
©2005 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be
obtained from the IEEE.

A User Adaptable User Interface Model to Support Ubiquitous User Access to
EIS Style Applications

Jon Davis, Andrew Tierney, Elizabeth Chang
Curtin University of Technology, Curtin Business School, Bentley, 6102, Australia

Jon.Davis@cbs.curtin.edu.au, Andrew.Tierney@cbs.curtin.edu.au,
Elizabeth.Chang@cbs.curtin.edu.au

Abstract

The user interface for computer applications is
typically hard coded and offers minimal flexibility for
user customisation. In this paper we list and discuss
several requirements for application user interfaces
that offer; widespread application accessibility, access
across international boundaries, and that support user
interface individualisation by normal users (without
the need for specific software customization by
developers). We review related works in XML based
user interface deployment and identify shortcomings,
and present a solution that we name the Web service
based Adaptable User Interface (WAUI). The major
features of the WAUI are; the decoupling of the
traditional user interface from both the execution
platform and the rest of the application layers by the
use of web services, and providing for an automated
user interface adaptation capability based on; the
user’s selected cultural and internationalization
options, the user’s preferences for alternative visual
display objects, and the preferences that a user defines
for modifying the function and layout of application
forms and display objects.

1. Introduction

User interaction within computer applications is
largely a one-way process where each application is
coded with a fixed user interface (UI) structure
requiring a correspondingly fixed sequence of actions
and behaviour from the users. Modifying these user
workflows in applications remains a complex, time-
consuming and laborious task that typically involves
an instantiation of a popular software development life
cycle [1] by the software developer in order to effect
the required change in functionality.

An alternative strategy to increase application
availability is the modelling of the user interfaces, with

separation of the user interface layer from the other
layers of the application. While this concept is not
novel and has been receiving increasing attention in
recent years, technologies such as XML and Web
Services have increased the opportunity to realize
concrete benefits of such strategies which are being
actively pursued by endeavours such as XAML [2],
XUL [3], Xforms [4] and UIML [5]. These efforts
provide a sound basis for providing technical solutions
for user interface separation but they do not address
other efficiency and accessibility issues that need to be
considered for widespread ubiquitous access to
application user interfaces.

We list the following general requirements that we
believe must be achieved in order to provide for
application user interfaces that support a high level of
accessibility to all users, and support a high degree of
group individualization plus individualized user
interaction without the need for specific software
customization by software developers:

A. Define a standard language structure for the
definition, update and manipulation of the visual user
interface elements and other displayable content.

Without a progressive merging towards a standard
UI language, the majority of applications will not be
available to all users - via the use of a UI processor
that accepts a universal UI language, all such
applications can be accessed by all available users and
user groups.

B. Utilise a common and standard communications
protocol between the user interface execution platform
and the application logic platform.

The separation of these application layers provides
maximum availability of applications to users.
Compatibility and processing requirements of the
entire application in terms of user interface, application
logic and database layers often preclude application
deployment to many platforms, of which the popularity
yet limitations of the modern Personal Digital

Proceedings of the 29th Annual International Computer Software and Applications Conference (COMPSAC’05)

0730-3157/05 $20.00 © 2005 IEEE

Assistant (PDA) and mobile phone so readily
demonstrate. By allowing a richly featured user
interface (richer than HTML) to operate on all
computing platforms, yet communicate to other
platforms (if and as required) for other components of
the application provides full application distribution
capabilities. The use of XML and Web Services is an
obvious candidate to provide the communication
services.

C. Fully support the nominated cultural and
language variations of international users.

The vast majority of application software has been
hard-coded for specific languages and cultures which
severely limits the adoption of applications for use in
and by other nations and cultures. The utilisation of
universal character encoding, automated translation
and multi-language conversion increases accessibility
to all user groups.

D. Allow the user to customise the common “look
and feel” of the standard user interface objects, and to
specify preferred or alternate compatible user interface
objects.

The design of a user interface is typically
determined and hard-coded by the application
developer and cannot usually be changed. Many of the
common user interface objects and design metaphors
that are implemented are functionally synonymous and
thus could permit a user or user group to determine
their own UI display preferences to suit individual
requirements. This can result in improved UI
interaction performance efficiencies by matching the
user interaction method to personal behaviours and
working environments.

