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Prior research has shown that echolocation clicks of several species of terrestrial and marine fauna

can be modelled as Gabor-like functions. Here, a system is proposed for the automatic detection of

a variety of such signals. By means of mathematical formulation, it is shown that the output of the

Teager–Kaiser Energy Operator (TKEO) applied to Gabor-like signals can be approximated by a

Gaussian function. Based on the inferences, a detection algorithm involving the post-processing of

the TKEO outputs is presented. The ratio of the outputs of two moving-average filters, a Gaussian

and a rectangular filter, is shown to be an effective detection parameter. Detector performance is

assessed using synthetic and real (taken from MobySound database) recordings. The detection

method is shown to work readily with a variety of echolocation clicks and in various recording sce-

narios. The system exhibits low computational complexity and operates several times faster than

real-time. Performance comparisons are made to other publicly available detectors including

PAMGUARD. VC 2015 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4921609]
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I. INTRODUCTION

Passive acoustic monitoring (PAM) is an increasingly

common tool in studies of marine, terrestrial, and avian

fauna and in environmental impact assessments. This article

deals with the analysis and automatic detection of a class of

bioacoustic signals, known as echolocation clicks, observed

in both terrestrial and underwater soundscapes.

It has been shown that echolocation clicks of several

species of marine and terrestrial fauna can be approximated

by Gabor-like functions (formulation presented in Sec. II).

Examples include odontocetes (Kamminga and Beitsma,

1990; Kamminga et al., 1996; Kamminga et al., 1993;

Kamminga and Stuart, 1995) and Egyptian fruit bats

(Holland et al., 2004). A Gabor function (Gabor, 1946) is a

harmonic function localised by a Gaussian envelope. Several

other studies, albeit without using the term “Gabor function”

explicitly, acknowledge the presence of a Gaussian-like am-

plitude envelope resulting in small time-bandwidth products

in the biosonar signals. Some of the species covered by these

studies include Blainville’s beaked whale (Mesoplodon den-
sirostris) (Johnson et al., 2006), finless porpoise

(Neophocaena phocaenoides) (Goold and Jefferson, 2002),

Hector’s dolphin (Cephalorhynchus hectori) (Thorpe and

Dawson, 1991), and Mediterranean bottlenose dolphins

(Tursiops truncatus) (Greco and Gini, 2006). A Gabor wave-

let transform (Gabor, 1946) or a Gabor filter (Marčelja,

1980) applied to an acoustic time series could thus help to

highlight the underlying clicks. In another study, van der

Schaar et al. (2007) attempted identification of individual

sperm whales (Physeter macrocephalus) based on modelling

their clicks by Gabor functions. We will show that the appli-

cation of the Teager–Kaiser Energy Operator (TKEO)

(Kaiser, 1990a) to such signals simplifies and enhances their

detectability with automatic detectors.

The TKEO has been used by several bioacousticians for

automatic detection of underwater echolocation clicks

(Kandia and Stylianou, 2006; Roch et al., 2008; Soldevilla

et al., 2008; Roch et al., 2011b; Klinck and Mellinger,

2011). Several non-TKEO based methods have also been

proposed, such as those based on kurtosis (Gervaise et al.,
2010), on phase slopes (Kandia and Stylianou, 2008), on

spectrogram correlation (Harland, 2008; Dobbins, 2009) and

thresholding (Morrissey et al., 2006), on stochastic matched

filtering (Caudal and Glotin, 2008), on amplitude envelope

levels (DeRuiter et al., 2009), and on the use of support vec-

tor machines (Jarvis et al., 2008). Most of the existing click-

detection algorithms based on the TKEO either use a simple

moving-average filter comparing the outputs to a fixed

threshold, rely on a noise floor that is pre-computed over a

large time interval or perform some form of forward-

backward peak selection operation within large audio seg-

ments (Kandia and Stylianou, 2006; Roch et al., 2008;

Soldevilla et al., 2008; Roch et al., 2011b; Klinck and

Mellinger, 2011). Some of the approaches that avoid the pit-

falls of employing a fixed threshold perform multi-pass proc-

essing over large segments of recordings with an inherent

assumption that spikes of echolocation clicks do not consti-

tute a majority of the considered segment. The threshold is

computed in an initial pass, and then the spike locations cor-

responding to clicks in the segment are identified over one or

more subsequent passes over the entire segment in consider-

ation. The dependence of a detector on the assessment of

certain signal statistics over long durations not only affects

its response time, but also bears an impact on the consistency

of its performance when employed in highly dynamic noise

environments. Hence, such methods are not ideal for appli-

cation in an online scenario. They also run the risk of dis-

carding weaker clicks in a temporal neighbourhood ofa)Electronic mail: s.madhusudhana@postgrad.curtin.edu.au
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multiple higher energy clicks. The method proposed by

Kandia and Stylianou (2006) is targeted at detecting sperm

whale clicks and is based on measuring the deviation of the

distribution of the TKEO output from a Gaussian shape.

Analysis is performed iteratively on short successive frames.

Barring the other elements meant for precisely locating the

onset of a click, the algorithm would report detections when

the deviation exceeds a pre-estimated skewness threshold.

