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Abstract The Nadanhada Terrane, located along the eastern margin of Eurasia, contains a typical
accretionary complex related to paleo-Pacific plate subduction-accretion. The Yuejinshan Complex is the first
stage accretion complex that consists of meta-clastic rocks and metamafic-ultramafic rocks, whereas the Raohe
Complex forms the main parts of the terrane and consists of limestone, bedded chert, and mafic-ultramafic
rocks embedded as olistolith blocks in a weakly sheared matrix of clastic meta-sedimentary rocks. Geochemical
data indicate that the Yuejinshan metabasalts have normal mid-ocean ridge basalt (N-MORB) affinity, whereas
the Raohe basaltic pillow lavas have an affinity to ocean island basalts (OIB). Sensitive high-resolution ion
microprobe (SHRIMP) U-Pb zircon analyses of gabbro in the Raohe Complex yield a weighted mean 2°°Pb/238U
zircon age of 216 + 5 Ma, whereas two samples of granite intruded into the complex yield weighted mean
206p}/238) zircon ages of 128 + 2 and 129 + 2 Ma. Laser ablation inductively coupled plasma mass spectrometry
(LA-ICPMS) U-Pb zircon analyses of basaltic pillow lava in the Raohe Complex define a weighted mean age of
167 £ 1 Ma. Two sandstone samples in the Raohe Complex record younger concordant zircon weighted mean
ages of 167 £ 17 and 137 + 3 Ma. These new data support the view that accretion of the Raohe Complex was
between 170 and 137 Ma, and that final emplacement of the Raohe Complex took place at 137-130 Ma.

The accretion of the Yuejinshan Complex probably occurred between the 210 and 180 Ma, suggesting that
paleo-Pacific plate subduction was initiated in the Late Triassic to Early Jurassic.

1. Introduction

Northeast China and adjacent regions of the Russian Far East, South Korea, and central southwest Japan
developed geologically by the collision of micro-continental blocks in the Phanerozoic. Two major tectonic
belts have been distinguished (Figure 1). The western part includes the Songliao, Xing'an, and Erguna blocks,
which together form part of the Central Asian Orogenic Belt (CAOB), marking the broad collision zone between
the North China and Siberia cratons. These areas contain mélange, Paleozoic syn-collisional granitoids, and
Mesozoic post-orogenic A-type granites [Sengdr et al., 1993; Sengdr and Natal'in, 1996; Wu et al., 2002, 2011; Xiao
et al., 2003, 2004a, 2004b; Windley et al., 2007; Zhou et al., 2011a, 2011b, 2012a; Zhou and Wilde, 2013; Kréner
et al, 2014]. The eastern part, including the Jiamusi, Khanka, Bureya, and Nadanhada terranes of NE China, the
Sikhote-Alin Terrane of the Russian Far East, and the Japanese islands (Figures 1 and 2a), belong to the Pacific
margin and are characterized by Mesozoic subduction complexes, large-scale NE-trending granite and volcanic
belts, and wrench fault systems [Xu et al,, 1987; Tang, 1990; Faure and Natal'in, 1992; Ren et al., 1999a, 1999b;
Natal'in, 1991, 1993; Maruyama, 1997; Wilde et al., 2000, 2003; Wu et al., 2011; Zhou et al., 2009, 2010a, 2010b,
2010c; Zhou and Wilde, 2013]. The Nadanhada Terrane (or accretionary complex) is a key area for understanding
the processes of paleo-Pacific subduction-accretion since the Mesozoic.

The Nadanhada Terrane (Figures 1, 2a and 2b) is situated at the boundary between the Russian Far East and
NE China, and was previously considered to be either part of the paleo-Pacific subduction zone or an exotic
terrane [Li et al., 1979; Shao et al., 1990, 1991; Shao and Tang, 1995; Mizutani et al., 1989; Mizutani and Kojima,
1992; Kojima and Mizutani, 1987; Kojima, 1989; Zhou et al., 2009]. The occurrence of Triassic-Jurassic

radiolarians in the Nadanhada Terrane has been known since the 1950s [Wang, 1959; Li et al., 1979; Mizutani
et al., 1989; Kojima and Muzutani, 1987; Kojima, 1989; Zhang, 1990]. Primarily, on the basis of the radiolarian
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Figure 1. Schematic tectonic map showing the main subdivisions of central and eastern Asia and location of the study area
(modified from Zhou et al., 2009).

studies, the Nadanhada Terrane has been considered as an ophiolitic mélange that contains some tectonic
lenses of Carboniferous to Permian limestone and greenstone (mafic-ultramafic sequences), Triassic-Middle
Jurassic bedded chert, and siliceous shale, all enclosed in post-Middle Jurassic clastic rocks [Wang, 1959;

Li et al., 1979; Mizutani et al., 1989; Kojima and Mizutani, 1987; Kojima, 1989; Zhang, 1990; Ding et al., 1997].
Mizutani et al. [1989] and Kojima [1989] suggested that the Nadanhada Terrane in NE China, the Sikhote-Alin
Terrane in the Russian Far East, and the Mino-Tamba Terrane in central Japan comprise parts of a Mesozoic
superterrane situated originally at the northwest margin of the Pacific Ocean and continuously accreted to
the eastern continental margin of Eurasia in the Mesozoic. The Nadanhada and Sikhote-Alin terranes are
juxtaposed, but the central Japan Terrane is now separated by the Japan Sea that was opened in the Neogene
time [Mizutani et al., 1989; Mizutani and Kojima, 1992; Kojima and Mizutani, 1987; Kojima, 1989; Zhang, 1990;
Zhang et al., 1997; Cheng et al., 2006; Zyabrev and Matsuoka, 1999]. The Nadanhada Terrane contains mafic-
ultramafic sequences, including basaltic pillow lavas, gabbros, and ultramafic cumulate rocks including wehrlite,
clinopyroxenite, and minor lherzolite and websterite [Cui, 1986; Kang et al., 1990]. Chromite deposits also occur
in the Hamatong and Honggishan areas (Figure 2b). A few geochemical and geochronological studies were
focused on the basalt in order to identify the nature of the mafic-ultramafic sequences [Cui, 1986; Kang et al.,
1990; Zhang and Zhou, 2001; Shao and Tang, 1995; Cheng et al., 2006]. Most workers suggest that the mafic-
ultramafic rocks are ophiolitic sequences associated with radiolarian-bearing chert and shale [Mizutani et al,,
1989; Mizutani and Kojima, 1992; Cui, 1986; Kojima and Mizutani, 1987; Kojima, 1989; Kang et al., 1990; Zhang and
Mizutani, 2004; Shao et al., 1990, 1991; Shao and Tang, 1995]. However, Zhang and Zhou [2001] concluded that
these mafic-ultramafic rocks did not originate at a mid-ocean ridge or supra-subduction zone but formed in a
seamount setting. Ishiwatari and Ichiyama [2004] also argued that these mafic-ultramafic rocks are not ophiolite
but were intruded into the Jurassic chert-shale-sandstone sequences, and formed as the result of a superplume in
or near the subduction zone. In summary, most previous studies have focused on the paleobiological data, and
there is a lack of high-quality geochemical and geochronological data; thus, the protolith nature and tectonic
setting of the Nadanhada Terrane remain unclear.
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Figure 2. (a) Geological sketch map of NE China and adjacent areas [after Zhou et al,, 2011a, 2011b]. F1

= Solonker-Xar Moron-Changchun suture; F2 = Jilin-Heilongjiang

high-pressure metamorphic belt; F3 = Hegenshan-Heihe suture; F4 = Xinlin-Xiguitu suture; F5 = Yilan-Yitong Fault; F6 = Dunhua-Mishan Fault, and F7 = Primoria Fault.
(b) Detailed geological map of the Nadanhada Terrane showing sample locations (after HBGMR, 1987).

