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Abstract 

Determination of process conditions for a fluid dispensing process of microchip encapsulation is 

a highly skilled task, which is usually based on engineers’ knowledge and intuitive sense 

acquired through long-term experience rather than on a theoretical and analytical approach. 

Facing with the global competition, the current trial-and-error approach is inadequate. Modelling 

the fluid dispensing process is important because it enables us to understand the process 

behaviour, as well as determine the optimum operating conditions of the process for a high yield, 

low cost and robust operation. In this research, modelling and optimization of fluid dispensing 

processes based on neural fuzzy networks and genetic algorithms are described. First, neural 

fuzzy networks approach is used to model fluid dispensing process for microchip encapsulation. 

An N-fold validation tests were conducted. Results of the tests indicate that the mean errors and 

variances of errors of the modeling based on the neural fuzzy networks approach are all better 

than those of the other existing approaches, statistical regression, fuzzy regression and neural 

networks, on modeling the fluid dispensing. It is then followed by the determination of process 

conditions of the process based on a genetic algorithm approach. Validation tests were 
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conducted. Results of them indicate that process conditions determined based on the proposed 

approaches can achieve the specified quality requirements. 
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1. Introduction 

In the competitive market of today, manufacturers need to control variability at each of the many 

processing steps in a manufacturing line. All the variables controlling the desired output in a 

given process need to be understood and optimized for tight control. To achieve them, it is 

necessary to develop an accurate model for describing the process. There are two major 

approaches of developing process models; analytical modelling and empirical modelling. 

Analytical models are established based on the physical understanding of the process and 

deploys the various physical laws, typically a set of governing partial differential equations. 

They are attractive since they provide a fundamental understanding of the relationships between 

the various input and output parameters. Quite a few analytical models were developed for 

various manufacturing processes such as fluid dispensing (Chen 2002, Li et al. 2001), injection 

molding (Chiang et al.1991) and transfer molding (Han et al. 2000). Because of the complex 

behaviour of fluid dispensing, high degree of uncertainty associated with the process and 

assumptions undertaken for developing analytical models, an analytical model for fluid 

dispensing, which can provide accurate results in real world environment, is not yet available. 

As opposed to analytical models, empirical modelling is a popular approach to 

developing process models using experimental data, which is commonly welcomed by 

industries. Classical statistical regression method is a common empirical approach to develop 

process models (Seber 2003). However, if the behaviour of processes is vague or irregular, the 

obtained models have unnaturally too wide possibility range (Chen et al. 2004). As a result, 
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statistical regression models can be applied only if the given data are distributed according to a 

statistical model, and the relationship between dependent and independent variables is crisp. 

Artificial neural networks have been used to develop process models for various manufacturing 

processes such as resistance spot welding (Lin et al. 2007) and transfer molding (Tong et al. 

2004). They have the capability to transform a nonlinear mathematical model into a simplified 

black-box structure. The advantages of using neural networks in process modelling are that they 

have learning and generalization abilities as well as nonlinearity. Previous research has already 

confirmed that a neural network is a powerful tool for modelling nonlinear, complex and noisy 

processes. However, previous studies also found that the performance of a developed neural 

network is quite dependent on the pre-defined neural network architectural design as well as on 

the setting of the neural network parameters. A fuzzy logic modelling technique has been applied 

successfully in developing models of various manufacturing processes such as the Flip-Chip 

bonding process (Kang et al. 1993), vapor phase soldering (Xie et al. 1995) and the waterjet 

depainting process (Babets & Geskin 2000). In this approach, the basic elements of a fuzzy logic 

model are the internal functions, the membership functions and the outputs. The use of several 

internal functions accounts for the fuzziness of the model. All of the statistical regression 

methods, neural networks and the fuzzy logic modeling approach normally require a large 

number of experimental data sets to develop models. Compared with these three approaches, 

fuzzy regression has a distinct advantage which is that an acceptable process model can be 

developed using fewer experimental data sets or/and incomplete data sets based on that 

approach. Limited research has been conducted so far towards the use of fuzzy regression in 

process modeling. An attempt has been made by Schaiable (Schaible 1997) to model the vertical 