The method proposed by Roch et al. (2008) also performs

operations frame-wise. The 40th percentile of the TKEO out-

puts in a frame is taken as the “noise floor” and parts of the

TKEO output that lie over 50 times this noise floor are con-

sidered to represent clicks. Similar approaches are employed

in Roch et al. (2011b) and Soldevilla et al. (2008). Contrary

to the usual practice of applying the TKEO directly to audio

signals, Klinck and Mellinger (2011) apply the TKEO to the

ratio of the outputs of two different band-pass filters and

compare the result to a dynamic detection threshold. The

threshold also relies on measurements from frames of 60 s

duration.

In this article, we present a new algorithm that employs

two short moving-average filters to provide near-

instantaneous spike detection in the TKEO output and that is

well suited for processing continuous input audio samples.

The next section presents an analysis of applying the

TKEO to Gabor signals. Then the inferences made from the

analysis are verified with a case study. The subsequent sec-

tions describe the detection algorithm and discuss its

performance.

II. APPLYING THE TKEO ON A GABOR-LIKE SIGNAL

A. Theoretical analysis

The TKEO output of an arbitrary continuous signal x(t)
is given by (Kaiser, 1990b)

Wc½xðtÞ� ¼ _x2ðtÞ � xðtÞ€xðtÞ; (1a)

where the operators _ and € denote the first and second

derivatives, respectively. The TKEO output of an arbitrary

discrete signal xn is given by (Kaiser, 1990a)

Wd½xn� ¼ x2
n � xn�1xnþ1: (1b)

For a Gabor function, there are several equivalent ways of

mathematically expressing its Gaussian amplitude envelope

(e.g., Kamminga and Beitsma, 1990; Holland et al., 2004).

For ease of establishing a relationship with the width of an

echolocation click, we chose the following representations

for continuous and discrete Gabor signals:

GðtÞ ¼ Ae�ðt�t0Þ2=2r2

cos fxðt� t0Þ þ /g; (2a)

Gn ¼ Ae�ðnTs�t0Þ2=2r2

cos fxðnTs � t0Þ þ /g; (2b)

where A is the signal amplitude, to and r are the mid-epoch

and standard deviation of the Gaussian envelope, respec-

tively, and Ts is the sampling interval in the discrete case.

The cosine term represents the carrier signal with phase /

and angular frequency x¼ 2p/Tc, where Tc is the period of

the carrier wave.

Harmonic signals localised by a Gaussian envelope can

be represented more generally as

GðtÞ ¼ Ae�ðt�t0Þ2=2r2

cos fxtðt� t0Þ þ /g; (3)

where xt describes the angular frequency as a function of

time. Of particular interest to us are the cases with constant

frequency carrier waves (CFCW) and those with linearly

chirped carrier waves (LCCW) due to their similarity to

commonly encountered echolocation clicks. The term

“Gabor-like” used in the article refers to these two types of

signals. Signals of the latter form are commonly known as

Gabor chirps (Mann and Haykin, 1991). The time depend-

ence of their carrier frequency can be expressed as

xt ¼ x0 þ _xtðt� t0Þ: (4)

Note that in this form, xo corresponds to the carrier wave’s

central frequency, which is its instantaneous frequency at

to. We will denote the carrier’s instantaneous period corre-

sponding to the central frequency as To. For Gabor-like

signals of CFCW type, _xt ¼ 0 in Eq. (4). The carrier

wave’s effective instantaneous frequency resulting from

Eq. (4) must remain positive and finite within the full

width of the Gaussian envelope, which can be defined as

6r. This constrains the values of _xt to the range

0 � j _xtj < ðx0=3rÞ.
Substituting G(t) in Eq. (3) for x(t) in Eq. (1) and simpli-

fying the result using trigonometric identities, we arrive at the

following form of the TKEO output for Gabor-like signals:

Wc G tð Þ½ � ¼ A2e� t�t0ð Þ2=r2

�
xt þ _xt t� t0ð Þ½ �2

þ 1

2
2 _xt þ €xt t� t0ð Þ½ �sin 2hþ 1

r2
cos2h

�
;

h ¼ xt t� t0ð Þ þ /: (5)

Wc consists (in order of appearance) of a constant (A2), a

Gaussian component, and a component comprising three

additive terms that affect the shape of the Gaussian compo-

nent. For convenience, we will refer to the three additive

terms as T1, T2, and T3 in the order they appear in Eq. (5).

By denoting the standard deviation of the Gaussian curve

component in W as rTK, we can express its relationship to

the Gaussian envelope of G(t) as

rTK ¼
rffiffiffi
2
p : (6)

Using Eq. (4), Eq. (5) can be rewritten for Gabor-like signals as

Wc G tð Þ½ � ¼ A2e� t�t0ð Þ2=r2

�
x0 þ 2 _xt t� t0ð Þ½ �2

þ _xt sin 2hþ 1

r2
cos2h

�
;

h ¼ x0 þ _xt t� t0ð Þ½ � t� t0ð Þ þ /: (7)
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Let us consider separately the effect of T1, T2, and T3 on W.

The term T1 is a quadratic quantity, and its minimum occurs

at �x0=2 _xt relative to the Gaussian component’s maximum.