E. Allow applications to identify user interface
elements that are permitted to be modified by the user
within the user interface to provide local customisation
and user individualization of the application – many
applications, particularly large and complex Enterprise
Information System style applications aim “to be all
things to all users”. These applications can become
very confusing to users and user groups that do not
require particular functions in their work role or
organisation. By defining non-core application objects
and providing a mechanism whereby users can either
modify or disable non-core UI features, users and user
groups can streamline and optimise the application for
their localised requirements.

In summary, these requirements for ubiquitous
access can be stated as:

Define the UI in a standard language to allow
UI execution on the majority of platforms,
Communicate with the application logic layer
using standard methods to permit UI access
from the majority of platforms,

Generate UI displays that operate in any
orientation and language,
Allow users to choose their own look and feel
of the UI objects,
Allow users to modify or discard non-core UI
components to suit their local requirements.

This paper reviews various user interface
distribution methods currently in use, identifies their
suitability in satisfying the above requirements for
adaptable user interfaces and presents a model for
providing an adaptable user interface capable of
providing a significant improvement for the ubiquitous
accessibility of applications.

2. Related Works

In this section we provide a brief summary of the
primary user interface distribution methods that are in
use or development as a review of how well the
proposed requirements (from the introduction) are
satisfied by existing methods.

2.1. HTML, XML and the World Wide Web

The emergence and acceptance of HTML since
1989 provides an obvious candidate for a standard UI
language specification [6]. Indeed, it would be difficult
to find a modern computing platform that does not
support a version of the HTML specification.
Accordingly, great efforts have been expended by
application developers to provide HTML based user
interfaces to their applications which has thus provided
for a higher level of accessibility to their applications.
However, it has also become widely recognised that
the HTML standard does not provide a suitably “rich”
user interface experience for users without the use of
additional elements such as ActiveX and Java
components that then re-introduce platform specific
compatibility requirements and does not satisfy the
standard language requirements (item A from the
introduction).

In 1991, the Uni-Code Consortium was formed to
promote a worldwide character encoding standard that
“provides a unique number for every character, no
matter what the platform, no matter what the program,
no matter what the language” [7]. Support for Uni-
Code adoption and usage has been fairly slow although
it is now provided for in most platforms and
development tools. However, Uni-Code is merely a
provider of the correctly identified character – it has no
support for the character context i.e. how the character
is initially identified or used. What is required to
provide full internationalisation of text in applications

Proceedings of the 29th Annual International Computer Software and Applications Conference (COMPSAC’05)

0730-3157/05 $20.00 © 2005 IEEE

are translation mechanisms (either lookup or
automated) that are used in conjunction with the
correct orientation of the user interface display.

Apart from HTML, one of the most important
technologies to have emerged from the web is
eXtensible Mark-up Language (XML) which is a text
based language for the classification of data although
XML can also define how the data should be
processed. Originally designed in 1996 XML is rapidly
becoming the standard for data representation and
portability between systems [8].

With a conception emerging from 1999 as a
solution to enabling the transfer of XML data, Web
Services [9] is also rapidly progressing as a standard
for facilitating interoperation between applications
regardless of their location on the connected network
or the host platform [10].

The utilisation of an XML based language structure
for UI definition has been adopted for several high
profile industry initiatives such as; Microsoft in their
recently prepared specification for XAML [2], a mark-
up language to define their next generation of user
interface; the open source community has been
working on XUL (Xml User interface Language) [3];
the World Wide Web Consortium is working on
Xforms as the next generation of web forms [4]; and
Harmonia Inc which has been working on the
definition and implementation of UIML (User
Interface Mark-up Language) [5].

These initiatives utilise XML-based user interface
specifications but to only limited platforms and require
currently proprietary support software or direct
interfacing which does not fully satisfy the standard
language requirements (item A from the introduction)
but does represent significant progress towards the
stated goals. They do seek to and succeed in providing
a better technical solution for presenting user
interfaces on their compatible platforms but they do
not address other stated issues B to E to provide higher
accessibility.