CVD process using the fuzzy regression method. Lai (Lai 1994) applied fuzzy regression to 

modeling the die casting process. 
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Recent research shows that the approach of neural fuzzy networks has been used to 

develop process models for various manufacturing processes which are both nonlinear and 

complex (Tzafestas & Zikidis 2001, Kang et al 1993, Brinksmeier et al. 1998, Petri et al. 1998, 

Ling et al. 2003). It has the capability to transform a nonlinear mathematical model into a 

simplified input-output structure (Ying 1998). Kang et al. (1993) have proved that the TSK fuzzy 

system approach outperforms statistical regression and polynomial models in both correlation 

and prediction in modelling of highly nonlinear systems. Compared with conventional 

approaches of fuzzy logic, recent research has shown that neural fuzzy systems can achieve 

better performance, at least in mathematical function approximation, compared with the 

conventional approaches with the same number of fuzzy sets used in input variables (Fiordaliso 

2001). 

After developing process models, process optimization can be carried out to determine 

the optimal/proper process parameters of manufacturing processes. Quite a few techniques for 

process optimization have been attempted in previous research such as response surface 

methodology (RSM), and genetic algorithms (GA). RSM has been proven to be effective in 

many applications of process optimization (Poon 2000, Xie & Lee 1994). Xie and Lee (1994) 

developed a fuzzy logic-RSM based process optimization algorithm with CVD process as an 

application. The constructed fuzzy logic model was employed to evaluate the gradient and a 

gradient descent method was then used to optimize the objective function. However, one of its 

limitations is that it usually requires a large number of experimental data sets, specially, in the 

nonlinear region. GAs have been applied in process optimization of various manufacturing 

processes successfully (Hussein & El-Ghazaly 2004, Tan & Yuen 2000, Wilson et al 2001). 

They outperform the classical gradient descent method that it is more likely to reach the global 

optimum in solving nonlinear problems (DeJong 1975, Goldberg 1989). 
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Fluid dispensing is the most popular process for performing the microchip encapsulation 

on chip-on-board (COB) packages. However, it is a highly non-linear process and creates a 

highly coupled multi-variable system that involves the extremely complex inter-relationships 

among the fluid properties, process conditions, needle design parameters and overall 

encapsulation quality. In semiconductor manufacturing, a trial-and-error method is still very 

common to be used to identify proper process parameters setting. However, this method involves 

long process development time and optimum encapsulation quality may not be obtained 

systematically. Empirical model of fluid dispensing process also involves cognitive 

uncertainties. For example, cognitive uncertainties exist in the process such as the human 

handling of substrate for inspection and measurement, incomplete/insufficient data sets for 

process modelling, operator-to-operator variability and human judgment on the surface quality of 

the encapsulation. Various approaches have been attempted to model fluid dispensing process 

including analytical approach (Chen 2002, Li et al. 2001), statistical regression (Kwong et al. 

2007), artificial neural networks (Kwong et al. 2007) and fuzzy regression (Ip et al. 2003). 

In this paper, neural fuzzy networks approach to develop process models of fluid 

dispensing for microchip encapsulation is described. The developed process models are used to 

formulate a multiobjective optimization problem, which is then solved by a genetic algorithm. 

By solving the optimization problem, an optimal setting of process parameters for the fluid 

dispensing can be obtained. Validation tests were performed to evaluate the proposed approach 

to modelling and optimization of fluid dispensing process. Results of the validation tests indicate 

that process parameter settings can be obtained based on the proposed approaches to achieve the 

specified quality requirements. 
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2. Fluid dispensing process 

In this paper, fluid dispensing for microchip encapsulation was studied. In the fluid dispensing of 

microchip encapsulation, normally, silicon chips are covered using an X-Y numerically 

controlled dispensing system that delivers epoxy encapsulant through a needle. The material is 

commonly dispensed in a pattern, working from the center out. An fluid dam around the die site 

and second wire bond points can be made to contain the flow of material and make a more 

uniform looking part as shown in Figure 1. With assistance from the supporting company of this 

research, three significant process parameters and their normal operating ranges were identified 

as: The compressed air pressure (1 bar to 4 bar), 1x ; the pump motor speed (400 rpm to 1000 

rpm), 2x ; and the height between the substrate and the needle (250 to 2000 steps of stepping 

motor), 3x . Two quality characteristics were also identified as encapsulation weight (mg), y and 

encapsulation thickness (mm), z. 