The magnitude of this temporal offset at its minimum is

3rTK=
ffiffiffi
2
p

at the maximum j _xtj ¼ xo=3r, and it increases

with decreasing j _xtj. With its minimum occurring suffi-

ciently away from to, the term T1 introduces a skew in the

Gaussian component of W. Notice that T1 is a constant

ðT1 ¼ x2
oÞ for Gabor-like signals of CFCW type and, conse-

quently, the Gaussian shape of W is not skewed. The effects

of T2 and T3 on W can be examined by considering their

values at the limits of _xt. For the maximum value of _xt, Eq.

(7) can be rewritten as

Wc G tð Þ½ � ¼ A2x2
oe� t�t0ð Þ2=r2

(
1þ 2

3r
t� t0ð Þ

� �2

þ 1

pk
sin 2hþ 9

p2k2
cos2h

)
; (8)

where k¼ 6r/To is the number of periods of the carrier

wave’s central frequency contained within the full width

(6r) of the Gaussian envelope of G(t). The harmonic ele-

ments of T2 and T3 introduce distortions in an otherwise

smooth curve of W. The scaling of these distortions, viz.,

1/pk and 9/p2k2 (hereafter referred to as distortion scaling

factors), are driven by k. These terms are, however, small

relative to unity when the Gabor-like signal is well-formed,

i.e., contains at least a few periods of the carrier. Figure 1

shows the variation of the distortion scaling factors in T2

and T3 for a few values of k at _xt ¼ x0=3r. Because T1

approaches unity at to in Eq. (8), the maximum cumulative

distortion produced by T2 and T3 can be seen from Fig. 1 as

being small relative to T1 in the region around to for well-

formed signals. For any particular value of k, the maximum

distortion of the Gaussian in W occurs at maximum _xt and,

as _xt approaches 0, the distortion results only from T3. So

we can infer in general that for well-formed Gabor-like sig-

nals, the magnitude of the distortions caused by T2 and T3

are small compared to the scaling and skewing caused by T1

over a significant extent of the Gaussian component of W in

the vicinity of to. Hence the resulting nature of W is largely

dominated by a Gaussian. This is demonstrated in Fig. 2 for

a synthetic signal with a reasonably high rate of _xt.

Similarly high rates of frequency change in echolocation sig-

nals have been observed only in some subspecies of beaked

whales (Zimmer et al., 2005; Rankin et al., 2011). Although

the distortion of W is visible at large j _xtj, it is not significant

compared to the non-skewed Gaussian output of the TKEO.

Thus far we have shown that applying the TKEO to

Gabor-like signals suppresses the harmonic component and

that its output is well approximated by a scaled Gaussian

impulse that is narrower than the amplitude envelope of the

input signal by a factor of 1=
ffiffiffi
2
p

.

B. Case study

To verify the findings from the above analysis for real

echolocation clicks, we performed a curve-fitting exercise on

200 handpicked odontocete clicks from a recording made

over the Australian Northwest Shelf, sampled at 192 kHz.

Gabor curves were fitted to the waveforms of each click, and

Gaussians fitted to their corresponding TKEO outputs (see

Fig. 3). The Levenberg–Marquardt (LM) algorithm (Gill

et al., 1981) is known to perform well in non-linear curve-fit-

ting tasks, and hence it was chosen for this analysis. The

averages of the estimated parameters of the individual

curve-fits were considered in producing the overlaid (dark)

FIG. 1. Scaling (dashed lines) of the distortion produced by the harmonic

elements of T2 and T3 in Eq. (8), shown for a few values of k. The solid

line is indicative of the upper limit on the magnitude of distortion as a cumu-

lative effect of T2 and T3.

FIG. 2. Waveform (top-left) and spectrogram (bottom-left) of a synthetic

Gabor chirp produced with the following values: A¼ 1, r¼ 0.091 ms, /¼ 0,

and _x t so chosen as to yield carrier frequency sweep from 21 to 55 kHz

over the 6r duration with centre at 38 kHz. The signal is a simulation of an

instance of a real beaked whale click considered later. The gray overlay

shows the Gaussian envelope. The right plot shows the corresponding

Gaussian and quadratic-approximate (T1þT2þT3; scaled here, by 1=x2
0,

to enable comparisons) components of the analytical TKEO output. The dis-

crete TKEO output is overlaid over the pure Gaussian to indicate the intro-

duced skew causing a forward shift of �0.01 ms in its peak.
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Gabor and Gaussian curves. The Gabor fitting of the wave-

forms yielded parameter estimates of r¼ 0.0116 ms and

To¼ 0.0324 ms, resulting in k � 2.15. A rTK estimate of

0.0079 ms supports the relationship expressed in Eq. (6). For

the Gaussian fit of the TKEO outputs, an average summed
square of errors/residuals value of 0.01 and a root mean
squared error value of 0.03 confirmed the usefulness of the

model for fitting purposes, and an average adjusted R2 value

of 0.98 indicated a “good fit.”

III. AUTOMATIC DETECTION

So far, we have shown that for signals that can be mod-

elled as Gabor-like functions (e.g., underwater echolocation

clicks), the corresponding TKEO values tend to approach a

Gaussian shape. Based on the inferences, we will now

describe a simple system for the detection of Gabor-like

clicks in acoustic recordings.