Microsoft’s XAML [2] is targeted towards
Windows based systems only but its specification does
provide for a rich UI feature set. While it is intended
for both local and remote UI deployment, as a potential
merging of the current competing strategies of thick
and thin client solutions, XAML relies on explicit
object bindings to application logic objects and thus
does not seek to achieve nor provide platform
independence. While initially targeted for release with
the next version of Microsoft’s Windows as
“Longhorn” in 2006, XAML support may be released
as an earlier standalone enhancement. A number of
open source and commercial pre-releases of XAML-
based products such as MyXAML [11] and Xamlon

[12] have already been released for use by the
development community.

The creation of XUL [3] by the open source
community is another example of the high quality of
open source software that is currently being produced
in some sectors. Following the tenets of the popularist
open source movement, XUL is supported on a wider
range of platforms than XAML – extending from
Windows to include Apple Macintosh and various
popular strains of UNIX and Linux operating systems.
The platform specific runtime support for XUL is
provided as part of the Mozilla project in terms of
installed versions of their HTML browsers Mozilla or
Firefox. Many of the available extensions to these
open source browsers are developed in XUL which
also utilises direct object bindings to local application
objects and is thus platform dependent and does not
directly support separation of the UI layer from the
application.

W3C’s Xforms is a specification for the next
generation of web forms. It seeks to extend current
web browser form functionality by providing richer
forms content, although it does not have to be limited
to only browser usage. Xforms does nicely decouple
the presentation logic from the application logic, and
uses an extensible XML structure, although the
communication stream is dependent on the
implementation. Improved internationalisation is a
stated goal but has been limited to allowing external
opportunity to make use of the XML structure [4].
Xforms provides another very good example of
defining user interfaces but lacks the capabilities of
user and user interface customisation and readily
useful internationalisation.

Harmonia’s UIML [5] has been under development
since 1995 and is in limited commercial use. UIML
has progressed to become a proprietary XML based
mark-up language with a relatively simple syntax
structure which is specifically designed for user
interface specification. UIML code is not a generic
model of the user interface requirements but rather is a
specific rendering of the user interface requirements
for a pre-determined specific device. UIML’s
simplicity is a benefit and it is supported on a large
number of platforms although it does not have an
option for decoupling via web services, nor does it
support specific user customisation or
internationalisation options.

While all of these initiatives utilise XML based
language specifications and collectively provide rich
UI functionality, only Xforms comes close to utilising
a communications standard and fully supporting
separation of the UI layer from the application logic.

Proceedings of the 29th Annual International Computer Software and Applications Conference (COMPSAC’05)

0730-3157/05 $20.00 © 2005 IEEE

The authors propose the use of Web Services as the
most suitable means of providing a common and
standard communications protocol between the user
interface platform and the application logic execution
platform which would therefore make the application
user interfaces accessible from any device. The
combination of XML and Web Services has finally
yielded a suitable candidate technology that would
satisfy the communications standards requirements
(item B from the introduction).

2.2. PDA’s, Smart Devices and Mobile
Computing

Emerging in the mid-1990’s the main contenders in
the PDA market are based on either the Palm
Operating System (PalmOS) or on the later Microsoft’s
Windows CE which is usually found as Pocket PC’s
(although Linux is also available for some systems).
The necessarily smaller processing and storage
capability, low screen resolution and proprietary
operating systems are inhibitors to “real world”
application usage on these devices.

Modern mobile phones are also powerful digital
computers approaching the processing power of PDA
processors and are starting to utilise operating systems
based on Sun’s Java, Microsoft’s Mobile Windows
and even Linux, and can also offer many of the
applications and other benefits of PDA’s plus the
inclusion of wireless Internet and data access. The
typical screen of a mobile phone is even smaller than a
PDA and user input is usually provided by the numeric
keypad, issues which are severe inhibitors to efficient
user interface operation [13].

The desire to develop applications once and deploy
them either directly or with minor modification to any
computing device is a goal of many computer
scientists and commercial organizations [14], [15].
There are many limitations to these goals, not the least
of these is the great disparity between the different
user interfaces and the availability of processing power
and supporting operating systems for these mobile
devices. Many efforts are aimed at resolving the issue
for the user interface tier of multi-tier applications, and
relying on the availability of wireless communications
to the application logic and database server layers to
complete the full application architecture [5], [16].

2.3. Current Problems that are Restricting
User Accessibility

The use of XML to define user interface
requirements is rapidly becoming a standard method.

