able to reduce the efflux by 2 to 3 fold, although 

tetraethylammonium could not. This suggested that extraneuronal monoamine transporters (hEMT) 

could be involved. This data suggests elevated endogenous adrenalin levels may reduce 

amphetamine removal from the body based on these in vitro studies. Also, the use of stomach acid 

lowering drugs could result in more rapid systemic uptake of these amphetamine derivatives.  
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1. Introduction 

The amphetamine family of compounds include drugs such as dexamphetamine (Dex), 

pseudoephedrine and “ecstasy” (3,4-methylenedioxymethamphetamine (MDMA) and its derivatives; 

methylenedioxyethylamphetamine (MDEA) & para-methoxyamphetamine (p-MA)). Although dex-

amphetamine has a legitimate pharmacological role in enhancing dopaminergic and noradrenergic 

neural responses in attention deficient hyperactivity disorder (ADHD), abuse of this drug along with 

the illicit drug MDMA, appear to be gaining momentum in western communities. Some reports 

have found high interindividual variability in response to Dex, when used for ADHD and variability 

in toxicity to recreational MDMA use has also been noted in recent studies  (Han and Gu, 2006; 

Soares et al., 2004; Zhu et al., 2006), suggesting the possible involvement of metabolic or transport 

factors that may be saturable, contributing to varied toxicities. In addition, some studies have 

suggested that MDMA and its derivatives may be substrates for the efflux transporter, P-

glycoprotein, and that this may contribute to variability of adverse effects (Ketabi-Kiyanvash et al., 

2003; Mann et al., 1997), while recent studies question its involvement (Bertelsen et al., 2006; 

Upreti and Eddington, 2008) 

 

In this study we used bi-directional transport studies to confirm the non-involvement of P-

glycoprotein in the pharmacokinetics of these amphetamines, and to examine inhibition of the 

recently discovered pH gradient efflux phenomenon (Kuwayama et al., 2008) with these 

compounds and have examined, through inhibition studies, what transport mechanisms could be 

responsible for the significant efflux observed in our study. The highly P-glycoprotein expressing 

Caco-2 sub clone, CLEFF-9, coupled with fluorescent HPLC protocols for the amphetamine 

detection were used. 

 

2. Materials and Methods. 



2.1 Chemicals. 

MDMA, MDEA, p-MA, Amiloride, 5-(N-ethyl-N-isopropyl) amiloride (EIPA), adrenalin 

(epinephrine), noradrenalin (norepinephrine), sodium azide, sodium orthovanadate, Carbonyl 

cyanide 3-chlorophenylhydrazone (FCCP), nifedipine, L-DOPA, calmidazolium chloride, dibutyryl 

cAMP, tetra-ethylammonium, pheniramine hydrochloride and reserpine were supplied by Sigma 

Aldrich (Castle Hill, NSW, Australia). Dexamphetamine was supplied by Sigma pharmaceuticals 

(Croydon, Victoria, Australia). PSC-833 (valspodar - a cyclosporine derivative) was kindly donated 

by Novartis Pharmaceuticals (Basel, Switzerland), while GF120918 (an acridonecarboxamide) was 

kindly donated by Glaxo-SmithKline (Boronia, Vic, Australia). (-)Pseudoephedrine was kindly 

donated by Prof. John Parkin from the School of Pharmacy, Curtin University. MK571 and 

diltiazem hydrochloride were purchased from BIOMOL international (Plymouth meeting, 

Philadelphia, USA). All other materials were of analytical grade. 

 

2.2 Cell Transport studies. 

Drug transport was studied in an in vitro gastrointestinal model using a monolayer of a 

CLEFF9 subclone of human Caco-2 cells with high P-glycoprotein-mediated efflux (Crowe et al., 

2006; Crowe and Teoh, 2006) and previously-reported experimental protocols (Crowe and Lemaire, 

1998; Crowe and Teoh, 2006; Crowe and Wong, 2004). Briefly, CLEFF-9 cells were seeded onto 

Millicell polycarbonate 0.6 cm2 filter inserts in 24 well plates at 65,000 cells/cm2

 

. Cells were grown 

in high glucose Dulbecco’s modified eagle medium (DMEM) with 25 mM Hepes (pH 7.4), 2 mM 

glutamine, 1 mM non-essential amino acids, 100 U/ml penicillin-streptomycin and 10% foetal calf 

serum) in a 37ºC incubator with 5% CO2. 

Cells were incubated for 21-25 days to allow full maturation of the monolayer of cells 

(Hosoya et al., 1996). The TEER was measured both before and immediately after the study using 



an EVOM meter and the ENDOHM 12 chamber (World Precision Instruments, Sarasota, FL, USA) 

with readings between 500-900 Ω.cm2

 

 for all cells in this study. 