 

 

 

 

 

Figure 1 Encapsulation of COB packages 

96 experiments were carried out based on a full factorial design with 4 levels in 

compressed air pressure ( 1x ), 6 levels in pump motor speed ( 2x ) and 4 levels in the height 

between the substrate and the needle ( 3x ). 88 out of the 96 experimental data were used to 

develop the neural fuzzy networks (NFN) based process model, and the rest 8 experimental data 

were used the validation test. 
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 To evaluate prediction accuracy of the process model, the mean error (Me) was used as 

defined below: 
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where )(kt  is the actual value of the quality requirement for the k-th experimental data; 

( ))( kxy is the estimated quality requirement with the recommended process parameters ( )kx  

obtained from the process model; n is the number of experimental data sets used for the 

validation tests. 

 The variance of errors (Var) was also involved in the validation as shown below: 
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3. Modelling fluid dispensing using neural fuzzy network 

The neural fuzzy network (NFN) approach is proposed to model the fluid dispensing process. 

Figure 2 shows the structure of a NFN which was used to model the encapsulation weight y and 

encapsulation thickness z. The network consists of an input layer in which an input vector 

containing process parameters 1x , 2x  and 3x , is fed in, the output layer which produces the 

output response, the quality characteristic y or z, and two hidden layers between the input and 

output layers. The functions of the four layers of the NFN are described below: 
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Figure 2 NFN based process model 

Layer 1: No computation is done in this layer. Each node in this layer which corresponds to one 

process parameter transmits input values to the next layer. 

Layer 2: Each node in this layer corresponds to one linguistic label (i.e. small, medium or large) 

of one of the input variables, 1x , 2x  and 3x , in Layer 1. Thus the number of fuzzy sets 

of each input variable is three. The membership value which specifies the degree to 

which an input value belongs to fuzzy set, is calculated in Layer 2. The thj  

membership function of the input variable ix  is a bell-shaped function and is given by 
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 where parameters ijx  and ijσ  with i=1,2,3 and j=1,2,3 are the mean value and the 

standard deviation of the thj  membership function of the input variable ix  respectively. 
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 The membership function ( )iij xA  of ix  with j=1,2,3 represent the small, medium 

and large fuzzy set respectively. Figure 3 shows the three membership functions of the 

process parameter 1x . ( )111 xA , ( )112 xA  and ( )113 xA  are the membership functions of 1x  

for the fuzzy sets, ‘small’, ‘medium’ and ‘large’, respectively. 11x , 12x  and 13x  are the 

mean values of the membership functions, ( )111 xA , ( )112 xA  and ( )113 xA , respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Membership functions for small, medium and large 

  Determination of proper setting of the neural fuzzy parameters ijx  and ijσ  are 

important, because they directly affect the prediction accuracy of the neural fuzzy 

network based process models. In this research, the parameters were searched using 

Genetic Algorithm (GA) (Goldberg 1989). A discussion of using GA to search the 

neural fuzzy parameters is given in the end of this section. 

Layer 3: A node in this layer represents one fuzzy logic rule and performs precondition matching 

of a rule. For instance, a fuzzy rule 
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( ) ( ) ( )332211 321321
xAxAxA gggggg ⋅⋅=µ    (4) 

In this project, number of membership functions of each input variable is 3 and the 

number of input variables is 3 as well, thus the total number of fuzzy rules is 27 (i.e. 

33). 