In this paper, we present geochemical and both sensitive high-resolution ion microprobe (SHRIMP) and laser
ablation inductively coupled plasma mass spectrometry (LA-ICPMS) U-Pb zircon data for the Nadanhada
Terrane. These data will enable evaluation of the nature and age of the protolith, and also allow us to place
constraints on the timing of emplacement of the Nadanhada Terrane. These results will provide further
insight into the tectonic setting of the Nadanhada Terrane with respect to paleo-Pacific subduction-accretion.

2. Regional Setting

The eastern part of NE China consists of a collage of several micro-continental blocks or terranes [Tang, 1990;
Li, 2006; Zhou and Wilde, 2013], including the Nadanhada Terrane in the northeast, the Songliao-Zhangguangcai
block in the southwest, and the Jiamusi-Khanka Block in the central part, separated by the Mudanjiang and

Yuejinshan Faults (Figure 2a).

The Nadanhada Terrane is located to the east of the Jiamusi Block and forms part of the paleo-Pacific
accretion belt, being mainly composed of Triassic-Jurassic accretionary complexes that were intruded by
Cretaceous granites [Kojima, 1989; Cheng et al., 2006]. The Triassic-Jurassic accretionary complexes of the
Nadanhada Terrane are broadly divided into two major lithostratigraphic units based on field occurrence as
shown on the 1:200,000 geological map [Heilongjiang Bureau of Geology and Mineral Resources (HBGMR),
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Figure 3. Field photographs of the Nadanhada Terrane. (a) Location of gabbro sample RH-02 showing cumulate textures.
(b) Location of basalt samples 04H(71-73) showing pillow structures. (c) Location of basalt samples 04H(80-84) and RH-08
showing pillow structures. (d) Bedded chert displaying intra-formational folds. (E) Location of thick-bedded sandstone sample
RH-13; and (F) Location of siltstone sample RH-05 in contact with Mesozoic granite.

1987]: the Yuejinshan and Raohe complexes. The Yuejinshan Complex is the first stage accretion complex and
only occurs in the Yuejinshan area, whereas the Raohe Complex constitutes the main part of the terrane and
consists of a typical tectonic mélange (Figure 2b).

2.1. Yuejinshan Complex

The Yuejinshan Complex lies at the western edge of the Nadanhada Terrane and is separated by the Yuejinshan
Fault from the Jiamusi Block (Figure 2b); it was previously referred to as the Yuejinshan “Group” in the Chinese
literature. The Yuejinshan Complex consists mainly of units of meta-clastic rocks and mafic-ultramafic rocks
(Figure 2b). The meta-clastic rocks include quartzite, quartz-schist, marble, two-mica schist, and quartz-mica-schist,
and are interpreted as continental slope sediments that experienced lower greenschist-facies metamorphism
[Zhang et al,, 1997; Zhang and Zhou, 2001; Yang et al., 1998]. The mafic-ultramafic rocks comprise typical ophiolitic
sequences of metabasalts, gabbro, and ultramafic rocks including dunite, wehrlite, and clinopyroxenite, with
extensive chromite deposits in the Hamatong and Honggishan areas (Figure 2b). The Yuejinshan Complex was
considered Middle Paleozoic in age [HBGMR, 1987, 1993]. However, Zhang et al. [1997] pointed out that the meta-
clastic rock unit consists of Triassic-Early Jurassic sediments and that timing of emplacement should be after the
Early Jurassic. Yang et al. [1998] further reported a whole-rock Rb-Sr age of 188 + 4 Ma for greenschist of the
Yuejinshan Complex in the Dongfanghong area, indicating that the Yuejinshan Complex was metamorphosed in
the Early Jurassic.

2.2. Raohe Complex

The Raohe Complex forms the main part of the Nadanhada Terrane, and is located at the boundary
between the Russian Far East and NE China (Figure 2b). It is composed of four units [Kojima and Mizutani,
1987; Kojima, 1989; Zhang and Mizutani, 2004; Cheng et al., 2006]: limestone, mafic-ultramafic rocks, chert
and siliceous shale, and clastic rocks. The mafic-ultramafic rocks are well exposed in areas about 50 km
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long and 5-8 km in width from Guanmen to Dadai. They occur as tectonic lenses in post-Middle Jurassic
clastic rocks, as pyroxene peridotite, pyroxenite, gabbro, and dolerite dykes, with distinct cumulate
textures (Figure 3a). Cui [1986] reported komatiite showing spinifex texture, but this has yet to be
substantiated. The basalts with pillow structures (Figures 3b and 3c) are amygdaloidal and invariably
altered. The limestone mainly outcrops in the Shichang and Honggqiliang areas (Figure 2b), and is up to
10 m thick and embedded as olistoliths in a weakly sheared clastic matrix [Mizutani et al., 1989]. The
limestone is massive, homogeneous and gray in color. Li et al. [1979] reported Middle Carboniferous
fusulinids and corals from the limestone, whereas Wang et al. [1986] reported upper Triassic conodonts
from bedded limestone within chert interbands near Honggqiling. The chert and siliceous shale invariably
display intra-formational folds (Figure 3d) and comprise isolated blocks enclosed in a clastic matrix.

The size of these chert blocks ranges from 20 to 100 m, and they show rhythmic bedding of ~5 cm thick
chert with thinner shale partings. Middle to Late Triassic radiolarian fossils were extracted from bedded
chert, and Middle Jurassic radiolarians were extracted from siliceous shale in the Nadanhada Terrane
[Kojima and Mizutani, 1987]. The clastic rocks consist of a mixed assemblage that includes graywacke,
sandstone (Figure 3e), siltstone (Figure 3f), and mudstone, which was considered to be “matrix” and of
post-Middle Jurassic age [Kojima and Mizutani, 1987; Kojima, 1989; Shao et al., 1990].

3. Sample Locations and Descriptions
3.1. Basaltic Pillow Lava From the Raohe Complex

Ten samples of basaltic pillow lava were collected from mafic-ultramafic rocks of the Raohe Complex.
Samples 04H-70, 71, 72, and 73 were collected at Guanmen, ~22 km NW of Raohe (N46°54'18.4" E133°
46'47.5"; Figures 2b and 3b), and samples RH-08; 04H-80, 81, 82, 83, and 84 were collected at Dadai (N46°
47'47.8" E133°45'42.1"; Figures 2b and 3c¢), ~15 km west of Raohe, where they occur as a tectonic lenses in
sandstone. They show well-developed pillow structures, 0.2-0.5 m in width and ~0.4-0.8 m long
(Figures 3b and 3c¢), indicating a subaqueous volcanic origin. The texture of the pillow lava varies between
sub-ophitic, porphyritic, and seriate, with total phenocryst contents ranging from 10 to 20%. The lavas
generally contain phenocrysts of plagioclase (50%), titanaugite (30%), and olivine (15%) set in a fine-
grained groundmass of granular olivine, plagioclase laths, and intersertal glass. Other primary phases
include ilmenite and titanium-rich magnetite. Some glassy rocks have phenocrysts of equant to elongate-
skeletal olivine with included or attached oxide phases, set in a dark brown glass. Secondary minerals
include chlorite, calcite, epidote, and titanite.