Transport studies were conducted using hanks balanced salts solution (HBSS) supplemented 

with both glucose and HEPES to give final concentrations of 25 and 10 mM respectively. For pH 

6.0 studies, 10 mM 2-Morpholinoethanesulfonic acid (MES) (USB, Cleveland, Ohio, USA) was 

used instead of HEPES. 

 

2.3 P-glycoprotein and other transporter inhibition: 

  In studies where inhibition of P-glycoprotein or a multitude of other transporters were 

performed in conjunction with known inhibitors, cells were pre-incubated in buffer containing the 

inhibitors for 30 min. The P-glycoprotein inhibitors included 4 µM PSC-833 and 4 µM GF120918. 

The general MRP inhibitors 500 µM probenecid or 25 µM MK571 were also used, to provide 

comparative non-P-glycoprotein efflux inhibition data, depending on which agent gave the least 

interference in our HPLC assays. Other transport inhibitiors included the proton ionophore, FCCP 

(Carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (40 µM), 100 µM adrenalin and 

noradrenalin, 250 µM L-DOPA and 500 µM tetra-ethylammonium (TEA) for testing OCT1-3 and 

hEMT sensitivity and the Na+/H+ antiport inhibitors amiloride (1mM) and EIPA (5-(N-Ethyl-N-

Isopropyl) amiloride (100µM) were also used. Energy metabolism inhibitors Na-Azide (1mM) 

combined with  50 mM 2-deoxyglucose and sodium-orthovanadate (100 µM) were used as was 400 

µM dibutyryl cAMP to induce cAMP mediated protein kinase activity while 500 µM theophylline 

was also used to increase intracellular cAMP levels. 75 µM calmidazolium was used to block 

Ca2+/calmodulin signalling pathways. 100 µM diltiazem, and 100 µM nifedipine were used as Ca2+ 

channel blockers, while 200 µM paraquat inhibits novel transporters related to, but distinct from the 

dopamine transporter. 100 µM reserpine was used to block vesicular monoamine uptake. 1 mM 



Thiamine-HCl (Vitamin B1) was used as another organic cation thought to have competitive 

blocking ability at various transporter sites and 200 uM pheniramine was used to block H1 

receptors. During the transport study these modifying agents were also present in the donor 

chamber with our test compounds and in the receiver chamber, at the same concentrations as stated 

above. 

 

2.4 Amphetamine derivatisation. 

As dexamphetamine and pseudoephedrine do not have inherent fluorescent characteristics, 

and their UV spectra are also very weak, these two amphetamines required derivatisation with 

dansyl chloride [(5-dimethylamino)naphthalene-1-sulfonyl chloride] using established protocols 

(Wang and Fuh, 1996; Yamada et al., 2002). After completion of all collections, aqueous samples 

were increased to pH 9 with carbonate buffer and incubated in a total of 50% acetone containing the 

dansyl chloride for 44ºC for 1 hour. Aliquots were able to be added directly to the HPLC system 

without extraction and provided very linear std curves with an r2 of 0.9995 between 0.1 and 100 µM 

concentrations for both derivatised amphetamines tested measuring fluorescence at 345nm 

excitation and 500nm emission. 

MDMA, MDEA and p-MA displayed inherent fluorescent spectra with excitation at 280nm 

and emission at 333nm. The signal strength for p-MA was not as strong as either MDMA nor 

MDEA, thus we were restricted to 250 nM detection limits in our system for p-MA, yet could detect 

down to 25 nM MDMA and MDEA allowing lower concentrations to be used with these 2 latter 

amphetamine derivatives. 

  

2.5 HPLC analysis. 

The mobile phase for detection of MDMA, MDEA and p-MA consisted of 20 mM NaH2PO4 

[BDH-Merck, Kilsyth, Victoria] pH 3.8: acetonitrile [EM Science, Gibbstown, NJ, USA] (83:17 



v/v). The Agilent 1100 series HPLC system ran at 1.2 mL/min with 25uL of MDMA, MDEA or p-

MA added to a Zorbax stable-bonded AQ column, 5µm pores, 15 cm x 4.6 mm I.D. with mated 

guard column [Agilent, NSW, Australia]. Typical retention times for p-MA, MDMA and MDEA 

were 3.1, 3.6 and 4.5 minutes respectively. 

Modifications to this protocol for dansyl-chloride derivatised dexamphetamine and 

pseudoephedrine included changing the mobile phase to water:acetonitrile (35:65) and the column 

was changed to an Alltech Alltima High-Performance C18  HL column with 3um pores, 15 cm x 4.6 

mm I.D. Typical retention times for pseudoephedrine and dexamphetamine were 7.0 and 7.5 min 

respectively. Ephedrine was used as our internal std. This eluted at 5.5 min in this system. 