 For example, fuzzy rule 213R  can be written as: 

( ) ( ) ( ) . is  THEN  is   AND  is  AND  is  IF : 213333322121121213 µyxAxxAxxAxR  

 With =1x 2.5 bar, =2x 500 rpm and =3x 1700 steps, the membership values of 1x , 

2x  and 3x  can be found from Figure 4, 5 and 6 respectively, which are 5.0)( 112 =xA , 

1.0)( 221 =xA  and 9.0)( 333 =xA . Therefore the resulting output singleton y of the 

fuzzy rule 213R  is: 

   045.0)()()(. 333221112213 =⋅⋅= xAxAxAµ  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 11 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Membership functions of 1x  

 

 

 

 

 

 

 

 

 

 

Figure 5 Membership functions of 2x  

 

 

 

 

 

 

 

 

 

2x
 

0 

( )223 xA
 

( )221 xA
 

( )222 xA
 

Membership value 

1 

1200 500 

0.1 

Membership value 

( )113 xA  ( )111 xA  ( )112 xA  1 

0 

4 2.5 

0.5 

1x  



 12 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 Membership functions of 3x  

Layer 4: The node in this layer corresponds to the output variable y. The node integrates all the 

actions taken by the Layers 3 and acts as a defuzzifier with defined in (5). 
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where the weights 321 ,,
0

gggw , 321 ,,
1

gggw , 321 ,,
2

gggw  and 321 ,,
3

gggw  with 3,2,1,, 321 =ggg  are 

the neural fuzzy parameters. 

 The NFN parameters including 321 ,,
0

gggw , 321 ,,
1

gggw , 321 ,,
2

gggw  and 321 ,,
3

gggw  where 

3,2,1,, 321 =ggg , ijx  and ijσ  with i=1,2,3 and j=1,2,3 were searched by using a genetic 

algorithm (Goldberg 1998). The objective of the genetic algorithm is to minimize the training 

error of the NFN model by searching the NFN parameters setting. The fitness function is defined 

as: 
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where 
( ) ( )

( ) %1001
×

−
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=X
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t

y
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err

x x

xx
; ( )321 ,, xxx=x , ( )xty  is the actual output, X is the 

domain of all the experimental data sets, and N is the total number of experimental data sets. 

The range of fitness in (6) is [ ]1,0 . With the use of GA, an optimal setting of neural fuzzy 

parameters can be obtained. The process starts with a population of randomly generated 

chromosomes, while each chromosome is set to be a set of neural fuzzy parameters. Thus the 

length of each chromosome is 45. Thereafter, the GA further processes a fixed number of 

generations using the evolutionary operations; selection, crossover and mutation. Selection is 

performed in two steps, chromosome selection and survival. Selection on chromosomes decides 

who become parents and how many children the parents have. Children are created through 

crossover which exchanges information between parents, and mutation which further perturbs 

the children. The fitness of each child is then evaluated based on the fitness function (6). Finally, 

the survival step decides who survives in the population. After the operations of selection, 

crossover and mutation, a new population can be generated. The chromosome with the highest 

fitness is selected to be the setting of the neural fuzzy parameters. 

The following parameter values suggested by (Schaffer et al. 1989) have been used in the 

genetic algorithm for searching the neural fuzzy parameters; crossover rate = 0.8; mutation rate 

= 45/1 , where 45 is the length of the chromosome; number of generations = 1000; population 

size = 200. The genetic algorithm for optimizing the NFN parameters was implemented using 

Matlab programming software. 

 Figure 7 and 8 show the searching results using genetic algorithm to develop the neural 

fuzzy models for the encapsulation weight and encapsulation thickness respectively. 
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Figure 7 Searching results of developing the neural fuzzy model for encapsulation weight based 

on GA 
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Figure 8 Searching results of developing the neural fuzzy model for encapsulation 

thickness based on GA 
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To validate the generalization ability of the developed NFN models in modelling the fluid 

dispensing process, N-fold validation tests were conducted. The validation results are compared 

with those based on statistical regression, artificial neural networks and fuzzy regression for 

modelling the fluid dispensing process (Kwong et al. 2007). 8 data sets were randomly selected 

from the 96 experimental data sets. The remaining 88 data sets are used for training the models. 