3.1.2. Cumulate Gabbro From the Raohe Complex

Sample RH-02 was collected from Guanmen, ~20 km NW of Raohe (N46°52'58.9” E133°48'59.4"; Figures 2b
and 3a). It has distinct cumulate textures and displays phase and rhythmic layering. Some gabbros are
medium to coarse grained with a granular allotriomorphic texture composed of clinopyroxene (30-33%)
and plagioclase (60-63%), both ranging in size from 0.5 to 5 mm, plus fine-grained olivine (3-5%; 0.25-2 mm)
and sparse spinel. Medium-grained gabbro is composed of plagioclase (50-70%), clinopyroxene (15-25%),
with or without olivine (<5%), interstitial Fe-Ti oxides (10-15%), and accessory amounts of brown amphibole
and apatite.

3.2. Granite

Granite samples RH-49 and RH-69 were collected ~6 km west of Raohe (N46°47'25" E133°51'47.2", Figure 2b),
where a granite pluton crops out for >700 km? and intrudes the Raohe Complex (Figure 3f). The sample is
composed of plagioclase (35%—-40%), K-feldspar (25-33%), quartz (25-30%), biotite (5-6%), and cordierite
(<5%), with minor amounts of apatite, titanite, zircon, ilmenite, and secondary limonite. Magmatic cordierite
is commonly found in the Raohe granite, which shows peraluminous characteristics, indicating an S-type
affinity [Cheng et al., 2006].

3.3. Metabasalts From the Yuejinshan Complex

Samples 04H-106, 108, and 113 are metabasalts collected along the road side from the Dongfanghong to
Honggishan chromite deposits of the Yuejinshan Complex (Figure 2b). Pillow lavas are locally present, but the
majority of the basalts are massive. Both plagioclase-phyric and aphyric types are common, and they have
a greenish tint due to the presence of secondary chlorite and serpentine. The basalts are composed of
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plagioclase, clinopyroxene, and opaque minerals that are variably replaced by sericite, calcite, clay minerals,
serpentine, and chlorite. Quartz and calcite veins are common.

4. Analytical Methods
4.1. Major and Trace Elements

Analyses of major element oxides and trace elements, including rare earth elements (REE), were carried out at
the Analytical Institute of the Hubei Bureau of Geology and Mineral Resources, Wuhan. Major elements
were measured by XRF using a Regaku 3080E1 spectrometer. The analytical uncertainties are usually better
than 0.3% to 0.9% for major elements. For REE and Nb, Ta, Zr, Hf, Th, and Ba, the samples were digested by
alkaline-fusion and analyzed by JY48/JY38P ICP-AES at the same institute in Wuhan. The analytical
uncertainties are better than 5% (2c) for REE, and <10% for other trace elements. Analyses of international
standard reference samples from this laboratory were reported in Zhou et al. [2012b].

4.2. SHRIMP U-Pb Determinations

One sample of gabbro (RH-02) and two samples of granite (RH-49 and RH-69) from the Raohe Complex were
processed by crushing, followed by initial heavy liquid and subsequent magnetic separation techniques to
concentrate the zircon crystals. Samples were divided into different size and magnetic fractions using an
isodynamic separator. Zircons from the non-magnetic fractions were handpicked and mounted, along with
pieces of the CZ3 zircon standard, onto double-sided adhesive tape, enclosed in epoxy resin, and then
polished to about half their thickness. The mount was then cleaned and gold-coated and photographed in
reflected and transmitted light. Cathodoluminescence (CL) images of zircon grains were obtained using a
Philips XL30 scanning electron microscope (SEM) at Curtin University. U-Th-Pb analyses were conducted
using a WA Consortium SHRIMP Il ion microprobe housed at Curtin University, utilizing six-cycle runs through
the mass stations. Detailed analytical procedures are described by Nelson [1997] and Williams [1998]. Isotopic
ratios were monitored by reference to Sri Lankan gem zircon standard (CZ3) with a 2°°Pb/?*8U ratio of 0.0914
and a 2°°Pb/?38U age of 564 Ma. Pb/U ratios in the unknown zircons were corrected using the In (Pb/U)/In
(UO/U) relationship as measured on CZ3. All ages have been calculated from the U and Th decay constants
recommended by Steiger and Jéiger [1977]. Reported ages represent 2°°Pb/?32U data that have been corrected
using the measured 2*Pb [Compston et al,, 1984]. The analytical data were reduced, calculated, and plotted
using the Squid (1.0) and Isoplot/Ex_ver3 programs [Ludwig, 2003]. Individual analyses in the data table and on
concordia plots are presented with 1o error, and uncertainties in weighted mean ages are quoted at the 95%
confidence level (20), unless otherwise indicated.

4.3. LA-ICPMS U-Pb Determinations

The zircon U-Pb dating and trace element analyses of samples RH-05, RH-08, and RH-13 were performed
simultaneously by LA-ICP-MS at the State Key Laboratory of Geological Processes and Mineral Resources,
China University of Geosciences, Wuhan. Detailed operating conditions for the LA-ICP-MS and data reduction
procedures are the same as those described by Liu et al. [2008, 2010]. Laser ablation was performed using a
Geolas 2005 system, which was coupled to an Agilent 7500a ICP MS. Helium was used as the carrier gas and
argon was mixed with this via a T-connector before entering the ICP MS plasma source. Nitrogen was added
into the central gas flow (Ar + He) of the Ar plasma in order to improve the detection limits and precision
[Hu et al., 2008]. Each U-Pb analysis incorporated a background measurement of approximately 20-30s
(gas blank) followed by 50 s of data acquisition.

An Agilent Chemstation was utilized for the acquisition of each analysis. Offline selection and integration of
background and analyte signals, time-drift corrections, and quantitative calibration of trace element analyses
and U-Pb dates were performed using the in-house software ICPMSDataCal [Liu et al., 2008, 2010].

Standards 91500, BCR-2G, and BIR-1G were mounted on the same mount as the unknowns for analysis. Zircon
91500 was used as the external standard for U-Pb dating, and was analyzed twice every five analyses. Time-
dependent drift of U-Th-Pb isotopic ratios was corrected using a linear interpolation with time for every five
analyses according to the variations measured for 91500 (i.e., two 91500 analyses + five sample analyses
+two 91500 analyses) [Liu et al., 2010]. Preferred U-Th-Pb isotopic ratios used for 91500 were taken from
Wiedenbeck et al. [1995]. Common Pb correction of the samples was calculated using ComPbCorr#3.17
[Andersen, 2003]. Uncertainties in the values for the external standard 91500 were propagated through the
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Table 1. Major Element, Rare Earth Elements (REE), and Trace Element Analyses of Mafic Volcanic Rocks From the Nadanhada Terrane

Raohe Complex Pillow Lava Yuejinshan Complex Meta-Basalt

Sample no
SiO,
TiOy
Al,O3
F6203
FeO
MnO
MgO
Ca0
NaZO
K,0
P>0s5
Loss on Ignition (LOI)
Total
Rb

Sr

Ba

Nb

Ta

Zr

Hf

\Y

Th

U

Cr

Sc

Ni

Co

Y

La

Ce

Pr

Nd

Sm

Eu

Gd

Tb

Dy

Ho

Er

Tm

Yb

Lu
>REE
L/H
(La/Yb)n
(Gd/Yb)n
Eu/Eu*

04H-70

51.70
2.78
12.14
3.04
7.98
0.15
5.68
10.49
3.54
0.30
0.34
0.73
98.87
6
218
116.0
29.30
1.79
195
440
301
3.84
0.87
237
306
83
37
27.94
2142
43.82
6.44
28.51
6.35
2.16
6.50
1.03
5.46
0.99
242
0.33
1.96
0.29
128
573
7.84
274
1.02