A. Detector design

A short rectangular moving-average filter produces an

averaging or smoothing effect on an input signal. Because

the outputs of the TKEO are predominantly non-negative, a

longer moving-average filter produces a flattening effect on

the TKEO outputs. In contrast, a bell-shaped averaging filter

(e.g., Hamming, Hanning, or Gaussian function) has the

potential of highlighting short-duration energy surges in

TKEO outputs while flattening non-spiked high-energy sec-

tions. We chose a scaled Gaussian function for our first

moving-average filter (MAF1) as it allows for easy control

of the acuteness of the bell shape. Convolution operation

with MAF1 can be expressed as

hMAF1 nð Þ ¼
Ts

rG

ffiffiffiffiffiffi
2p
p

XN

i¼�N

e� iTsð Þ2=2r2
G xnþi (9)

for a filter of length 2Nþ 1, where n is the sample index and

rG is the standard deviation of the Gaussian function. The

factor ðTs=rG

ffiffiffiffiffiffi
2p
p
Þ ensures that the filter gain (area under

the curve) approaches unity. The acuteness of the Gaussian

can be controlled with rG. The choice of values for rG and N
is discussed in the next sub-section.

Consider a second moving-average filter (MAF2)–—a

rectangular averaging filter of the same length as MAF1.

The amplitude of the filter is chosen such that the filter gains

of MAF1 and MAF2 are the same. Similar gains allow for

fair comparisons to be made of the two filters’ outputs.

For an input unit impulse, hMAF1(n) peaks at the point

corresponding to the non-zero element of the impulse and

falls off on either side of it. In contrast, the response of MAF2

[hMAF2(n)] is flat. The proposed detection algorithm exploits

this difference in characteristics of the responses of the

two filters. Consider the difference [hMAF1(n)� hMAF2(n)]

expressed as a fraction of hMAF1(n). We denote this quantity

filter difference ratio (FDR), which is a normalised measure

of the extent of hMAF1(n) over hMAF2(n).

FDR nð Þ ¼ hMAF1 nð Þ � hMAF2 nð Þ
hMAF1 nð Þ

: (10)

Impulse responses of typical filters and the ensuing FDR are

shown in Fig. 4. The dotted horizontal line in the FDR plot

highlights the maximum value of FDR (FDRpeak). For a cho-

sen combination of MAF1 and MAF2, there are four note-

worthy properties of FDR:

(i) The FDR curve and FDRpeak remain the same for

input impulses of any given amplitude scaling.

(ii) The difference [hMAF1(n) � hMAF2(n)] and the ensuing

FDR are maximum when the impulse is at the centre

of the filters.

(iii) The value of the numerator never exceeds the denom-

inator. Hence the resulting ratio is less than 1.

(iv) hMAF1(n) is smaller than hMAF2(n) at input samples

sufficiently away (in time) from the non-zero element

of the impulse. The numerator and hence the ensuing

FDR are negative for such points.

FIG. 3. Curve fitting of echolocation clicks from real recordings with a

Gabor function (top) and of their corresponding TKEO outputs with a

Gaussian curve (bottom). Gray lines show clicks’ waveforms and their cor-

responding TKEO outputs in the respective plots.

FIG. 4. Impulse responses (top) of filters MAF1 (rG¼ 0.169 ms) and MAF2

and the corresponding FDR (bottom). FDR plot restricted to the range [0,1].

Dotted line in the FDR plot indicates the peak FDR value.
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Similar to a unit impulse, acute Gaussian curves also

have a steep rise followed by a steep fall. We can see from

Eq. (6) that the Gaussian-like outputs (hereafter referred to

as spike) obtained from applying the TKEO to Gabor-like

signals also have an acute profile. When the outputs of the

TKEO applied to audio recordings containing echolocation

clicks are convolved with MAF1 and MAF2, and the FDR is

determined, we can expect to see curves similar to those in

Fig. 4 at locations corresponding to clicks in the original

audio. As with unit impulses of different amplitudes, the

FDR curve would remain similar for clicks with different

intensities. Hence we chose to set the detector threshold to

be a function of FDRpeak for the chosen combination of

MAF1 and MAF2. However, TKEO outputs of real clicks

differ from a unit impulse in two ways. First, a combination

of factors (like noise and choice of sampling rate) results in

a possibility of bearing small negative values in the neigh-

bourhood of the energy pinnacle of the TKEO output corre-

sponding to an echolocation click. Second, the width of the

spike is wider than a unit impulse. As a result of these two

factors, the tip of the FDR corresponding to a click would be

lower than the FDRpeak computed for the chosen filters.

Hence the detection threshold can be set as a fraction of the

employed filters’ FDRpeak. Figure 5 demonstrates the out-

come of filtering and FDR computation for synthetic data

imitating TKEO outputs with different amplitudes. Notice

how a fixed threshold, that is 85% of the FDRpeak, can serve

as a good cut-off for detecting spikes.