However, primary attention is being given to solutions
that employ direct binding of application objects rather
than pursuing full decoupling between the user
interface and application logic layers. There is a much
higher focus on the technical deployment of user
interfaces to many device types rather than contextual
deployment as required for true internationalisation
and user individualisation. There is much work
proceeding on automating user interface generation
[17], [18], [19], [20] rather than on user customisation
of the interface.

These advances in technology have progressively
contributed to more efficient user interfaces and
processes to develop the user interfaces but
collectively they fall short of adequately addressing the
requirements listed in the introduction:

A. Standard UI language: there is no current
standard for a user interface language specification
although the use of XML or a variation is the thrust of
most convergence efforts. The development of
applications for access by different platforms and
devices is largely a re-development effort
(notwithstanding the opportunities that cross-platform
applications such as Java can produce).

B. Common communications between application
layers: there is no current standard and the majority of
application development either does not separate the
user interface or relies on the use of proprietary and /
or direct object interface protocols and methods.

C. Internationalisation support: Uni-Code is an
available standard and is supported by the major
operating systems and development software vendors
but has only been used minimally. Typically,
developers will re-develop major portions of an
application for language specific versions or simply
not bother with multi-language versions.

D. Look and feel: operating system support
provides for only very basic customization of the user
interface although Linux and Java offers “themes” [21]
designed to simulate the “look and feel” of other
operating systems.

E. Customisation: configuration and minor
customization options are entirely dependent on
whether a developer has provided any options for the
user but are typically not available to any significant
level.

3. Introducing the Web Service Based
Adaptable User Interface

To address the problems detailed in Section 2.3 we
have developed a solution named the Web service
based Adaptable User Interface (WAUI) that

Proceedings of the 29th Annual International Computer Software and Applications Conference (COMPSAC’05)

0730-3157/05 $20.00 © 2005 IEEE

decouples the traditional user interface from both the
execution platform and from the rest of the application
layers and provides for an automated user interface
adaptation capability based on; the user’s selected
cultural and internationalization options, the user’s
preferences for alternative visual display elements, and
the preferences that a user defines for modifying the
function and layout of application forms and display
objects.

3.1. Features of the Web Service Based
Adaptable User Interface

Standard UI language: By utilizing XML as the
structure of the WAUI language specification,
interaction with local or remote application logic layers
and other applications can be reduced to a simple user
interface command syntax mapping issue. In
particular, the complete separation of the user interface
from the rest of the application provides a ready made
user interface solution for any applications based on
the Model Based Architecture paradigm [22], [23],
[24].

Common communications between application
layers: The WAUI exists as a standalone UI layer and
utilizes standard Web Services [9] (with an XML [8]
based command structure) as the communication
protocol to the application logic layer(s). Application
logic access from the WAUI is then greatly simplified
and the web services technology used is already
available for most platforms that support Microsoft’s
.NET [25], Novell’s Mono [26] and Sun’s Java which
covers the vast majority of computing platforms and is
progressively including devices such as digital mobile
phones and PDA’s, pending full operating system
incorporation.

Internationalisation: Access to the full international
character set in the WAUI is provided by adherence to
the Uni-Code standards. The user interface objects
respond to the identified cultural requirements of the
visual display such as horizontal and vertical character
ordering. The availability of multiple language sets for
the text attributes of user interface objects for the
application should normally be a provision of the
application logic layer – similarly, where a required
language set is not available, the use of automated
translation services should also be provided by the
application logic layer. As an interim measure the
WAUI should support the capability to define alternate
language sets and interact with defined translation
services as an alternate source of text attributes for
unknown or unsupported languages.

Look and Feel: The WAUI allows users to define
their own “look and feel” in two main ways; by over-
riding the default visual appearance of standard objects
such as forms layout, buttons, edit boxes etc. This
feature should normally be a provision of the operating
system and should be supported by the WAUI as an
interim feature; and by specifying alternative visual
object representation for each visual object type e.g. a
user may choose that all radio button objects that are
specified by the application logic layer are replaced
with an object of their choice that provides similar
functionality, say a single selection drop-down list,
when it is requested in the user interface. The
automated conversion of user interface objects to more
space efficient objects can also aid in the deployment
of user interfaces to devices with smaller display areas.