  

2.6 Data analysis. 

Drug transport through cell monolayers was calculated both as a simple amount passing the 

monolayer per min, which would vary depending on the concentration used in the donor 

compartment, and as an apparent permeability co-efficient as calculated previously (Crowe and 

Lemaire, 1998). Briefly, this calculation allows for a modification to the original Artursson equation 

(Artursson, 1990), where the concentration in the donor compartment (Co) is re-calculated after 

every 30 min time point to compensate for that already present in the receiver chamber to ensure a 

greater accuracy in calculating the rate of movement into the opposing chamber (Youdim et al., 

2003). 

 

Results in this study are presented as the mean ± S.E.M., standardised on individual protein 

concentrations. Significant differences between values were examined using Student’s two-tailed 

unpaired t-test or one way ANOVA. Results were considered significant if P< 0.05. 

 

3. Results 



 

None of the amphetamines were shown to be substrates for the efflux transporter, P-

glycoprotein. At pH 7.4 only equivalent transport in both directions for all amphetamine derivatives 

was observed (Table 1, Fig. 1). When P-glycoprotein inhibitors were added the same transport rates 

were still observed (Fig. 1, Table 1) in both directions. Transport rates above 25 x10-6 cm/sec are 

considered indicative of either 100% gastrointestinal absorption or very rapid organ uptake for 

drugs already in the systemic circulation. As Dex, pseudoephedrine, MDMA, MDEA and p-MA all 

showed very rapid (>27 x10-6 cm/sec flux) at pH 7.4 in any direction (Table 1), transport through 

organ systems for these drugs will be very rapid. However, using a pH 6.0/7.4 gradient, which is 

indicative of gastrointestinal absorption through-out the small intestine, due to active Na+-H+ pumps 

generating acidic microclimates at the microvilli aqueous boundary layers in the intestinal tract 

(Tsuji and Tamai, 1996), we find the apical to basolateral rate of transport for dexamphetamine was 

approximately 10 × 10-6 cm/s (Table 1), yet the basolateral to apical rate of transport was 16 fold 

higher resulting in considerable efflux. Similarly, MDMA pH gradient studies showed an efflux of 

13 fold under these conditions (Fig. 2, Table 2). Dexamphetamine showed no reversal in the 

presence of the P-glycoprotein inhibitor, PSC-833 (Table 2). This was to be expected, as we have 

shown previously that P-glycoprotein is not influenced by pH gradients, such that efflux systems at 

pH 6/7.4 that are absent at pH 7.4/7.4 are unlikely to be P-glycoprotein mediated (Crowe and Wong, 

2004). Sodium Azide and FCCP were able to reduce efflux by 2 to 3 fold for MDMA, MDEA and 

p-MA (4 fold in the case of Azide on MDMA efflux) (Tables 2 and 3), implying that an unknown 

active transport system linked to the antiport movement of H+ ions was involved (in part) for pH 

dependent efflux. There was very little metabolism (<1%) of amphetamines evident from our 

fluorescence-HPLC detection (results not shown), and this was not enough to suggest intracellular 

metabolism was responsible, rather than transport. 

Amiloride at a 1mM concentration and its more potent analogue EIPA (used at 100 µM) 

were added separately to determine any influence of Na+ / H+ antiporters on amphetamine transport. 



Although amiloride did result in some reduction of drug efflux, the 200x more potent, and selective, 

analogue did not, suggesting amiloride may be acting on one of the many other protein or sodium 

mediated transporters that it has some affinity towards (Tables 2 and 3). 

It is well known that amphetamines can inhibit neuronal uptake of adrenalin and 

noradrenalin (Silvestrini et al., 1991). Thus, could the reverse also occur, with catecholamines  

reducing pH dependent amphetamine transport? Certainly our results showed adrenalin reducing 

MDMA transport two fold (Table 2), while MDEA was affected by both adrenalin and noradrenalin, 

and p-MA was only affected by noradrenalin (Table 3), suggesting pH dependent specific 

catecholamine transporters in the intestine may excrete amphetamine derivatives back to the 

intestinal lumen, reducing uptake. This varied responses to both adrenalin and noradrenalin though, 

suggests a group of similar transporters are involved across the amphetamine derivatives, rather 

than one subtype. 

With the variable effects of adrenalin and nor-adrenalin, it was considered that the human 

organic cation transporters (OCT) may be playing a role in amphetamine transport, which resulted 

in the OCT 1, 2 and 3 inhibitor  tetraethylammonium (TEA) being examined (Schomig et al., 2006). 

However, in our study TEA did not decrease efflux, and instead may have increased amphetamine 

efflux to 40-50% higher levels than the pH gradient alone (Table 2 and 3). A recent article 

examining uptake of MDMA at pH 6 into Caco-2 cells also did not show any influence of TEA, yet 

they did show that a H1 receptor blocker could reduce uptake by one third (Kuwayama et al., 2008). 