The validation test was repeated 11 times. For each validation test, a model was developed based 

on the 88 training data sets, and the remaining 8 data sets were used for validating the trained 

model. The mean errors were calculated based on (1) and the errors of variances were calculated 

based on (2). Table 1 and Table 2 in the appendix respectively summary the mean errors and the 

variances of errors of modelling the process with regard to encapsulation weight. Table 3 and 

Table 4 in the appendix respectively summarize the mean errors and the variances of errors of 

modelling the process with regard to the encapsulation thickness. From the tables, it can be seen 

that modelling the fluid dispensing process based on the NFN models yields the smallest mean 

errors and variances of errors. Results of the 11 validation tests are shown in Figure 9, 10, 11 and 

12 in the appendix from which it can be seen that the prediction errors of NFN models, for all the 

tests, are the smallest. 

Therefore the NFN based process models for encapsulation weight and thickness 

predictions were used to perform the process optimization of the fluid dispensing, and the 

genetic algorithm is proposed to determine an optimal setting of process parameters. 

 

4. Process optimization using genetic algorithms 

Given the required values, β mg and γ mm of the encapsulation weight and encapsulation 

thickness respectively, it is necessary to determine a setting of the process parameters for 

achieving the quality requirements of the encapsulation weight and thickness. To determine the 

process parameter setting, the following multi-objective functions are formulated by minimizing 
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the errors between the estimated values of quality characteristics and actual values of quality 

characteristics: 

 Multi-objective function: 
( )

( )









−
=

−
=

γ
γ

β
β

z
xxxf

y
xxxf

3212

3211

,,min

,,min
    (7) 

subject to: {Operating range of process parameters ( 1x , 2x  and 3x )}, 

where the normal operating ranges of the three process parameters ( 1x , 2x  and 3x ) are: 

41 1 ≤≤ x , 1000400 2 ≤≤ x  and 2000250 3 ≤≤ x . A set of process parameters of the multi-

objective optimization problem consists of all process parameter sets which cannot be improved 

in any objective without degrading another objective. These process parameter sets are known as 

Pareto-optimal. Mathematically, ( )321 ,, xxxx =  dominates ( )',','' 321 xxxx =  (also written as 

'xx  ) iff  

{ } ( ) ( ) { } ( ) ( )':2,1':2,1 xfxfjxfxfi iiii ≥∈∃∧≥∈∀  

Additionally, x  covers 'x  iff 'xx   or 'xx = . All process parameter sets which are not 

dominated by any other decision vector are called nondominated or Pareto-optimal. 
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Figure 13 A GA based optimization model 

 (7) is a Pareto-based multi-objective problem which can be solved by GA which has rich 

literature in solving multi-objective problems (Knowles and Corne 2000, Zitzler et al 1999). 

Therefore GA was used in this research. Figure 13 shows a GA based optimization model for 

determining process parameters setting for the fluid dispensing and how it interfaces with the 

NFN based process models (as shown in Figure 2) was developed and implemented. The GA 

optimization model aims at minimizing the objective function (7) from which an optimal process 

parameters ( 1x , 2x  and 3x ) setting can be obtained to achieve the required encapsulation weight 
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β mg and encapsulation thickness γ mm. Some descriptions of the genetic algorithm based 

optimization model are given below. 

4.1 Randomly generated strings and fitness evaluation 

The first step of genetic algorithm is to randomly generate strings which represent the population 

of genetic algorithm. Real and binary encoding are two commonly used approaches for string 

representation. In binary encoding representation, strings need to be encoded to real values for 

fitness evaluation and also they need to be decoded again for reproduction operation. However, 

in real encoding representation, there is no need for string encoding and decoding, which would 

save a considerable amount of computational time and would lead to a much faster searching 

process than that of the binary code representation. In this research, real encoding was adopted in 

this project, and each string contains three real values, which correspond to the setting of the 

three process parameters. The generated random values have the ranges associated with the 

operating ranges of the process parameters. 