Thus far we have established that the output of MAF1

remains high for TKEO values corresponding to echoloca-

tion clicks and in turn the FDR value produces a local maxi-

mum. However, the TKEO may produce non-positive

outputs for sections of input audio that do not correspond to

clicks. Depending on the length of MAF1 (and MAF2) and

the negative strength of the TKEO output, this may

sometimes translate to non-positive outputs from MAF1 and

MAF2. This, in turn, would yield FDR values that are not

meaningful for our application (e.g., 61). In certain imple-

mentations, FDR computation with such values may even

cause undesirable exceptions (e.g., divide-by-zero excep-

tion). Because we know that a non-positive value in either

filters’ output does not indicate the presence of a spike in the

TKEO output, we can safely bypass calculation of FDR for

such values. Considering property (iv) of the FDR, we also

bypass computation of FDR when hMAF1ðnÞ 6> hMAF2ðnÞ.
Considering property (iii) of FDR and the constraints

described in the preceding text [hMAF1(n)> 0; hMAF2(n)> 0

and hMAF1(n)> hMAF2(n)] for the computation of meaningful

FDR values, we can see that the usable range of FDR values

is effectively reduced to [0,1]. Further, FDR values that are

beyond the threshold value (fraction of FDRpeak) indicate the

presence of Gaussian-like spikes in the TKEO outputs, in

turn indicating the presence of echolocation clicks in the

input audio.

B. Implementation

The width of a Gaussian at half its peak value, com-

monly known as full width at half maximum ðFWHM

¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnð2Þ

p
r � 2:355rÞ provides a better feel for the width

of the Gaussian pulse in visual observations. We will denote

the FWHM and the standard deviation of the Gaussian enve-

lope in the target click as FWHMEC and rEC, respectively.

The standard deviation, rTK, of the Gaussian curve resulting

from applying the TKEO to echolocation clicks can be

derived using Eq. (6) as

rTK ¼
rECffiffiffi

2
p ¼ FWHMEC

4
ffiffiffiffiffiffiffiffiffiffi
ln 2ð Þ

p : (11)

FIG. 5. Demonstration of filtering and FDR computation for synthetic TKEO values with varying strengths for transient surges. First row shows the synthetic

TKEO values with spikes ranging from 0.10 to 0.90. Second row shows the result of filtering the TKEO values with MAF1 (black curves) and MAF2 (gray

curves). The third row shows the FDR (solid line) and the threshold (dashed line) set as 85% of FDRpeak.
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The value of rTK obtained using estimates of FWHMEC made

from visual observations of representative clicks’ waveforms

can be used as a guide in designing the needed filters. We can

set the standard deviation of the Gaussian in MAF1 to be the

same as rTK where it would function as a matched filter. We

know that 99.7% of the area under a Gaussian curve is con-

tained within a distance of 3r on either side of its mean.

Setting the length of the filter to 6rG would account for contri-

butions only from the bulk of a spike without consideration

for the points in its immediate neighbourhood. Extending the

filter length would not only weigh the high energy regions,

but also appropriately penalise low energy regions, thereby

enabling only those sections to stand out that correspond to

actual spikes in the TKEO output. However, a very long aver-

aging filter stands the risk of clubbing close lying spikes. This

causes smearing in the output thereby affecting their detect-

ability with the FDR. Figure 6 demonstrates the effect N has

on FDR and on the subsequent detection. Let us consider the

faint pulse occurring at �10.4 ms. As the energy of the pulse

is not significant compared to background noise, a shorter

MAF2 produces a larger output resulting in smaller FDR val-

ues as compared to the corresponding FDRpeak. For the same

pulse, the FDR curves corresponding to different N show that

larger N yields larger FDR. While increasing N is beneficial

for pulses that are temporally well-separated from other high-

energy signals, the resulting larger MAF2 increases the risk of

accounting for energy from neighbouring signals (including

other pulses) for pulses that are not temporally well-isolated.

For the pulse occurring at �8 ms, notice that its FDR is influ-

enced by the preceding pulse for N ¼ d6rG=Tse and is influ-

enced on both sides for N ¼ d7rG=Tse. Based on such

observations, we have empirically arrived at a value of N
¼ d5rG=Tse for MAF1 (and in turn, for MAF2). Note here

that all rG values are expressed in time units and may bear

non- integer values and hence rounding N up to the next

higher integer is necessary. Considering the widths of the dif-

ferent types of echolocation clicks commonly encountered,

this value of N does not make the full filter length (2Nþ 1)

unwieldy and at the same time enables fair weighting of

points both on and in the neighbourhood of a spike. Once the

values for rG and N are identified as described, MAF1 can be

realised as

MAF1ðnÞ ¼ Ts

rG

ffiffiffiffiffiffi
2p
p e� nTsð Þ2=2r2

G ; (12)

where n¼� N, … , �3, �2 �1, 0, 1, 2, 3, … , N is the index

of the sampled point in the filter. MAF2 can be realised as

MAF2ðnÞ ¼

XN

m¼�N

MAF1ðmÞ

2N þ 1
: (13)

The value of FDRpeak for the combination of MAF1 and

MAF2 can be obtained by setting n¼ 0 in Eq. (12) and Eq.

(13) and substituting the resulting values in Eq. (10). The

product of the obtained FDRpeak and a user-controlled value

(in the range 0–1) becomes the detection threshold for the

system. A schematic of the proposed detection system is pre-

sented in Fig. 7.