04H-71  04H-72  04H-73 04H-80 04H-81 04H-82 04H-83 04H-84  04H-106 04H-108 04H-113

50.93 48.46 51.06 48.82 48.86 49.43 49.00 49.18 45.67 50.23 47.78
339 3.00 3.34 3.03 247 249 242 249 1.40 1.21 1.64
13.77 12.27 13.96 12.00 10.62 10.55 10.48 10.63 16.99 15.76 13.93
3.78 338 3.27 3.48 3.55 3.04 3.28 3.62 4.70 3.54 7.54
9.15 8.95 7.48 10.12 8.08 8.70 835 8.23 7.65 6.92 6.20
0.21 0.19 0.16 0.19 0.17 0.16 0.17 0.17 0.22 0.18 0.24
3.65 6.48 4.58 743 9.29 9.41 9.32 9.32 4.93 4.47 4.67
9.22 11.34 9.16 7.45 9.76 8.92 9.64 933 10.89 847 12.57
3.15 267 3.95 3.07 2.96 292 2.90 2.98 1.90 274 2.00
0.47 0.75 0.79 0.16 0.09 0.20 0.16 0.11 0.31 0.52 0.20
0.59 0.35 0.48 035 0.27 0.28 0.27 0.30 0.16 0.11 0.15
0.41 0.86 0.68 248 2.68 2.63 2.78 245 4.12 4.88 2.15
98.72 98.7 98.91 98.58 98.8 98.73 98.77 98.81 98.94 99.03 99.07
12 14 13 6 4 6 5 5 10 13 6
552 466 282 264 255 306 332 204 212 282 322
172.0 310.0 300.0 64.0 514 59.2 61.1 44.8 42.0 523 73.8
34.30 29.50 43.50 29.60 21.40 24.90 25.00 23.90 1.73 2.84 8.24
2.70 1.75 2.58 1.86 153 1.46 153 145 0.14 0.24 0.46
311 208 271 211 172 177 169 174 75 71 92
6.70 5.40 7.70 4.60 3.40 430 3.60 4.00 2.00 2.10 2.60
343 325 321 306 275 255 263 266 359 304 303
5.18 2.69 4.00 2.35 151 1.89 2.16 1.98 1.44 137 1.01
0.81 0.51 0.86 0.28 047 045 0.39 0.38 0.14 0.13 0.41
15.1 252 89.7 372 634 595 620 579 189 164 134
226 29.5 238 309 309 26.6 32.1 27.9 44.5 453 43.8
22 83 66 152 256 238 260 251 58 50 50
32 37 32 42 44 41 43 45 34 34 39
35.74 30.42 27.60 41.88 21.27 22.19 21.76 21.98 40.99 31.95 42.99
36.70 23.79 35.15 40.09 19.31 19.64 18.69 2391 335 230 3.95
82.46 50.93 70.12 69.14 41.53 42.50 39.52 45.77 10.24 6.94 11.05
11.09 7.38 9.98 8.69 6.21 6.40 5.93 6.71 2.19 133 2.03
48.38 3232 40.42 32.13 26.13 26.51 25.53 28.33 12.01 7.71 11.07
10.35 7.07 8.62 6.15 5.88 6.03 591 6.13 453 292 3.92
3.00 249 277 1.96 1.94 1.97 1.96 2.09 1.74 1.17 1.50
9.51 7.36 8.19 6.01 6.05 6.03 5.98 6.22 6.31 425 5.84
143 1.15 1.28 0.90 0.93 0.96 0.95 0.97 1.15 0.82 1.12
7.72 6.16 6.74 5.14 5.16 527 513 534 744 5.45 747
137 1.12 1.23 0.97 0.95 0.95 0.91 0.98 1.54 1.17 161
3.36 2.79 2.93 2.58 242 244 2.32 242 435 345 4.72
0.48 0.41 0.40 0.37 0.35 0.34 0.34 033 0.66 0.54 0.75
2.70 2.28 2.27 2.07 1.93 1.90 1.89 1.94 4.00 3.41 4.84
0.37 033 0.31 0.30 0.28 0.27 0.27 0.28 0.57 0.49 0.74
219 146 190 177 119 121 115 131 60 42 61
713 5.74 7.15 8.62 5.59 5.67 5.48 6.11 1.31 1.14 1.24
9.75 748 11.11 13.89 7.18 7.41 7.09 8.84 0.60 0.48 0.59
291 267 2.98 240 2.59 2.63 2.62 2.65 1.30 1.03 1.00
0.91 1.05 1.00 0.98 0.99 0.99 1.00 1.03 1.00 1.02 0.96

calculations. Concordia diagrams and weighted mean calculations were made using Isoplot/Ex_ver3 [Ludwig,
2003]. Trace element compositions of zircons were calibrated against reference materials (BCR-2G and BIR-1G),
combined with internal standardization [Liu et al., 2010]. The preferred values of element concentrations for the
USGS reference glasses were taken from the GeoReM database (http://georem.mpch-mainz.gwdg.de/).

5. Geochemical and Geochronological Results

5.1. Major and Trace Elements

The Yuejinshan and Raohe basalts from the Nadanhada Terrane have SiO, contents ranging from 45.67 to 51.70 wt
%, total FeO from 10.46 to 13.74 wt%, MgO from 3.65 to 9.41 wt%, and TiO, from 1.21 to 3.39 wt% (Table 1). In the
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Figure 4. Geochemical classification of the Raohe pillow lavas and Yuejinshan metabasalts of the Nadanhada Terrane.
(a) MgO versus SiO, diagram [after Le Bas, 2000]. (b) Zr/TiO, (><1074) versus Nb/Y diagram [after Winchester and Floyd, 1976].

MgO (wt%) vs. SiO, (wt%) diagram, all samples plot in the basalt field (Figure 4a). This signature is confirmed by
the Zr/TiO, (*10~%) vs. Nb/Y diagram (Figure 4b), which shows that all the Raohe basaltic pillow lavas plot in the
alkali-basalt field, and the Yuejinshan metabasalts plot in the subalkali-basalt field, implying that they may be
different in origin. The Nadanhada basaltic rocks can also be divided into two groups on the basis of their
chondrite-normalized REE patterns (Figure 5a). Samples of the Yuejinshan metabasalt (04H-106, 108, and113)
have somewhat lower XREE (53.2-69.87), lower LREE/HREE (2.47-2.79), and show weak LREE enrichment,
with (La/Yb)y ratios ranging from 1.95 to 2.52. This pattern is characteristic of normal mid-ocean ridge
basalt (N-MORB) (Figure 5a). In contrast, samples form the Raohe Complex (04H-70, 71,72,73, and 04H-80,
81,82,83,84) are strongly enriched in LREE (Figure 5a), with higher LREE/HREE (3.30-4.09) and (La/Yb)y
ratios ranging from 5.13 to 8.12, similar
to ocean island basalts (OIB) (Figure 5a).
a + Reone o nn On a primitive mantle-normalized trace
element variation diagram [Sun and
‘ OIB McDonough, 1989] (Figure 5b), the
Yuejinshan metabasalts have patterns
similar to N-MORB, especially for the
immobile elements (Ti, Zr, Y, and Nb).
However, the contents of incompatible
elements are elevated and show distinct
spikes in Rb, Ba, Th, and U, possibly
suggesting crustal contamination
interaction during emplacement
[Pearce, 2008]. The Raohe pillow lavas
more closely approximate OIB but are
relatively depleted in elements between
Rb and U. All of the analyzed Nadanhada
samples have relatively high Nb and Ta
contents (Nb >1.73 ppm, Ta
>0.14 ppm), distinguishing them from
arc basalts. In the Ti/100-Zr-Y*3 and
Nb*2-Zr/4-Y diagrams (Figures 6a and
6b), the Yuejinshan metabasalts plot in
the MORB field, whereas the Raohe
pillow lavas plot in the within-plate field.
In the Zr/Yb vs. Zr diagram (Figure 7a),
Figure 5. (a) Chondrite-normalized rare earth element (REE) diagram for 3| the Raohe pillow lavas plot in the
the Raohe pillow lavas and Yuejinshan metabasalts of the Nadanhada
Terrane [after Sun and McDonough, 1989]. (b) Primitive-mantle-normalized

trace element diagram for the same rocks. The normalizing values for
ocean island basalts (OIB), normal mid-ocean ridge basalt (N-MORB), and