 The multi-objective function (7) was formulated to determine how close the randomly 

generated strings are to the required values of encapsulation weight (β mg) and encapsulation 

thickness (γ mm). Based on a string with the three process parameters, the quality measures of 

encapsulation weight y and encapsulation thickness z can be predicted by the NFN based process 

models. Based on the fitness function (7), the fitness of a string with three process parameters 

can be evaluated. 

 

4.2: Convergence and selection 

The population is evolved and improved iteratively until a stopping condition is met. In genetic 

algorithms, there are several stopping conditions. In this research, the stopping criterion is met 

when the number of generations is equal to a pre-defined number of generations. Otherwise, the 

genetic algorithm goes to the next evolutionary generation. 
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The approach of roulette-wheel, which is one of the most common selection methods 

used for selecting strings to perform reproduction operations (Goldberg 1989), is used for strings 

selection. For example, the fitness of the thj  string in a population is assigned a value fitness j . 

The fitness values are used to assign a probability value jprob  to the thj  string. The probability 

value jprob  is defined as: 

   

∑
=

= Popsize

1
fitness

fitness
prob

j
j

j
j       (8) 

where Popsize is the population size of the genetic algorithm. Equation (8) shows that the string 

with a larger fitness value has higher probability to be selected.  

 

4.3 Crossover, mutation and updating population 

Intermediate crossover (Muhlenbein & Voosen 1993), a common crossover operation for real 

encoding representation, is used in the genetic algorithm. It is a method of producing a new 

string around and between the process parameters of the two selected parent strings. A new 

string [ ]3
3

3
2

3
1 ,, xxx  is produced according to the following rule: 

  [ ] [ ] [ ] [ ]{ }1
3

1
2

1
1

2
3

2
2

2
1

2
3

2
2

2
1

3
3

3
2

3
1 ,,,,,,,, xxxxxxxxxxxx −×= α    (9) 

where α  is a scaling factor chosen uniformly at random over some interval typically 

[ ]25.1 ,25.0− , and [ ]1
3

1
2

1
1 ,, xxx  and [ ]2

3
2
2

2
1 ,, xxx  are the two selected parent strings. Process 

parameters in the new string are the result of combining the values of the process parameters in 

the parent strings according to (9) with a scaling factor α  chosen for each process parameter. In 

geometric terms, intermediate crossover is capable of producing new parameter values within a 

slightly larger hypercube than that defined by the parent strings but constrained by the range of 

the scaling factor α . 
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Mutation is carried out by randomly changing one or more process parameter values of 

the selected string between its pre-defined upper and lower bound. The mutation operator of 

Gaussian perturbation of individual parameters is used. For example, the parameter jx  is 

selected to be mutated. After performing mutation, its value becomes: 

    δ××+= jjj Rxx MutMx'     (10) 

where MutMx = +1 or -1 with equal probability; jR  = 0.5 × searching domain of the process 

parameter jx ; δ = a value in the range [0,1] for shrinking the mutation range based on Gaussian 

perturbation. 

Updated population is produced by reinserting the new reproduced strings into the old 

population. It can be produced by replacing the least fitness strings in the old population with the 

new reproduced strings. However, pre-mature convergence likely occurs in early generations of 

evolution. To avoid the problem, random reinserting approach is used in the genetic algorithm. 

 

5. Implementation and results 

There are several evolutionary algorithm parameters such as population sizes, crossover rates 

and mutation rates that need to be set such that evolutionary algorithms can find solutions 

efficiently [Back and Schwefel 1993, Eiben et al 1999]. It can be found that different results 

could be obtained using different settings of genetic algorithm parameters. Although there are a 

lot of studies of investigating performance of genetic algorithms using different settings of GA 

parameters [Back and Schwefel 1993, Eiben et al 1999, Goldbery 1989, Grefenstette 1986, De 

Jong and Spears 1990], no conclusion has been reached by which a parameter setting outperform 

the others on which problem landscapes. As this research project focuses on modeling and 

optimization of fluid dispensing using neural fuzzy networks and GAs, we adopted DeJong’s 

suggestions of algorithm parameters settings [DeJong 1975] in this research. Referring to the 
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DeJong’s suggestion, population size, crossover rate, the mutation rate and pre-defined number 

generations are set as 200, 0.8, 0.001 and 200 respectively. The genetic algorithm toolbox coded 

in Matlab (Chipperfield et al. 1994), which exists in the public domain, has been employed to 

search the process parameters of the fluid dispensing process. 