Thus, we used the H1 receptor blocker, pheniramine, on bidirectional transport yet could find no 

influence of this drug on MDMA and MDEA. However, for p-MA where Ap to Bas transport was 

significantly elevated, without any effect on Bas to Ap transport, this reduced the efflux ratio to less 

than 5, which was the most significant efflux ratio reduction for all drugs examined with p-MA 

(Table 3). 

 



4. Discussion: 

Initially our studies focussed on P-glycoprotein mediated efflux of amphetamine as an 

extension from earlier reports that indirectly suggested P-glycoprotein to have some involvement in 

the transport of these amphetamine derivatives, especially MDMA (Ketabi-Kiyanvash et al., 2003; 

Mann et al., 1997). However, we were not able to find any evidence of P-glycoprotein mediated 

efflux for any of the amphetamine derivatives tested. Two recent publications from other 

laboratories examining methamphetamine and MDMA have likewise shown no P-glycoprotein 

mediated efflux (Bertelsen et al., 2006; Upreti and Eddington, 2008), in keeping with our own 

finding for these drugs as well as unreported until now evidence that p-MA, MDEA, 

dexamphetamine and pseudoephedrine as shown here, are also not P-glycoprotein substrates. 

It has been well characterised that kidney excretion of pseudoephedrine and other ephedrine 

derived decongestant drugs are dependant on urinary pH. The higher the tubular filtrate pH, the less 

ephedrine based drug is released to the urine (Kanfer et al., 1993; Till and Benet, 1979). Previous 

work from our laboratory showed Caco-2 cells to have proton coupled antiporter transport coupled 

to loperamide (Crowe and Wong, 2004), so we were keen to examine whether Caco-2 cells were 

able to show pH mediated changes in transport of amphetamine derivatives either in the uptake or 

efflux directions. It became evident that all amphetamine derivatives were transported in the efflux 

direction when presented with physiological pH values of 6 on the luminal side equivalent (apical 

side) and 7.4 on the blood side equivalent (basolateral side) in our studies. Ionic changes alone 

could feasibly account for profound changes in directional transport through cell membranes if their 

pKa’s were close to one of the pH values used in our study. However, these amphetamines have 

pKa values from 9.9 to 10.1 (Kuwayama et al., 2008), suggesting that at all times at least 99.6% of 

drugs are ionised. To further illustrate the likelihood of transporter activation, reverse pH gradient 

studies, although not physiologically relevant, were conducted to prove that the same significant 13 

fold pH gradient changes would not occur if the gradients were reversed, thereby confirming the 



evidence of efflux transporters and not limiting the data to properties of the amphetamines alone. 

Our data here confirmed that although a small reverse gradient was achieved, it was only in the 

order of 2.5 fold, not 13 fold as shown with the physiological situation. 

As Caco-2 cells have been shown to express many of the enzyme and transport systems of 

the human gastrointestinal tract (except cytochrome P450 systems) (Gan and Thakker, 1997; 

Hidalgo et al., 1989), we examined a range of potential transporter inhibition methods to attempt to 

elucidate the mechanisms responsible for this pH dependent efflux. Interestingly, a very recent 

publication has also shown this pH gradient efflux of MDMA in Caco-2 cells (Kuwayama et al., 

2008). In our accumulation studies for MDMA and its derivatives and were unable to show any 

increase in accumulation between 3 and 60 min of exposure. Their publication confirms this, as 

they showed that by 3 min, cellular uptake is almost saturated (Kuwayama et al., 2008). This is 

different to transcellular transport where our studies showed linear transport rates through our Caco-

2 subclone cells for at least 120 min (Fig. 2). 

 The first line of evidence for carrier mediated transport action of amphetamine derivatives in 

a 1.4pH gradient environment came from the use of energy metabolism inhibitors such as sodium-

azide. This significantly reduced the efflux ratio in our studies. Additionally, the ATP binding 

cassette inhibitor sodium-orthovanadate was also able to cause similar inhibition, suggesting a 

carrier protein that directly uses ATP was responsible. Further studies showed that this transport is 

linked to the broad cAMP protein kinase messenger system within cells, as dibutyryl cAMP was 

able to reduce efflux, suggesting that this transporter can be down regulated by elevating cAMP 

levels. 

Amiloride is a potent inhibitor of the intestinal Na+/H+ antiporter present in the small 

intestine. Although some inhibition of methamphetamine derivative efflux was shown in our study, 

amiloride does also affect a number of other ion channels. Thus, to confirm the use of Na+/H+ 

antiport mechanisms in the efflux of our amphetamine derivatives we used the 200 times more 



potent amiloride analogue, EIPA, which surprisingly showed no significant reduction on the 

amphetamine efflux, indicating that the Na+/H+ channels were not used.  