1000

Samples/Chondrite

1000

Samples/Primitive Mantle

0.1

Rb Ba Th U Nb Ta La Ce Nd Sr Sm Hf Zr Eu Y Yb Lu

within-plate field and Yuejinshan
metabasalts plot in the MORB field. In
addition, on the Nb/Yb-Th/Yb diagram

enriched mid-ocean ridge basalt (E-MORB) were taken from Sun and (Figure 7b), the Raohe pillow lavas plot
McDonough [1989] and Stern [2002]. close to OIB in the MORB-OIB array
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Figure 6. Basalt tectonic discrimination diagrams showing the compositions of both the Raohe pillow lavas and Yuejinshan
metabasalts from the Nadanhada Terrane. (a) Ti/100-Zr-Y*3 plot (after Pearce and Cann, 1973). (b) Nb*3-Zr/4-Y plot
(after Meschede, 1986).

whereas those from the Yuejinshan Complex plot above the MORB-OIB array, indicating the rocks possibly
underwent crustal contamination [Pearce, 2008].

5.2. SHRIMP Zircon Ages

5.2.1. Gabbro (Sample RH-02) From the Raohe Complex

Zircons from sample RH-02 are colorless, transparent, and euhedral in shape. They range from ca. 150 to
200 pum in length, with length: width ratios of 3:1 to 4:1. CL imaging reveals that most grains are fairly dark
with weak, banded zones (Figure 8a), characteristic of mafic rocks [Koglin et al., 2009; Baines et al., 2009;
Grimes et al., 2009]. A total of 13 analyses were made on 13 zircons (Table 2), and they have U and Th
contents and Th/U ratios ranging from 367 to 1674 ppm, 22 to 581 ppm, and 0.03 to 1.21 (most >0.2),
respectively. The data are mostly concordant (Figure 8b), and four analyses (grains RH02-2, RH02-7, RH02-9, and
RH02-10) define a weighted mean 2°Pb/?38U age of 216 + 5 Ma (MSWD = 0.77), interpreted as the protolith
age of the pillow lava. The other nine analyses yield apparent ages ranging from 231 + 5 Ma to 440 + 3 Ma.
These old zircons are possibly inherited or xenocrystic, derived from the continental margin during
magma emplacement.

5.2.2. Granite (Sample 04H-49)

Zircons from sample 04H-49 are colorless, transparent, and subhedral to euhedral in shape. They range
from ca. 120 to 250 um in length, with length: width ratios of 2:1 to 4:1. CL imaging reveals that most

20 L T b Deep crustal
a  A=Island-arc ‘@ﬁ recycling
B=MORB &7
10 C=Within-plate 7 &
r ] S
[ D=MORB/Island-arc ] Ty g <
o [ 1 £ O®
< 1 Z o O &
E | | é Magma crust i Q)
interaction
| _ o1 £ E-MORB
- # Raohe pillow lava /I:
@ Yuejinshan metabasalt N-MORB
. - NN B YY)
10 100 1000 0.1 1 10 100
Zr Th/Yb

Figure 7. Basalt tectonic discrimination diagrams showing the compositions of the Raohe pillow lavas and Yuejinshan
metabasalts from the Nadanhada Terrane. (a) Zr/Yb versus Zr plot [after Pearce and Norry, 1979] and (b) Nb/Yb versus
Th/Yb plot [after Pearce and Peate, 1995].
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grains have fine oscillatory zones
(Figure 9a). A total of 12 analyses
were made on 12 zircons (Table 2),
and they have U and Th contents and
Th/U ratios ranging from 277 to

708 ppm, 74 to 265 ppm, and 0.13 to
0.40, respectively. Eight of the
analyses are concordant and define a
weighted mean 2°°Pb/?*3U age of
128 £ 2 Ma (Figure 9b, MSWD =1.9).
Two other grains record ages of 135
+2 Ma (grain RH49-1, 2°°Pb/?*8U age)

02-3 (234,0.75)

0.08 and 137 £ 2 Ma (grain RH49-3,
206pp, /238 age). In addition, one of
0.07F the analyzed grains gives an older
RH-02 concordant age of 1890 + 7 Ma (grain
006k 13 analyses 49-4); these are inherited from
5 ' unknown sources. The internal
8 structures observed in CL and the
ﬁ 0.05¢ Th/U ratios of the zircons suggest
S that the age of 128 +2Ma is the
0.041 formation age of the granite.
5.2.3. Granite (Sample 04H-69)
4 analyses .
0.03} weighted mean age Zircons from sample 04H-69 are
216 =4 Ma colorless, transparent, and subhedral
MSWD=0.77
0.02 . . : : : to euhedral in shape. They range from
01 02 0.3 04 05 0.6 0.7 ca. 120 to 200 um in length, with
207, 235
Pb/™"U length:width ratios of 2:1 to 3:1. CL

Figure 8.(a) Representative cathodoluminescence (CL) images of imaging reveals tha.t most grains have
zircons from gabbro sample RH-02. Dotted circles mark sites of sensitive well-developed oscillatory zones
high-resolution ion microprobe (SHRIMP) analyses. The notation for each spot ~ (Figure 10a). A total of 13 analyses
consists of spot number as in Table 2 and the age and Th/U ratio (in parenth-  were made on 13 zircons (Table 2), and
eses). (b) U-Pb concordia diagram of zircon data for gabbro sample RH-02 from they have U and Th contents and Th/U

the Raohe Complex. ratios ranging from 123 to 921 ppm,

26 to 1237 ppm, and 0.12 to 1.39,

respectively. The data are mostly
concordant (Figure 10b) and 11 analyses define a weighted mean 2°Pb/**2U age of 129 + 2 Ma (MSWD = 1.6).
One grain yielded a discordant age of 170+ 2 Ma (grain RH69-5, 2°°Pb/?*8U age). Another analyzed grain
gives a younger age of 120 + 2 Ma (grain RH69-7), possibly disturbed by a later intrusion. The uniformity in CL
structure and generally moderate to high Th/U ratios (most >0.20, Table 2), indicate that the population at
129 + 2 Ma defines the formation age of the granite.