IV. PERFORMANCE EVALUATION

The performance of the system was evaluated using

both synthesised data and real audio recordings. For the lat-

ter, we used publicly available underwater audio recordings

from MobySound.1 The recording sets used are listed in

Table I. Synthetic data were generated using pieces of real

underwater recordings. A 28-s long audio fragment of ambi-

ent sea noise free of echolocation clicks was handpicked to

serve as background noise. Two sets of 20 short audio clips

containing single echolocation clicks were extracted from

underwater sound recordings. Clips with sperm whale clicks,

representing the CFCW type, constituted one set and clips

with beaked whale clicks, representing the LCCW type, con-

stituted the other. Two hundred instances of clicks were ran-

domly drawn (with repetition) from one set and then

superimposed at uniformly distributed random points in time

across the ambient sea noise recording. The amplitude of

FIG. 6. (Color online) Demonstration of the effect of N on click detection

using a segment of real underwater acoustic recording. The top panel shows

the waveform of the recording consisting of three distinct pulses. The bot-

tom panel shows the corresponding FDR for different values of N. The range

of y axis values is restricted to enable clarity. A detection threshold of 80%

of the resulting FDRpeak is also shown as dashed lines for each value of N.

FIG. 7. Schematic of the proposed click-detection system. Dashed lines are

used to indicate that the input could either be pre-recorded audio or live

real-time inputs.
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each superimposed click was altered to yield a particular sig-

nal-to-noise ratio (SNR) value. The SNR values chosen were

uniformly distributed within the range from 5 to 30 dB. The

SNR value was defined from the energy of the click being

superimposed and the energy of background noise, both val-

ues determined within the frequency band of interest

(3–30 kHz for sperm whales and 20–80 kHz for beaked

whales) and integrated over the time interval containing

90% of the click energy. The noise fragment along with the

superimposed clicks constitutes a synthetic test input. The

start and end times of each superimposition were recorded

for later comparison with detection results. Synthesis was

repeated 1000 times for each species while generating differ-

ent insertion points, different clip permutations, and different

SNR values at each repetition. To emulate the diversity in

click characteristics prevalent in real underwater audio, a

certain level of click dissimilarity was ensured within each

clip set based on a “by eye” assessment.

The FWHM (and in turn rG) of MAF1 can be tuned as

described in Sec. III B to achieve optimal performance in

each of the aforementioned tests, i.e., for each species.

However, we chose to use a single setting for all the tests to

be able to show that the algorithm is capable of performing

detection regardless of the species producing the clicks. The

chosen value of FWHM¼ 0.40 ms translates to a filter length

of 329 points for a sampling rate of 192 kHz, and 165 points

for a sampling rate of 96 kHz.

For comparative performance analysis, tests with syn-

thesised data were repeated with two other detectors–—a

TKEO-based detector described in Roch et al. (2011b) and

PAMGUARD.2 PAMGUARD is a publicly available software pro-

gram that provides automatic detection/classification capabil-

ities. The default “click detector” module was employed. It is

a non-TKEO based detector that works by comparing signal

levels to estimated background noise levels. The detector’s

various parameters were set as shown in Table II. The latest

version of PAMGUARD available at the time of this work, viz.,

v1.13.02 BETA, was used. For testing the method of Roch

et al. (2011b), a MATLAB based implementation was employed.

The implementation used is available as a part of the Silbido
(Roch et al., 2011a) package at http://roch.sdsu.edu/software/

silbido_JASA2011baseline.zip (accessed on December 13,

2014). The detector’s parameters were set as shown in Table

III. While some of the parameter values given in Tables II and

III were chosen based on a priori knowledge, others were

arrived at following short trials using a small subset of the test

set. While results better than those shown here may be possi-

ble for the compared methods, determining the optimal com-

bination of parameter values is a non-trivial task and is

beyond the scope of this study.

Tests with synthetic data were repeated for different

sensitivity settings for all three methods. For the proposed

detector, the threshold settings were varied from 0.4 to 1. In

PAMGUARD, the Trigger Threshold parameter of the click de-

tector module was varied from 7 to 14 dB. The method

described in Roch et al. (2011b) uses different thresholds in

the two stages of the detection algorithm. The stage 1 thresh-

old parameter was varied from 2 to 16 dB with the stage 2

threshold set at 5, 10, 25, and 50. Testing was repeated for

the proposed detector, with pre-filtered inputs, where the

synthesised data were bandpass filtered (with passbands of

3–30 kHz for sperm whales and 20–80 kHz for beaked

whales) before being fed to the detector.

With all three methods reporting detections as intervals

(start and end times), a click present in input data (real or

synthesised) is considered “detected” if any of the following

are true:

• The known/recorded interval of the click in the input

audio completely envelops the intervals of any reported

detections.

TABLE II. Parameter settings used to configure the click detector module in

PAMGUARD for tests with synthesised data.

Parameter Sperm Whale Beaked Whale

Pre-Filter High Pass: 200 Hz High Pass: 10 kHz

Trigger filter Band Pass: 3–30 kHz Band Pass: 20–80 kHz

Long filter 0.00001 0.00001

Long filter 2 0.000001 0.000001

Short filter 0.1 0.1

Minimum click separation 100 samples 100 samples

Maximum click length 1024 samples 1024 samples

Pre sample 40 samples 40 samples

Post sample 0 samples 0 samples

TABLE I. Datasets obtained from MobySound for testing the proposed

detector.