Caco-2 cells have been shown previously to express H+ coupled monocarboxylic acid 

transport systems, and peptide delivery systems that could be inhibited with the proton ionophore 

FCCP (Bailey et al., 1996; Wu et al., 2000). This study showed efflux transport of MDMA, MDEA 

and p-MA could be reduced when co-incubated with this proton ionophore. It is not likely to be the 

H+ coupled monocarboxylic acid transport nor tertiary di/tri peptide transporters (Bailey et al., 1996; 

Wu et al., 2000), as the direction of transport is to remove the amphetamine derivatives, not for 

increased absorption under these physiological pH gradient conditions. In addition, recent 

publications have highlighted other H+ mediated transporters represented on Caco-2 cells, such as a 

sodium independent L-type amino acid transport system that is responsible for oral uptake of L-

DOPA (Fraga et al., 2002). However, when using L-DOPA at high concentrations to competitively 

inhibit this transport system, we were unable to show any significant influence on 

methamphetamine derivative efflux from our system. In fact, for MDEA and p-MA the presence of 

additional L-DOPA on both sides of the membrane appeared to accelerate the efflux mechanism 

back to the apical chambers, although there was no significant addition efflux on MDMA. 

 In an attempt to narrow the identification of this transporter family further, we noted that 

Caco-2 cells show voltage gated depolarisation via adrenalin and noradrenalin even though they are 

devoid of α or β adrenoreceptors (Grasset et al., 1985). Recent studies showed Caco-2 cells to 

express the human extraneuronal monamine transporter (hEMT)(Calhau et al., 2003), as well as the 

closely related organic cation transporters OCT1 and OCT3, which are known systemic transporters 

of both adrenalin and noradrenalin (Calhau et al., 2003; Friedgen et al., 1996; Monteiro et al., 2005), 

and has been shown to have mRNA expression similar to the human small intestine (Seithel et al., 

2006). hEMT is considered the main route of catecholamine transport within extraneuronal sites 

though (Schomig et al., 2006). The potential use of either hEMT,  OCT1, 2 or 3, could have 

explained why MDMA efflux was inhibited by adrenalin, yet not noradrenalin, especially given that 



in reciprocal roles, one report claimed MDMA and dexamphetamine could prevent catecholamine 

transport though OCTs (Amphoux et al., 2006). Efflux of MDEA was inhibited by both adrenalin 

and noradrenalin, and p-MA had its efflux partially mediated by noradrenalin and surprisingly 

pheniramine (a histamine H1 blocker), which could indicate a broader spread of these analogues in 

their pH dependent efflux across multiple transporters. It is possible that other as yet 

uncharacterised transporters are utilised, however, by a process of elimination, the hEMT 

transporter appeared the most likely candidate given the lack of efflux inhibition by 

tetraethylammonium, which affects OCT1 through 3 but does not appear to affect hEMT (Schomig 

et al., 2006). Kuwayama also found that as tetraethylammonium did not reduce MDMA uptake into 

their Caco-2 cultures they excluded these transporters as significant in intracellular absorption of 

amphetamines (Kuwayama et al., 2008). 

 Finally, we used the Ca2+ channel blocker, nifedpine, which had no effect on amphetamine 

efflux, and also the L-DOPA inhibiting Ca2+/calmodulin inhibitor calmidazolium (Fraga et al., 

2002), but this also had no effect, suggesting no direct involvement of the extraneuronal dopamine 

transporter, even though L-DOPA increased efflux in this current study. Lastly we examined 

reserpine, which is normally considered a vesicular monoamine transport (VMAT) inhibitor, 

blocking catecholamine uptake into adrenergic neurons (Schwab and Thoenen, 1983). Caco-2 cells 

are not known to possess vesicular uptake mechanisms, and certainly the rapid low uptake 

equilibrium results from our own group and Kuwayama’s (Kuwayama et al., 2008) would suggest 

that no such vesicular accumulation system exists, yet reserpine, was effective at reducing the 

extent of MDMA, MDEA and p-MA efflux in our cloned Caco-2 cell line. Interestingly, VMAT 

does secrete protons (Blackmore et al., 2001) and other studies have reported that reserpine, by 

blocking VMAT, encourages the secretion of neurotransmitters because there are no longer able to 

be stored (Partilla et al., 2006). In addition, it has been shown that all of the amphetamine 

derivatives are substrates for this same vesicular system and can deplete endogenous bioamines in 

the vesicles by reducing the pH gradient within them (Sulzer and Rayport, 1990). Caco-2 cells have 



not been shown to exhibit this exact system, but the principles of amphetamine derivatives being 

effluxed back to the luminal side does appear linked to their neuronal mechanism of action. From 

the body’s perspective though, these in vitro results suggest that under extreme stress when high 

adrenalin concentrations are circulating, or when H2 receptor blockers, proton pump inhibitors or 

antacids are consumed, co administration of amphetamine derivates, be they for ADHD or for illicit 

use, could present into the systemic circulation at significantly higher concentrations because of 

these stress induced conditions or acid lowering drug co-administration, which could have severe 

adverse health effects.
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Table 1 : 

Permeability rates for dexamphetamine sulphate, pseudoephedrine, MDMA & MDEA with or 

without the potent P-glycoprotein inhibitor; PSC-833, through Caco-2 (CLEFF9) cell monolayers in 

both apical to basolateral and basolateral to apical directions at pH 7.4. Ratios shown here are in the 

net apical to basolateral flow direction. Data indicates the mean ± S.E.M. of triplicates.  