5.3. LA-ICPMS Zircon Ages

5.3.1. Basaltic Pillow Lava (RH-08) From the Raohe Complex

Zircons from pillow lava sample RH-08 are colorless, transparent, and anhedral in shape (Figure 11a).
They range in length from ca. 80 to 160 pm, with length:width ratios of 1:1 to 2:1. CL imaging reveals
that all grains have weak banded zones (Figure 11a), indicative of a mafic-magmatic origin [Koglin et al.,
2009; Baines et al., 2009; Grimes et al., 2009]. A total of 30 analyses were made on 30 zircons (Table 3),
and all analyses are concordant. The zircons have U and Th contents and Th/U ratios in the range of
186-6999 ppm, 67-17990 ppm, and 0.36-2.18, respectively, which is again consistent with a magmatic
origin. Twenty-nine analyses define a weighted mean 2°°Pb/?*8U age of 167 + 1 Ma (MSWD =0.67;
Figure 11b). One grain gave a 2°Pb/?*®U ages of 178 + 12 Ma (Table 3), and is interpreted to be inherited
or xenocrystic. The banded zoning and Th/U ratios (most >0.4) of the zircons (Figure 11a and Table 3)
indicate that the age of 167 + 1 Ma represents the formation age of the pillow lava.
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RH-49

12 analyses

5.3.2. Raohe Complex

Sandstone (RH-05)

Zircons from sandstone sample RH-05 are
small and subhedral, and range in size
from 60 to 120 pum. CL imaging reveals
that most grains show oscillatory zones
(Figure 12a), indicative of a magmatic
origin, although some have a core/rim
structure. A total of 44 zircon analyses
were obtained, and only four was
discarded due to strong discordance. The
zircons have U and Th contents and Th/U
ratios in the range of 323-5652 ppm,
126-3936 ppm, and 0.15-1.20,
respectively, which is suggestive of a
magmatic origin. Amongst the 40
concordant analyses (Table 3), the grains
yield apparent ages ranging from 2529

g 1400urE +28 to 136+ 2 Ma (Figure 12b). In
E general, the results define three age
g 0% 1000 ooz populations according to their 2°6Pb/?38U
£ (<1000 Ma) or 2°’Pb/*?°°Pb ages
0020} £ K
o1l e00 8 analyses (>1000 Ma). The age populations are at
0019 Wel'gzhi‘;d mze;'/‘lage 136-182 Ma with a peak at 137 Ma, 348-
/ Mswf,:1 9 a 569 Ma with a peak at 508 Ma, and 737-
23 *Tppy - .
0.0 R L .001306 00p 010 0J2 014 Q.16 0191 903 Ma with a peak at 785 Ma
0 2 4 6 (Figure 12b), and one grain yields an
27pp%y older age of 2485 Ma. The four

youngest grains define a weighted mean
age of 137+ 1 Ma (MSWD =0.20;

Figure 12b) and are interpreted to
constrain the maximum depositional
age of the sandstone.

Figure 9. (a) Representative cathodoluminescence (CL) images of zircons
from granite sample RH-49. Dashed circles mark sites of SHRIMP analyses.
The notation for each spot is the same as in Figure 8. (b) U-Pb concordia
diagram of zircon data for sample RH-49 from the Nadanhada Terrane.

5.3.3. Sandstone (RH-13) From the Raohe Complex

Sandstone sample RH-13 yielded abundant zircon grains, most of which are subhedral and range in size from
90 to 200 um. CL imaging reveals that most grains have weak oscillatory zones (Figure 13a), indicative again
of a magmatic origin. A total of 63 U-Pb analyses were obtained, and 10 analyses ware discarded due to
strong discordance. The zircons have U and Th contents and Th/U ratios in the range of 97-3407 ppm, 72-
2050 ppm, and 0.05-1.24, respectively, which is suggestive of a magmatic origin. Amongst the 53 concordant
analyses (Table 3), the grains yield apparent ages ranging from 2415+ 28 to 161 +4 Ma (Figure 13b). In
general, the grains define five age populations: at 161-172 Ma with a peak at 167 Ma, 213-340 Ma with a peak
at 263 Ma, 350-502 Ma with a peak at 463 Ma, 727-936 Ma with a peak at 745 Ma, and widely age population
from 1765 to 2385 Ma (Figure 13b). The three youngest grains yield a weighted mean age of 167 +£17 Ma
(MSWD =1.9) and are interpreted to constrain the maximum depositional age of the sandstone.

6. Discussion
6.1. Origin of the Mafic-Ultramafic Rocks From the Nadanhada Terrane

Triassic-Jurassic accretionary complexes are widely developed in NE China (Nadanhada), the Russian Far East
(Sikhote-Alin), and SW Japan (e.g., Mino-Tanba; Figure 1). They may have constituted a continuous belt before
the Miocene opening of the Japan Sea [Mizutani et al., 1989; Mizutani and Kojima, 1992; Kojima and Mizutani,
1987; Kojima, 1989; Zyabrev and Matsuoka, 1999; Zhang and Mizutani, 2004]. However, the nature and origin
of the complexes have long been disputed, with views ranging from ophiolitic sequences [Mizutani et al.,

1989; Mizutani and Kojima, 1992; Cui, 1986; Kojima and Mizutani, 1987; Kojima, 1989; Kang et al., 1990; Zhang,
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1990; Zhang and Mizutani, 2004], ocean
island sequences [Zhang and Zhou,
2001], or a superplume along a
subduction zone [Ishiwatari and
Ichiyama, 2004]. The mafic-ultramafic
rocks therefore are the key to decipher
the origin of the complex.

Our major, trace, and rare-earth element
69-4(131,0.23) data for the Yuejinshan rocks show N-

50pum MORB affinity, whereas the Raohe pillow
e e —— lavas have affinities to OIB (Figures 3-7).
0.030 This is consistent with previous studies
(b) 0 [Zhang et al., 1997; Zhang and Zhou,

0.028+ 2001]. Zhang et al. [1997] reported that

the Yuejinshan metabasalts at

0.026 Hamadingzi (near Yuejinshan) have

13 analyses 160
2 00241 affinity to N-MORB. Zhang and Zhou
33 | [2001] pointed out that the Raohe mafic-
& 0022} 140 | ultramafic rocks most likely have OIB
8 b - 1 l | 11 affinity. N-MORB characteristics are
0.0201 1 q} commonly formed at mid-ocean ridges

11 analyses
weighted mean age

r or back-arc spreading centers
0.018} 122

129£2Ma [ | [Thompson et al., 1989; Stern et al., 1995,

0.016 . e - — 4 2002], whereas OIB features are normally
0.06 0.10 0.14 0.18 0.22 considered to be associated with a

207pp/235yY plume source within an oceanic plate or

a continental rift [Doubleday et al., 1994].
Figure 10. (a) Representative cathodoluminescence (CL) images of zir-  The presence of both N-MORB and OIB
cons from granite sample RH-69. Dashed circles mark sites of SHRIMP in the same ophiolitic slices in the Flin
analyses. The notation for each spot is the same as in Figure 8. (b) U-Pb

concordia diagram of zircon data for granite sample RH-69 from the Flon Belt in Canada [Taira et al, 1992],
Nadanhada Terrane. western Tianshan [Gao and Klemd, 2003;

Klemd et al., 2011], northern Philippines
[Karig, 1983], and Japan [Taira, 2001] has been interpreted to have of an intra-oceanic origin and were that the
rocks amalgamated later in accretionary complexes.

Given that the pillow lavas and metabasalts of the Nadanhada Complex have OIB and N-MORB affinities, and
they are associated with cumulate gabbro, radiolarian chert, and shale, it suggests that the complex was part
of a subduction zone complex or ophiolitic mélange, similar to the Philippines intraoceanic accretionary
complex formed by obduction of oceanic crust [Stern et al., 1995; Maruyama et al., 1997]. Therefore, the
Nadanhada Complex is also an accretionary complex associated with paleo-Pacific subduction-accretion.

Early studies considered that that most mafic-ultramafic rocks in the Nadanhada Complex are Paleozoic in
age, since they are covered by limestone and chert that contain Paleozoic to Mesozoic fossils. Some recent
studies argued that some gabbros intruded into Triassic-Jurassic chert-shale-sandstone sequences,
suggesting that the gabbro was Jurassic in age [Cheng et al., 2006]. However, the mafic-ultramafic rocks only
occur locally and are in tectonic contact with all other rock units (Figure 2b); thus, our new zircon U-Pb dating
results provide important new evidence with respect to their age of formation.