Eight validation tests were performed to evaluate the effectiveness of the GA based 

optimization model. For each test, required values of encapsulation weight and thickness are 

input and it is expected that a setting of process parameters can be obtained from the 

optimization model. Table 5 shows the eight settings of process parameters generated by the GA 

based optimization model corresponding to the eight sets of requirements of quality 

characteristics. The second and third columns show the required values and the predicted values 

of encapsulation weight and encapsulation thickness. The last three columns show the settings of 

the process parameters generated by the GA based optimization model. From the table, it can be 

found mean prediction errors between the required values and the predicted values of the 

encapsulation weight and encapsulation thickness are all about 3%. 

As an instance, the distributions of chromosomes the GA run of the 1st validation test at 

the 5-th, 50-th, 200-th and 500-th  are shown in Fig. 14, 15, 16 and 17 in the Appendix. It can be 

found that the chromosomes distribute more randomly at the 5-th, 50-th and 200-th than the one 

at the 500-th. It can also be observed that the shape of a Pareto – optimum occurs at the 500-th 

generation in which both the error of encapsulation weight of chromosome and the error of 

encapsulation thickness of chromosome are more equally than the ones at the 5-th, 50-th and 

200-th generations. 
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Table 5 Recommended process conditions with respect to the requirements of quality 

characteristics 

 Requirements of 

quality characteristics 

Validation results of process optimization 

Weight 

β 

(mg) 

thickness 

γ  

(mm) 

Weight β 

(mg) 
Thickness γ  

(mm) 

Recommended process condition 

Opt. value 

(mg) 

Relative error 

(%) 

Opt. value 

(mm) 

Relative error 

(%) 

x3 

(bar) 

x2 

(steps) 

x3 

(rpm) 

1 72.3 0.58 74.6358 3.2308 0.5953 2.6327 2.9655 472.0325 633.9157 

2 43.2 0.48 45.1413 4.4937 0.4851 1.0688 2.0460 903.9330 898.3743 

3 87.4 0.67 84. 4016 3.4307 0.6251 6.7015 4 2000 666.38 

4 37.2 0.46 36.1849 2.7287 0.4471 2.8143 1.5522 1282.7 970.1482 

5 75.1 0.62 71.1691 5.2342 0.5789 6.6237 1.2595 1536.4 497.8665 

6 59.3 0.57 60.7858 2.5055 0.5537 2.8624 1.1937 357.7756 574.6837 

7 62.4 0.53 63.4488 1.6808 0.51395 3.0283 1.6594 250 613.77 

8 53.1 0.53 53.4702 0.6972 0.5292 0.1509 3.9027 830.9390 958.8334 

mean relative 

errors  (%) 

 3.0002 3.2353  

 
 

6. Conclusion 

In this paper, neural fuzzy networks and genetic algorithms were proposed to determine process 

parameters setting of fluid dispensing process for microchip encapsulation. 96 experiments based 

on a full factorial design were conducted in which the parameters of compressed air pressure, 

pump motor speed, distance between substrate and needle, and two quality characteristics, 

encapsulation weights and encapsulation thickness, are involved. 88 experimental data were used 

to develop the NFN based process models. 8 validation tests were carried out to evaluate the 

effectiveness and robustness of the process parameters settings recommended by the GA based 

optimization model. The validation results indicate that, for each test, a setting of process 

parameters can be obtained to achieve the required quality requirement based on the proposed 

approaches. 