 

 

Papp A-B 

(×10-6 cm/s) 

Papp B-A 

(×10-6 cm/s) 

Fold difference 

(Uptake) 

Dexamphetamine Sulphate      A-B direction 

20μM 79.7 ± 10.8 33.9 ± 0.6 a 2.3 

20μM + 4μM PSC-833 82.0 ± 5.3 36.2 ± 3.9 a 2.3 

(-) Pseudoephedrine    

20μM 34.4 ± 4.3 28.5 ± 1.1 1.2 

20μM + 4μM PSC-833 27.8 ± 4.0 22.7 ± 0.9 1.2 

MDMA    

20μM 46.9 ± 1.8 37.5 ± 0.5 a 1.3 

20μM + 4μM PSC-833 42.6 ± 7.3 39.0 ± 0.8 1.1 

2μM 55.64 ± 3.2 52.29 ± 2.2 1.1 

2μM + 4μM PSC-833 49.66 ± 3.8 45.24 ± 7.4 1.1 

MDEA    

4μM 51.2 ± 2.1 52.8 ± 1.4 1.0 

4μM + 4μM PSC-833 46.4 ± 2.7 42.3 ± 1.5 b 1.1 

p-MA    

5μM 60.7 ± 0.8 53.0 ± 0.4 a 1.1 

5μM + 4μM PSC-833 NA NA NA 

 



a = Significant difference in transport direction (P < 0.05).  

b = Significance of an inhibitor action for a given transport direction (P < 0.05) 

 

 



Table 2 : 

Permeability rates for dexamphetamine sulphate and MDMA with or without numerous transporter 

inhibitors through Caco-2 (CLEFF9) cell monolayers in both apical to basolateral and basolateral to 

apical directions at pH 7.4 in both wells and gradient pH studies with pH 6.0 medium in the upper 

chambers and pH 7.4 medium in the lower. Comparative reverse pH studies are also included with 

pH 7.4 in apical chambers and ph 6.0 medium in basolateral chambers to illustrate directional 

transport not only related to diffusional characteristics in pH gradient conditions. Ratios shown here 

are in the net basolateral to apical flow direction. Data indicates the mean ± S.E.M. of triplicates.  

 

pH apical / basolateral 

Papp A-B 

(×10-6 cm/s) 

Papp B-A 

(×10-6 cm/s) 

Fold difference 

(Efflux) 