SHRIMP data for the Raohe gabbro sample (RH-02) define a weighted mean age of 216 + 5 Ma. The zircons
have magmatic zoning and moderate Th/U ratios, indicating the age records the formation of the gabbro.

These data (Table 2 and Figure 8), together with Late Triassic-Jurassic fossils from overlying bedded chert and
siliceous shale obtained by Kojima [1989], indicate that the Raohe gabbro was formed at ~215 Ma, hence in
the latest Triassic.

LA-ICPMS data from the Rache basaltic pillow lava sample (RH-08) define a weighted mean age of 167 + 1 Ma
(Figure 11). The zircons have weak magmatic banding and moderate Th/U ratios, indicating that the age
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8-2(167, 1.60) records the formation of the basaltic

pillow lava. These new data are similar to
the age from a nearby pillow lava, which

01(164, 0.36) yields a whole-rock Rb-Sr age of 169
08-03(168, 0.59)

+6 Ma [Zhao et al.,, 1996] and an age of
168 + 6 Ma by LA-ICPMS [Cheng et al.,
2006]. Therefore, the Raohe gabbro was
formed in the latest Triassic (~215 Ma),
whereas the Raohe basaltic pillow lava
was formed in the Middle Jurassic
(~170 Ma); thus, there is a range in the
formation age for the mafic-ultramafic

rocks from the latest Triassic to the
00295 Middle Jurassic (215-170 Ma).
0.0285 1 — 6.2. Age of the Granite
S 00275 SHRIMP data from the two granite
g samples (RH-49 and RH-69) define
E 0.0265 | similar weighted mean ages of 128
8 +2Maand 129 + 2 Ma (Figures 9 and 10),
0.0255 | 29 analyses respectively. Zircons from both samples
3 weighted mean age RH-49 and RH-69 have magmatic
0.0245 | 167 + 1 Ma oscillatory zoning and moderate Th/U
MSWD=0.67 ratios, indicating that these ages record
0.0235 150 the formation of the granite. In addition,

0.14 0.16 0'1208 » 020 022 024 petrological studies indicate that the
7 5

Pb/™"U Raohe granite contains magmatic

. ) . . . cordierite and has peralumionus
Figure 11. (a) Representative cathodoluminescence (CL) images of zir- N
cons from basaltic pillow lava sample RH-08. Dashed circles mark sites characteristics, indicating its S-type
of laser ablation inductively coupled plasma mass spectrometry (LA- affinity derived from partial melting of
ICPMS) analyses. The notation for each spot is the same as in Figure 8. sedimentary rocks [Cheng et al., 2006].
(b) U-Pb concordia diagram of zircon data for sample RH-08 from the

Raohe Complex of the Nadanhada Terrane. New data from our study, together with

the LA-ICPMS magmatic zircon ages of

124 + 1 Ma from a cordierite-bearing
granite from the Hamahe pluton in the Raohe Complex obtained by Cheng et al. [2006], indicate the age of
the granite is Early Cretaceous (~130 Ma).

6.3. Depositional Ages and Provenance of the Clastic Rocks

The clastic sample RH-13 from the Honggqiling area in the western part of the Raohe Complex yields a
youngest concordant zircon age of 167 + 17 Ma (Figure 13), whereas sample RH-05 from Dadai in the eastern
part of the Raohe Complex contains abundant zircons with an age of 137 + 3 Ma (Figure 12), suggesting a
possible younging trend eastward toward the Pacific ocean.

The two clastic samples are important in providing additional constraints on the evolution of the Nadanhada
Complex, since their detrital zircon populations have the potential to allow identification of sources no longer
extant or possibly buried. They also provide a maximum age for deposition of the sedimentary protolith,
which in this case is 137 £ 3 Ma. Sandstone sample RH-13 contains five main populations of near-concordant
detrital zircon, with peak ages of ~167 Ma, 263 Ma, 463 Ma, and 745 Ma and a spread of ages between
1765 and 2385 Ma (Figure 13). In addition, siltstone sample RH-05 contains detrital zircon populations with
peak ages of 137 Ma, 508 Ma, 785 Ma, and 2485 Ma (Figure 12). However, gabbro sample RH-02 contains
inherited zircons with ages ranging from 240 Ma to 440 Ma. The age distributions partially match those
recorded from the Mashan Complex from the Jiamusi Block analyzed by Wilde et al. [2000, 2003], and
blueschists from the Jilin-Heilongjiang high-pressure metamorphic belt (Ji-Hei belt) analyzed by Zhou et al.
[2009, 2013] and Zhou and Wilde [2013]. However, it should be noted that these rocks also contain
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populations at 910-670 Ma, as well as
two older grains with ages of 1065 and
2140 Ma. These detrital and the inherited
¢ zircons establish the presence of Pan-
< African and Neoproterozoic source
material in the area. In the case of the
inherited zircons in the gabbro, these
: Jpr5-03(136, 0.78) were likely present in the basement when
) the mafic magma was emplaced. The
,{?h\ s RH-05 detrital zircons in the clastic rocks may
1 H . . .
AR j / potentially have been derived in part
v . 0 50um from outside of the current Jiamusi Block.
Therefore, we suggest that the clastic
rocks were the trench-fill terrigenous
rocks along the continental slope
adjacent to the Jiamusi-Khanka Block.
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6.4. Timing of Emplacement of the
Nadanhada Accretionary Complex
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048005 | aumed e age Z ) clastic sediments, all intruded by granite
we1Ma | I “r [Mizutani et al, 1989; Kojima and Mizutani,
0.0 ‘ ‘ 0 40 g0 1200 se00 o0 200 o600 | 1987; Kojima, 1989; Cheng et al., 2006].
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Available radiolarian and geological
u evidence limit the timing of emplacement

Figure 12. (a) Representative cathodoluminescence (CL) images of detrital of the Nadanhada Complex to the Late

zircons from siltstone sample RH-05. Dashed circles mark sites of LA-ICPMS Jurassic-Early Cretaceous [Kojima, 1989;
analyses. The notation for each spot is the same as in Figure 8. (b) U-Pb Cheng et al,, 2006].
concordia diagram of detrital zircon data for sample RH-05 from the Raohe

Complex of the Nadanhada Terrane. In addition, gabbro sample RH-02 from

Guanmen in the Raohe Complex

formed at 216 + 4 Ma (Figure 8), whereas
pillow lava from Dadai formed at 167 £ 1 Ma (Figure 11), indicating that the mafic-ultramafic sequences of
the Raohe Complex formed during the Late Triassic to Middle Jurassic. Sandstone sample RH-13 from
Hongqiling in the western part of the Raohe Complex records detrital zircon U-Pb ages ranging from
2415+ 28 to 161 + 4 Ma (Figure 13), with the youngest age populations at 172-161 Ma and a peak at
167 Ma, whereas siltstone sample RH-05 from the eastern part of the Raohe Complex yields detrital zircon
U-Pb ages ranging from 2529 + 28 to 136 + 2 Ma (Figure 12), with the youngest age population of 136-182 Ma
with a peak age at 137 Ma. These data indicate that the deposition age of the clastic rocks should be around
167 and 136 Ma, with an eastward younging trend toward the Pacific Ocean. These data, together with the fossil
evidence from limestone, indicate that the main part of the Raohe Complex consists of Carboniferous to
Permian limestone, Late Triassic-Middle Jurassic mafic-ultramafic sequences, Triassic-Middle Jurassic bedded
chert and siliceous shale, and Late Jurassic-Early Cretaceous clastic rocks.