Customisation: The WAUI allows for all user
interface objects to be tagged with one of the following
attributes specifying the level of manipulation that the
user is permitted for that object within the WAUI user
interface:

“Primary” - where the function or operation of the
object cannot be modified. These objects have been
identified by the application logic layer as a mandatory
requirement hence their function cannot be changed by
the user although basic visual attributes such as
location on the form can be modified. Objects marked
as “Primary” would typically be; database primary
keys or mandatory fields, navigation controls that
provide access to other forms, and function controls
that access important application functionality.

“Optional” - where any aspect of the object can be
locally customized with the exception of any schema
definition, validation constraints, and the actions of
navigation or function controls. The application logic
layer does not necessarily require this element to be
activated so it can be disabled or discarded by the user,
relocated on the form, or its appearance can be
redefined in terms of text labels and displayed or
edited values and styles if appropriate. Objects marked
as “Optional” would typically be; non-mandatory
database fields, static display objects such as text and
bitmaps, and function controls that access less
important application functionality.

“Local” - allows for unlimited local customization
of the object. This object can be modified in any way
that the user requires. Objects marked as “Local”
would typically be elements that had been defined by
the user or another local user that extended the base
functionality of the application and could be any type
of object.

In all of the above cases where the WAUI changes
or is requested to change the layout of any object from
the original as requested by the application logic layer,

Proceedings of the 29th Annual International Computer Software and Applications Conference (COMPSAC’05)

0730-3157/05 $20.00 © 2005 IEEE

the layout of the current object and any subsequently
affected objects (in terms of resizing and positioning)
can be performed automatically by the WAUI.

3.2. Operation of the Web Service Based
Adaptable User Interface

Any application that interoperates with the WAUI
user interface layer requires a supporting local API
(Application Programming Interface) or function set
that aids in the creation of the XML based WAUI
commands (optional but desired) and for issuing the
WAUI command via local Web Services (mandatory
but typically already available). The authors have
developed the WAUI as the front-end to their work on
a model driven architecture implementation for
Enterprise Information Systems style applications [24].

Local interpretation of the received XML based
WAUI commands requires the installation of a local
but single WAUI application on the client computer
system to receive, process and action the WAUI
commands as the application user interface for any
number of WAUI based applications. Transport
support via standard Web Services is a trivial exercise
for most platforms using existing functionality.

The local WAUI application is used as both the
rendering and interaction engine for presenting and
operating the user interface, plus it acts as the profile
editor for users to specify their requirements for their
preferred “look and feel” and for specifying
customizations to the user interface.

Look and Feel: the local WAUI application allows
users to modify the attributes of UI components for
both the default attributes or for each specific object by
entering a local edit mode. e.g. specify the location,
size and style of the selector for radio button objects.
WAUI also allows users to set similar preferences for
UI component mapping where users prefer to operate
with functionally similar components. e.g. choose to
specify the use of drop down list box in place of radio
button controls for all or specific objects. For that user,
the user interface objects from the calling application
that have been re-mapped by the user, will be
displayed according to their modified definitions. The
most common usage of these capabilities is for setting
user interfaces on devices that have much smaller
visual displays, and for users who have a strong bias to
efficient operation with particular user interface
objects.

WAUI utilises a local layout manager to
automatically re-arrange the display objects after user
modification.

Customisation: the local WAUI application also
allows users enter an edit mode to select user interface
objects that are identified as optional or local and
modify these objects in order to develop their own
customized user interfaces that can thus remove all
unused objects, reorganize display screens to more
accurately reflect their own work behaviour and
environment, and in general produce a more visually
pleasing and thus more efficient work space.

On a corporate scale, these customization options
would benefit the simplistic customization of
Enterprise Information Systems style applications
whereby each corporate customer typically utilizes
only a smaller proportion of the available functionality.
By choosing to mask non-required features and re-
organise the remaining user interfaces to suit local
corporate requirements, and at very minimal cost as it
does not require a software customization process with
the vendor, their users benefit from simpler training
and operation.

On a more personalized scale, individual users will
often have varying local requirements where they
could receive further benefits of customizing their user
interfaces to suit their daily, repetitive or other
operational workflows.