Dexamphetamine Sulphate      B-A direction 

4μM pH 7.4/7.4 51.1 ± 3.0 43.2 ± 2.6 1.2 

4μM pH 6.0/7.4 9.7 ± 0.5 157.7 ± 15.8 a 16.3 

4μM pH 6.0/7.4+PSC833 7.2 ± 0.4 a 101.7 ± 34.7 a 14.1 

4μM pH 6.0/7.4+FCCP 8.6 ± 0.5 88.5 ± 8.0 a 10.3 b 

MDMA    

0.5μM pH 7.4/7.4 51.5 ± 1.1 46.4 ± 1.0 0.9 

0.5μM pH 7.4/7.4+vanadate 56.2 ± 1.9 43.7 ± 0.4 0.8 

0.5μM pH 6.0/7.4 7.3 ± 0.7 95.2 ± 4.7 13.0 

0.5μM pH 6.0/7.4+azide 14.5 ± 0.8 a 84.3 ± 1.9 5.8 b 

0.5μM pH 6.0/7.4+vanadate 13.6 ± 0.4 a 80.3 ± 2.5 a 5.9 b 

0.5μM pH 6.0/7.4+FCCP 12.6 ± 0.4 a 71.2 ± 2.3 a 5.6 b 

0.5μM pH 6.0/7.4+noradrenalin 10.2 ± 0.4 a 122.3 ± 7.0 a 12.0 

0.5μM pH 6.0/7.4+adrenalin 9.3 ± 0.8 66.7 ± 2.0 a 7.2 b 



0.5μM pH 6.0/7.4+paraquat 7.4 ± 0.5 108.3 ± 2.3 14.6 

0.5μM pH 6.0/7.4+Thiamine 12.7 ± 0.1 a 101.8 ± 2.2 8.0 b 

0.5μMpH6.0/7.4+dibutyryl cAMP 12.5 ± 0.7 a 82.3 ± 1.7 6.6 b 

0.5μM pH 6.0/7.4+L-DOPA 8.5 ± 0.6 99.7 ± 2.2 11.8 

0.5μM pH 6.0/7.4+TEA 9.0 ± 0.1 a 153.8 ± 0.9 a 17.0 b 

0.5μM pH 6.0/7.4+pheniramine 7.5 ± 0.4 97.3 ± 2.8 12.9 

0.5μM pH 6.0/7.4+reserpine 10.7 ± 0.6 a 65.1 ± 3.9 a 6.1 b 

0.5μM pH 7.4/6.0 51.9 ± 1.2 21.3 ± 0.2 0.4 

0.5μM pH 7.4/6.0+reserpine 49.2 ± 3.1 17.4 ± 0.6 0.4 

 

 

Concentration of each inhibitor used is listed as follows; 40 µM FCCP (Carbonyl cyanide 4-

(trifluoromethoxy)phenylhydrazone, 100 µM adrenalin, 1mM amiloride, 1mM Na-Azide combined 

with prior addition of  50 mM 2-deoxyglucose,  400 µM dibutyryl cAMP, 250 µM L-DOPA, 100 

µM nifedipine, 100 µM noradrenalin, 100 µM Na-orthovanadate, 200 µM paraquat, 200 µM 

pheniramine, 100 µM reserpine, 4 µM PSC-833, 500 µM tetraethylammonium (TEA) and 1 mM 

Thiamine-HCl (Vitamin B1). 

(a) = Significance of an inhibitor action for a given transport direction (P < 0.05) 

(b) = Significant difference in efflux ratio for inhibitors from pH gradient 6/7.4 alone 

 

 



Table 3 : 

Permeability rates for MDEA and p-MA with or without numerous transporter inhibitors through 

Caco-2 (CLEFF9) cell monolayers in both apical to basolateral and basolateral to apical directions 

at pH 7.4 in both wells and gradient pH studies with pH 6.0 medium in the upper chambers and pH 

7.4 medium in the lower. Comparative reverse pH studies are also included with pH 7.4 in apical 

chambers and ph 6.0 medium in basolateral chambers to illustrate directional transport not only 

related to diffusional characteristics in pH gradient conditions. Ratios shown here are in the net BL-

AP flow direction. Data indicates the mean ± S.E.M. of triplicates.  

 

 Papp A-B 

(×10-6 cm/s) 

Papp B-A 

(×10-6 cm/s) 

Fold difference 

(Efflux) 

MDEA      B-A direction 

0.5μM pH 7.4/7.4 61.3 ± 3.9 51.4 ± 0.8 0.8 

0.5μM pH 6.0/7.4 10.2 ± 0.4 138.2 ± 12.7 13.6 

0.5μM pH 6.0/7.4+Azide 15.8 ± 0.7 a  53.7 ± 9.6 a 3.4 b 

0.5μM pH 6.0/7.4+vanadate 10.9 ± 0.8  85.7 ± 0.4 a 7.8 b 

0.5μM pH 6.0/7.4+amiloride 10.4 ± 1.4  95.6 ± 6.5 a 9.2 b 

0.5μM pH 6.0/7.4+calmidazolium 11.6 ± 0.7  91.0 ± 6.4 a 7.8 b 

0.5μM pH 6.0/7.4+EIPA 7.6 ± 0.5  80.2 ± 7.6 a 10.5 

0.5μM pH 6.0/7.4+FCCP 18.6 ± 0.6 a 101.6 ± 2.9 a 5.5 b 

0.5μM pH 6.0/7.4+noradrenalin 11.3 ± 0.3   92.7 ± 2.8 a 8.2 b 

0.5μM pH 6.0/7.4+adrenalin 10.1 ± 0.7   79.1 ± 4.9 a 7.8 b 

0.5μM pH 6.0/7.4+theophylline 10.7 ± 1.1  104.5 ± 11.4 9.8 

0.5μM pH 6.0/7.4+thiamine 10.2 ± 0.8 104.6 ± 7.3 10.2 

0.5μMpH6.0/7.4+dibutyryl cAMP 10.9 ± 0.7 83.7 ± 5.2 a 7.7 b 



0.5μM pH 6.0/7.4+L-DOPA 5.2 ± 0.5 a     98.4 ± 5.2 a   18.8 b 

0.5μMpH6.0/7.4+TEA 6.7 ± 0.8 a         116.3 ± 12.2            17.4 b 

0.5μMpH6.0/7.4+pheniramine 9.8 ± 0.7         118.3 ± 7.4            12.1 

0.5μM pH 6.0/7.4+reserpine 11.0 ± 0.3 85.6 ± 8.8 b 7.8 b 

0.5μM pH 7.4/6.0 56.0 ± 3.4 23.6 ± 1.2 0.4 

0.5μM pH 7.4/6.0+reserpine 73.8 ± 1.8 23.5 ± 0.2 0.3 

 

p-MA 

   