Species Dataset identifier and audio file(s)

Rough Toothed

Dolphins

RoughToothed_Marianas(MISTC)-Annotated

MISTCS070316-113000.wav

Rissos Dolphins Rissos-SCORE-annot

Set1-A2-H17-081406-0000-0030-1225-1255loc.wav

Beaked Whales Mesoplodon_CanaryIsles-Annotated

md05_294a10590-11850.wav

Sperm Whales Sperm whales_Bahamas(AUTEC)-Annotated

SpermWh_A2_030306-H16_short.wav

Spotted Dolphins SpottedDolphin_Bahamas(AUTEC)-Annotated

Set3_A4_042705_CH5_H40_A0600-0630.wav

Striped Dolphins StripedDolphin_Marianas(MISTC)-Annotated

MISTCS070309-092000.wav

MISTCS070309-083000.wav

TABLE III. Parameter settings used to configure the click detector of Roch

et al. (2011b).

Parameter Sperm Whale Beaked Whale

Ranges (kHz) 3–30 20–80

MinClickSaturation (kHz) 1.5 10

MaxClickSaturation (kHz) 30 60

MeanAve_s (s) 3 3

TransitionBand (kHz) 0.2–3 3–20

FrameLength_s (s) 0.01 0.01

ClickPad_s (s) 0.0075 0.0075

MinClickSep_s (s) 0.5 0.5

ClipThreshold (Disabled) (Disabled)
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• A reported detection’s interval completely envelops the

known/recorded interval of the click.
• The temporal overlap with any reported detection is at

least 60% of the known/recorded duration of the click.

In the case of synthesised data, a significant portion of

each click occurs around the midpoint of the containing clip.

Therefore 60% overlap ensures that the click is appropriately

accounted for by any partially overlapping detection.

Reported detections that enable any of the preceding three

conditions to be satisfied are considered to be “true

detections.” With these definitions of detected clicks and

true detections, performance metric “recall” can be defined

as the ratio of the number of detected clicks to the number of

clicks present in the test inputs, and the metric “precision”

can be defined as the ratio of the number of true detections

to the number of reported detections. Figure 8 shows the

precision-recall (PR) trade-off characteristics for the three

detectors. The various curves in the middle row plots show

the PR characteristics for the different stage 2 threshold set-

tings considered. Threshold settings that produced optimal

PR trade-off values were identified from Fig. 8 for the three

detectors and the variation of the detectors’ recall as a func-

tion of clicks’ SNR were assessed at these thresholds. The

corresponding results are shown in Fig. 9. Figure 10 summa-

rises the detector’s performance in capturing the pre-

annotated clicks of different species in real underwater audio

recordings.

For the proposed method, comparing the PR curves for

filtered and unfiltered inputs, we can see that improvements

in performance can be achieved with appropriate filtering of

the input signals. Further improvement in species-targeted

detection performance may be possible with an appropriate

tuning of FWHM (or rG) in MAF1. However, this is a sub-

ject for further investigation.

The real-time factor of a detection/classification system

is an indicator of its speed/throughput and is defined as the

ratio of the time taken by the system for processing a given

input to the duration of the input. Smaller the real-time fac-

tor, faster is the system. When tested on a desktop computer

with an Intel
VR

i7 CPU and 16 GB of RAM (running

Microsoft
VR

WINDOWS 7), a MATLAB implementation of the pro-

posed detector exhibited an average (over different thresh-

olds) real-time factor of 0.019 for 192 kHz audio and 0.007

for 96 kHz audio. For the optimal threshold setting identified

from Fig. 8, the real-time factor was 0.019 as well. When

run on the same computer, PAMGUARD processed the synthes-

ised data with an average real-time factor of 0.058 at the

threshold setting of 10 dB. Meaningful real-time factors

could not be determined for the implementation of the

method of Roch et al. (2011b) owing to the serialisation and

the subsequent reloading of intermediate results across

stages.

FIG. 8. (Color online) Detector performance on synthesised data–—

precision-recall trade-off curves.

FIG. 9. Detector performance on synthesised data–—recall vs SNR. Results

for the proposed detector are shown for tests performed with bandpass-

filtered inputs. Results for the detector of Roch et al. (2011b) are shown for

tests performed with a stage 2 threshold of 10 and the plot legend indicates

the stage 1 threshold.
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V. DISCUSSION

An automatic detector of echolocation clicks was sug-

gested and tested in this study. As shown with the mathemat-

ical formulation, the carrier frequency component of an

echolocation click virtually disappears in its TKEO output

when the carrier frequency is either constant or varying

nearly linearly with time. An additional benefit of this prop-

erty is that it makes an implementation of the detector

immune to species’ calling behaviour variations that would

affect the clicks’ frequency content (Au, 1993, p. 121). This

was validated by the performance of the detector on a variety

of recorded clicks with no changes in detector settings. The

robustness of the system with varying SNRs was demon-

strated in the tests with synthesised data. The evaluation

with the audio procured from MobySound also showed that

the detector worked well with different recording scenarios.

The audio recordings were obtained from different geo-

graphical locations while the data collection in each set was

performed with different recording equipment configura-

tions. The detector exhibited consistency in performance

across all recordings used in the tests. Finally, as seen in Fig.

8, the performance of the proposed detector applied to pre-

filtered data is comparable to the other tested detectors. This

shows that the proposed detector can also be used for tar-

geted species’ click detection with significant gain in proc-

essing speed.