3.3. Construction of the Web Service Based
Adaptable User Interface

There are two pathways to creating the WAUI
generation of tools – designing and creating a new
WAUI from scratch or by modifying an existing (open
source) XML based user interface tool to act as the
WAUI system.

To modify a suitable XML user interface system to
become a WAUI system requires the following steps;
establish a Web Service interface to the XML user
interface system to process the WAUI command
structure; develop WAUI command mappings to
existing XML based user interface system methods,
plus integrate new functionality as required; and over-
ride any direct binding requirements within the
existing XML user interface system methods if they
exist and replace with the appropriate WAUI
command.

The authors chose the former approach to facilitate
the progressive completion of functionality and
interface to other model based components under
development. Their project is .NET based providing
operation of the WAUI on Pocket PC style PDAs via
the .NET Compact Framework, with Linux and Apple
Macintosh compatibility to be progressively provided
by Novell’s Mono Project [26].

Proceedings of the 29th Annual International Computer Software and Applications Conference (COMPSAC’05)

0730-3157/05 $20.00 © 2005 IEEE

4. Recapitulation, Conclusions and Future
Works

The Web Service Based Adaptable User Interface
satisfies each of the requirements as stated in the
introduction and provides a solution to the identified
problems from section 2:

A. Define a standard language structure for the
definition, update and manipulation of the visual user
interface elements and other displayable content - by
utilising a formally defined and open XML command
structure.

B. Utilise a common and standard communications
protocol between the user interface execution platform
and the application logic platform – by utilising Web
Services as the standard transport for the XML based
WAUI commands which also allows distributed
applications from non-compatible platforms to execute
the user interface on any platform.

C. Fully support the nominated cultural and
language variations of international users – by the use
of Uni-Code to ensure the reproduction of genuine
internationalized character sets, by identifying and
responding to the required cultural orientation order of
the display, and by the choice of enabling language
sets for all visual objects and the ability to access
automated translation services for unknown or non-
specified languages for both data and component
object text.

D. Allow the user to customise the common “look
and feel” of the standard user interface objects, and to
specify preferred or alternate compatible user interface
objects – by allowing for the appearance and operation
of the operating system provided user interface objects
to be modified, and by allowing user specification of
compatible alternative user interface objects to
customize the users’ preferred choice of user interface
objects as managed by a local layout manager.

E. Allow applications to identify user interface
elements that are permitted to be modified by the user
within the user interface to provide local customisation
and user individualization of the application – by
identifying user interface objects as either “Primary”,
“Optional” or “Local” and by providing local profile
editing and management for the selective local
customisation of the user interface objects for the user.

In addition to the benefits listed above, the WAUI
also provides:

A potential new standard for user interface
access and separation of the user interface layer
from the application logic layer for all
platforms, of particular benefit to embedded

systems, mobile computers and other smart
devices with remote access that typically have
little or no local application availability.
Greatly reduced user workstation deployment
effort achieved by removing the requirement
for proprietary vendor protocols and client
applications - only need to install the WAUI
client application.
Far richer user interface experience than
achieved with standard HTML.
High level support for software toolsets that
support aspects of model based computing as
per proponents of the Model Driven
Architecture (MDA) where the user interface
commands of the WAUI can be created and
managed directly and automatically by the
application logic layer based on its stored
model.

Applications based on the WAUI user interface
offer widespread accessibility, support individualized
user interaction without the need for software
customization, and greatly assist and enhance the
ability to develop applications once and deploy them
either directly or with minor modification to any
computing device which is a goal of many computer
scientists including the authors.

5. References

[1] Sommerville, I., “Software Engineering”, 1st Ed-4th Ed.
Addison Wesley, 1989-1998.

[2] Microsoft, “Microsoft Windows Code-Named Longhorn
Development Centre”, Microsoft Corporation,
http://msdn.microsoft.com/longhorn/, 2004.

[3] Mozilla, “XML User Interface Language (XUL)”,
Mozilla Foundation, http://www.mozilla.org/projects/xul/,
2004.

[4] W3C, “XForms - The Next Generation of Web Forms”,
World Wide Web Consortium, http://www.w3.org/MarkUp
/Forms/, 2004.