5μM pH 7.4/7.4 60.7 ± 1.0 53.0 ± 0.5 0.9 

5μM pH 6.0/7.4 7.4 ± 0.5 83.4 ± 8.0 11.2 

5μM pH 6.0/7.4+Azide 12.9 ± 0.6 a 72.5 ± 4.3 5.6 b 

5μM pH 6.0/7.4+vanadate 13.5 ± 0.5 a 92.8 ± 2.0 6.9 b 

5μM pH 6.0/7.4+diltiazem 8.2 ± 0.2 98.5 ± 4.6 12.1 

5μM pH 6.0/7.4+amiloride 12.2 ± 0.8 a 86.1 ± 10.4 7.1 b 

5μM pH 6.0/7.4+calmidazolium 9.7 ± 0.5 75.4 ± 3.7 7.8 b 

5μM pH 6.0/7.4+EIPA 7.8 ± 1.1 125.4 ± 4.9 a 16.2 

5μM pH 6.0/7.4+FCCP 13.5 ± 0.5 a 62.5 ± 6.8 4.6 b 

5μM pH 6.0/7.4+noradrenalin 10.4 ± 1.1 a 85.6 ± 9.6 8.2 b 

5μM pH 6.0/7.4+adrenalin 9.9 ± 0.1 106.0 ± 2.4 10.8 

5μM pH 6.0/7.4+paraquat 6.8 ± 0.1 86.6 ± 2.6 12.7 

5μM pH 6.0/7.4+nifedipine 8.4 ± 0.2 101.8 ± 1.0 12.1 

5μMpH6.0/7.4+dibutryl cAMP 9.8 ± 0.6 74.3 ± 4.6 7.6 b 

5μM pH 6.0/7.4+L-DOPA 4.3 ± 0.2 a 84.4 ± 4.8 19.8 b 

5μM pH 6.0/7.4+TEA 13.7 ± 1.8 a 99.3 ± 9.1 7.2 b 

5μM pH 6.0/7.4+pheniramine 20.4 ± 1.9 a 96.5 ± 5.9 4.7 b 



5μM pH 6.0/7.4+reserpine 9.8 ± 0.3 76.8 ± 8.3 7.8 b 

5μM pH 7.4/6.0 44.1 ± 2.8 19.8 ± 0.9 0.4 

5μM pH 7.4/6.0+reserpine 53.8 ± 1.0 18.6 ± 0.1 0.3 

    

 

 

Concentration of each inhibitor used is listed as follows; 40 µM FCCP (Carbonyl cyanide 4-

(trifluoromethoxy)phenylhydrazone, 100 µM adrenalin, 1mM amiloride, 1mM Na-Azide combined 

with prior addition of  50 mM 2-deoxyglucose, 75 µM calmidazolium,  400 µM dibutyryl cAMP, 

100 µM diltiazem, 250 µM L-DOPA, 100 µM EIPA (5-(N-Ethyl-N-Isopropyl) amiloride, 100 µM 

nifedipine, 100 µM noradrenalin, 100 µM Na-orthovanadate, 200 µM paraquat, 200 µM 

pheniramine, 100 µM reserpine, 4 µM PSC-833, 500 µM tetraethylammonium (TEA), 1 mM 

Thiamine-HCl (Vitamin B1) and 500 µM theophylline. 

(a) = Significance of an inhibitor action for a given transport direction (P < 0.05) 

(b) = Significant difference in efflux ratio for inhibitors from pH gradient 6/7.4 alone 

 



Figure legend: 

 

Fig. 1.  

 

Rates of apical to basolateral (clear columns) and basolateral to apical transport (striped columns) of 

2.0µM MDMA and 4.0µM MDEA  in CLEFF-9 (Caco-2) monolayers with and without the P-

glycoprotein inhibitors 4µM PSC-833 or 4µM GF120918and in the presence of a pH 6/7.4 (apical 

to basolateral) gradient. Data is shown as picogram drug transport per min to the receiver chamber 

over a total 120 min period. Results represent the mean ± S.E.M. of triplicate samples. 

 

 

Fig. 2.  

 

Apical to basolateral (  ) and basolateral to apical (    ) transport for dexamphetamine, MDMA, 

MDEA and p-MA in CLEFF-9 (Caco-2) monolayers, with pH 7.4 on both sides of the monolayers 

during the study (solid lines)  and with the presence of a pH 6.0 buffer in the apical chamber, 

providing a pH 6 7.4 gradient (dotted lines). Individual data points represent Data the mean ± 

S.E.M. of triplicate measurements. 
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