The angle between the direction of a click’s direct prop-

agation path to a receiver and the orientation of the individ-

ual producing the click has been shown (e.g., Au, 1993;

Møhl et al., 2003; Au and W€ursig, 2004; Madsen et al.,
2004; Au et al., 2012) to have an impact on the waveform of

the recorded clicks. While it can be argued that the theoreti-

cal signals considered may closely represent on-axis (having

little or no relative angles) recorded clicks (Johnson et al.,
2006), it can be safely assumed that a majority of the clicks

captured in open water recordings were off-axis (having

high relative angles). Together, the theoretical proof and the

experimental validation show that the detector performs well

regardless of the calling species’ orientation with respect to

the recording equipment. A formal analysis of this sub-topic

is a subject for further investigation.

The high processing speed and its simple control-flow

make the proposed system feasible for pipelined hardware

implementations. The few basic mathematical and logical

operations that make up the system would take little process-

ing time on modern hardware. Although there is already no-

ticeable difference in the throughput as compared to

PAMGUARD (see real-time factors in the preceding text), an

implementation of the proposed system in c/Cþþ or JAVA has

potential in yielding much higher speeds. Also, the response

latency of the system is very small involving a one sample

delay caused by the TKEO computation followed by a filter

group delay of d5rG=Tse þ 1, resulting in (Nþ 2) samples.

Assuming that an implementation performs the two averag-

ing/filtering operations in a parallel fashion, for the settings

considered in the preceding tests, it can be shown that the

maximum delay in reporting detections would be within

�0.8 ms of the occurrence of the clicks.
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Marčelja, S. (1980). “Mathematical description of the responses of simple

cortical cells*,” J. Opt. Soc. Am. 70(11), 1297–1300.

Møhl, B., Wahlberg, M., Madsen, P. T., Heerfordt, A., and Lund, A. (2003).

“The monopulsed nature of sperm whale clicks,” J. Acoust. Soc. Am. 114,

1143–1154.

Morrissey, R. P., Ward, J., DiMarzio, N., Jarvis, S., and Moretti, D. J. (2006).

“Passive acoustic detection and localization of sperm whales (Physeter mac-
rocephalus) in the tongue of the ocean,” Appl. Acoust. 67, 1091–1105.

Rankin, S., Baumann-Pickering, S., Yack, T., and Barlow, J. (2011).

“Description of sounds recorded from Longman’s beaked whale,

Indopacetus pacificus,” J. Acoust. Soc. Am. 130, EL339–EL344.

Roch, M. A., Brandes, T. S., Patel, B., Barkley, Y., Baumann-Pickering, S.,

and Soldevilla, M. S. (2011a). “Automated extraction of odontocete whis-

tle contours,” J. Acoust. Soc. Am. 130, 2212–2223.

Roch, M. A., Klinck, H., Baumann-Pickering, S., Mellinger, D. K., Qui, S.,

Soldevilla, M. S., and Hildebrand, J. A. (2011b). “Classification of echolo-

cation clicks from odontocetes in the Southern California Bight,”

J. Acoust. Soc. Am. 129, 467–475.

Roch, M. A., Soldevilla, M. S., Hoenigman, R., Wiggins, S. M., and

Hildebrand, J. A. (2008). “Comparison of machine learning techniques for

the classification of echolocation clicks from three species of

odontocetes,” Can. Acoust. 36, 41–47.

Soldevilla, M. S., Henderson, E. E., Campbell, G. S., Wiggins, S. M.,

Hildebrand, J. A., and Roch, M. A. (2008). “Classification of Risso’s and

Pacific white-sided dolphins using spectral properties of echolocation

clicks,” J. Acoust. Soc. Am. 124, 609–624.

Thorpe, C. W., and Dawson, S. M. (1991). “Automatic measurement of de-

scriptive features of Hector’s dolphin vocalizations,” J. Acoust. Soc. Am.

89, 435–443.

van der Schaar, M., Delory, E., van der Weide, J., Kamminga, C., Goold, J.

C., Jaquet, N., and Andre, M. (2007). “A comparison of model and non-

model based time-frequency transforms for sperm whale click classi-

fication,” J. Mar. Biol. Assoc. U.K. 87, 27–34.

Zimmer, W. M. X., Johnson, M. P., Madsen, P. T., and Tyack, P. L. (2005).

“Echolocation clicks of free-ranging Cuvier’s beaked whales (Ziphius cav-
irostris),” J. Acoust. Soc. Am. 117, 3919–3927.

3086 J. Acoust. Soc. Am., Vol. 137, No. 6, June 2015 Madhusudhana et al.: Automatic detection of echolocation clicks

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  134.7.93.129 On: Thu, 21 Apr 2016 01:37:39


	s1
	l
	n1
	s2
	s2A
	d1
	d1a
	d1b
	d2a
	d2b
	d3
	d4
	d5
	d6
	d7
	d8
	s2B
	f1
	f2
	s3
	s3A
	d9
	d10
	f3
	f4
	s3B
	d11
	f5
	d12
	d13
	s4
	f6
	f7
	t2
	t1
	t3
	f8
	f9
	s5
	fn1
	fn2
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	f10
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37