[5] Ali, M. F., and Abrams, M., “Simplifying Construction of
Multi-Platform User Interfaces Using UIML”, UIML Europe
2001 Conference, 2001.

 [6] Gribble, C., "History of the Web Beginning at CERN",
http://www.hitmill.com/internet/web_history.asp, 2004.

[7] Unicode, “What is Unicode?”, Unicode Inc,
http://www.unicode.org/standard/WhatIsUnicode.html, 2004.

Proceedings of the 29th Annual International Computer Software and Applications Conference (COMPSAC’05)

0730-3157/05 $20.00 © 2005 IEEE

[8] W3C, “Extensible Markup Language (XML)”, World
Wide Web Consortium, http://www.w3.org/TR/WD-xml-
961114.html, 1996.

[9] W3C, “Web Services Activity”, World Wide Web
Consortium, http://www.w3.org/2002/ws/, 2004.

[10] Florescu, D., Grunhagen, A. and Kossmann, D.: XL,
“An XML programming language for web service
specification and composition”, Eleventh international
conference on World Wide Web, ACM Press Honolulu,
Hawaii, USA, 2002, pp. 65—76.

[11] MyXAML, "Welcome to MyXaml!" MyXaml,
http://www.myxaml.com/, 2004.

[12] Xamlon, "xamlon: accelarating development", Xamlon
Inc, http://www.xamlon.com/, 2004.

[13] Pilioura, T., Tsalgatidou, A. and Hadjiefthymiades, S.,
“Scenarios of using web services in M-commerce”, SIGecom
Exch. 3, 2003, 28—36.

[14] Baar, D. J., Foley, J. D. and Mullet, K. E., “Coupling
application design and user interface design”, ACM Press,
Monterey, California, United States, 1992, pp. 259—266.

[15] Ciancarini, P., Tolksdorf, R. and Zambonelli, F.,
“Coordination middleware for XML-centric applications”,
2002 ACM symposium on Applied computing. ACM Press,
Madrid, Spain, 2002, pp. 336—343.

[16] Repo, P., “Facilitating user interface adaptation to
mobile devices”, Third Nordic conference on Human-
computer interaction, ACM Press, Tampere, Finland, 2004,
pp. 433—436.

[17] Dewan, P. and Solomon, M., "An approach to support
automatic generation of user interfaces." ACM Trans.
Program. Lang. Syst. 12, 566—609, 1990.

[18] Gajos, K. and Weld, D. S., "SUPPLE: automatically
generating user interfaces", in, Proceedings of the 9th
international conference on Intelligent user interface, ACM
Press, Funchal, Madeira, Portugal, pp. 93-100, 2004.

[19] Repo, P., "Facilitating user interface adaptation to
mobile devices", in, Third Nordic conference on Human-
computer interaction, ACM Press, Tampere, Finland, pp.
433—436, 2004.

[20] Stocq, J. & Vanderdonckt, J., "WOLD: a mixed-
initiative wizard for producing multi-platform user
interfaces", in, ACM Press, Funchal, Madeira, Portugal, pp.
331—333, 2004.

[21] ArtGnomeOrg, “Gnome - Art and Themes”,
art.gnome.org team, http://art.gnome.org/faq.php, 2003.

 [22] OMG, “About the Object Management Group™
(OMG™)”, Object Management Group, http://www.omg.org
/gettingstarted/gettingstartedindex.htm, 2004.

[23] Janssen, C., Weisbecker, A. and Ziegler, J., “Generating
user interfaces from data models and dialogue net
specifications”, ACM Press, Amsterdam, 1993, pp. 418—
423.

[24] Davis, J., Tierney, A. and Chang, E., “Meta Data
Framework for Enterprise Information Systems Specification
- Aiming to Reduce or Remove the Development Phase for
EIS Systems”, 6th International Conference Enterprise
Information Systems, Porto, Portugal, 2004, pp. 451-456.

[25] Microsoft, “Microsoft Developer Network”, Microsoft,
http://msdn.microsoft.com/, 2004.

[26] Novell, “What is Mono?™”, Novell Inc,
http://www.mono-project.com/about/index.html, 2004.

Proceedings of the 29th Annual International Computer Software and Applications Conference (COMPSAC’05)

0730-3157/05 $20.00 © 2005 IEEE