 Further work involves the validation of the process conditions obtained by the system in 

a real world environment using experiments. Improvement of the NFN based process models and 
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the GA based optimization model in terms of the computational speed and accuracy could be 

considered in future studies. A data mining rule-based system will be developed to reduce the 

searching space of the GA based optimization model. The results will be reported in the near 

future. 
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Appendix 

Table 1 N-fold validation on encapsulation weight (mean errors) 
Trials 1 2 3 4 5 6 7 8 9 10 11 mean 

SR 2.6167 5.5694 4.4299 6.9069 5.9278 5.2842 7.8274 5.3838 3.3115 7.0466 3.5837 5.2625 
FR 9.5184 5.9854 8.2059 8.7820 21.3973 8.8987 14.4420 13.6757 5.7829 15.1002 8.9840 10.9793 
NN 2.8521 4.7557 4.1000 6.6230 6.4458 4.8087 7.5392 5.1239 3.0325 6.7104 3.4329 5.0386 

NFN 2.5411 4.7666 3.9463 5.9725 5.7491 4.6673 6.9703 4.9626 2.8342 6.3694 3.0980 4.7161 
 
Table 2 N-fold validation on encapsulation weight (variances of errors) 
Trials 1 2 3 4 5 6 7 8 9 10 11 mean 

SR 2.0329 4.1817 4.6365 6.2247 3.7489 5.1607 10.1716 3.5386 5.2920 5.9655 3.0582 4.9101 
FR 8.3080 4.1697 5.3148 6.1757 21.0245 7.5905 9.0266 14.9656 4.8712 11.7089 10.7331 9.4444 
NN 1.9908 2.9812 3.3651 4.4350 4.1630 3.8899 7.1553 3.5088 3.7378 4.7496 2.8427 3.8927 

NFN 1.9543 2.9659 3.3449 4.4124 4.0692 3.8598 7.1234 3.4429 3.7204 4.7011 2.7959 3.8537 
 

Table 3 N-fold validation on encapsulation thickness (mean errors) 
Trials 1 2 3 4 5 6 7 8 9 10 11 mean 

SR 5.0367 5.1956 4.2001 5.2102 2.3794 4.3085 4.3628 4.1777 3.7339 4.7027 2.7146 4.1838 
FR 8.7428 10.3850 8.4335 7.0995 9.7924 9.6185 10.9179 7.6667 9.7215 8.8324 7.4376 8.9680 
NN 4.7145 4.9939 4.0407 4.6909 2.7688 4.2376 4.4037 3.9501 3.8050 4.4659 2.8017 4.0793 

NFN 4.3260 4.6079 3.7291 4.2680 2.6463 3.9283 4.1032 3.6324 3.5519 4.1104 2.6216 3.7750 
 
Table 4 N-fold validation on encapsulation thickness (variances of errors)  
Trials 1 2 3 4 5 6 7 8 9 10 11 mean 

SR 5.3338 5.1579 3.1694 6.1514 1.7856 2.7014 2.9673 4.6335 3.2039 4.8416 1.7221 3.7880 
FR 5.4407 3.0829 4.9998 6.1072 3.5297 5.6476 6.0247 4.4292 4.7949 2.9651 4.9830 4.7277 
NN 4.3779 4.0619 2.7407 5.0358 1.6002 2.4452 2.6718 3.7797 2.7500 3.8184 1.6677 3.1772 

NFN 4.2842  3.9648  2.6901  4.9272 1.5738 2.4062 2.6284 3.6973 2.6982  3.7275  1.6469 3.1131 
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N-fold validation on encapsulation weight (mean)
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Figure 9 N-fold validation on encapsulation weight (mean errors) 
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Figure 10 N-fold validation on encapsulation weight (variances of errors) 
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Figure 11 N-fold validation on encapsulation thickness (mean errors) 
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N-fold validation on encapsulation thickness 
(variance)
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Figure 12 N-fold validation on encapsulation thickness (variances of errors) 
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Figure 14 Distribution of chromosomes at the 5-th generation 
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Figure 15 Distribution of chromosomes at the 50-th generation 
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Figure 16 Distribution of chromosomes at the 200-th generation 
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Figure 17 Distribution of chromosomes at the 500-th generation 
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