New high-quality zircon U-Pb data from this study indicate that both granite samples formed at ~128 Ma
(Figures 9 and 10). This means that the sedimentary rocks were lithified and deformed prior to the granite
emplacement, and this must have occurred in the short time interval between the 136 and 128 Ma.

7. Tectonic Implications

The Nadanhada Terrane is composed of the Raohe and Yuejinshan complexes. Kojima [1989] noted that prior
to opening of the Sea of Japan, the Japanese Islands were located much closer to the eastern margin of the
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a 13-02(936, 0.50)wmmy 13-5(257, 0.63) Asian continent where the Nadanhada
£2550 ) =

and Sikhote-Alin terranes are now
exposed. The Mino-Tamba Terrane in
central Japan has the same
characteristics of these terranes [Kojima,
1989; Zhang and Mizutani, 2004; Zyabrev
and Matsuoka, 1999]. The
paleobiological data, together with the
geochronological data from this study,
indicate that the accretion of the Raohe
Complex to the CAOB occurred between
the Late Jurassic and Early Cretaceous
(170-136 Ma), and was completed by
the Early Cretaceous (130 Ma).
Unfortunately, insufficient zircons were
60 analyses available for analyses from the
o Yuejinshan N-MORB metabasalts to
enable us to date these rocks. The
information available for the Yuejinshan
Complex indicates that it has undergone
53 concordant greenschist-facies metamorphism with a
deformation at 188 + 3 Ma [Yang et al.,
1998]. In addition, high-pressure
metamorphic blueschist is widely
exposed in the Jilin-Heilongjiang high-
‘ ) %0 soom 120?“ o0 2000 2000 _2a00 pressure metamorphic belt (Ji-Hei belt)
2 4 6 8 10 12 along the western margin of the
207pp,2%5y Jiamusi-Khanka Block [Zhou et al., 2009,
2013; Zhou and Wilde, 2013; Figures 1
and 2a]. Magmatic zircons extracted
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Figure 13. (a) Representative cathodoluminescence (CL) images of det-
rital zircons from sandstone sample RH-13. Dashed circles mark sites of from two samples of epidote-
LA-ICPMS analyses. The notation for each spot is the same as in Figure 8.

(b) U-Pb concordia diagram of detrital zircon data for sample RH-13 blueschist facies metabasalts from
from the Raohe Complex of the Nadanhada Terrane. Mudanjiang of the Ji-Hei belt

have SHRIMP U-Pb 2°6Pb/?38U ages

of 213+ 2 Ma and 224 + 7 Ma [Zhou
et al., 2009], whereas the biotite Rb-Sr mineral isochron age of 184 + 4 Ma from a dioritic gneiss from
Luobei, and three samples of mica schist from Yilan gave phengite “°Ar/>***" ages of 173.6 +0.5 Ma, 1753 + 0.4 Ma
and 174.8 +0.5 Ma [Wu et al,, 2007]. These data indicated that the metamorphism of the Ji-Hei belt took place
between 210 and 180 Ma, and was related to the onset of paleo-Pacific plate subduction [Zhou et al., 2009, 2010a,
2013; Zhou and Wilde, 2013]. Furthermore, Late Triassic granitics (223-212 Ma) with active continental margin
setiting also occur in the Khanka area along the western margin of the Nadanhada Terrane [Hao et al., 2014].
This further suggests that paleo-Pacific plate subduction was westward-directed at this time, and that the
Yuejinshan Complex probably formed between 210 and 180 Ma. Based on our new data, the tectonic model for
the paleo-Pacific plate subduction-accretion of the Nadanhada accretionary complex is as follows.

Late Triassic to Early Jurassic (210-180 Ma) is the time when a switch in geodynamic setting occurred
between southward closure of the CAOB and the onset of westward-directed accretion related to Pacific
plate subduction [Zhou et al., 2009, 2013; Zhou and Wilde, 2013]. Westward obduction of the paleo-Pacific
plate over the Jiamusi-Khanka Block resulted in the emplacement of the Yuejinshan Complex. At the same
time, the Heilongjiang high-pressure metamorphic belt was formed, also as a result of paleo-Pacific
subduction (Figure 14a).

During the Early Jurassic-Early Cretaceous (180-130 Ma). The Pacific oceanic plate with Early Jurassic
seamounts collided with the CAOB continental margin and brought associated limestone, bedded chert, and
siliceous shale. Enormous amounts of clastic detritus started filling the trench and continental slope. Tectonic

ZHOU ET AL.

©2014. American Geophysical Union. All Rights Reserved. 2462



@AG U Tectonics 10.1002/2014TC003637

a

Yuejishan Compl :
Ji-Hei HP Belt uejishan Lomple 210-180 Ma

Seamount
B D Trench axis

Bedded chert Pacific plate
~ b
Yuejishan Complex| 180-130 Ma

Forearc basin Seamount
Fragmént of Pacific plate
seamount

East

Figure 14. A cartoon sketches of the proposed tectonic setting of the Nadanhada Terrane resulting from Paleo-Pacific
subduction-accretion between (a) 210-180 Ma and (b) 180-130 Ma.

activity resulted in jumbling and telescoping of pelagic sediments in the accretionary complex between 180
and 137 Ma. The final emplacement of the Nadanhada Terrane was at 137-130 Ma, and it was then intruded
by the Early Cretaceous S-type granites (Figure 14b).

8. Conclusions

The Nadanhada Terrane is composed of the Yuejinshan and Raohe complexes. The Yuejinshan Complex is
located closest to the CAOB and consists of both meta-clastic rocks and metamafic-ultramafic rocks that
experienced lower greenschist-facies metamorphism. The Raohe Complex consists of limestone, bedded
chert, siliceous claystone, and mafic-ultramafic rocks that are embedded as olistoliths in a weakly sheared
clastic matrix.

Metabasalts in the Yuejinshan Complex have N-MORB affinity, whereas the basalts in the Raohe Complex
have affinity to OIB. Given that the basaltic rocks of the Nadanhada Terrane have both OIB and N-MORB
affinities, and are associated with cumulate gabbro, radiolarian chert, and shale, the Nadanhada Complex is
interpreted as part of a subduction complex.

SHRIMP U-Pb zircon analyses of gabbro associated with the Raohe Complex yield a weighted mean
206p}/238) zircon age of 216 + 5 Ma, and two samples of granite intruded into the complex yield weighted
mean 2°°Pb/?*8U zircon ages of ~128 Ma. LA-ICPMS U-Pb zircon analyses of basaltic pillow lava from the
Raohe Complex record a weighted mean age of 167 = 1 Ma, defining the formation age of mafic volcanic
rocks of the Raohe Complex. In addition, a sandstone sample from Hongiling records detrital zircon ages
ranging from 2415 + 28 to 161 +4 Ma, with the youngest concordant zircons defining a weighted mean age
of 167 £ 17 Ma. However, another sandstone sample from Dadai contains detrital zircon ages ranging from
2529+ 28 to 136 £ 2 Ma, and the youngest concordant zircons define a weighted mean age of 137 +3 Ma.
These constrain the maximum time of deposition and show a younging trend toward the Pacific Ocean in the
east. Both sandstone samples contain abundant detrital zircons with peak ages of ~500 Ma and 700-900 Ma,
similar to the age populations of rocks in the Jiamusi-Khanka Block, suggesting they are trench-fill
terrigenous clastic rocks formed along the continental slope adjacent to the Jiamusi-Khanka Block.
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The formation age of the Raohe Complex was from the Late Jurassic to Early-Cretaceous (170-137 Ma), and
final accretion took place in the Early Cretaceous (137-130 Ma). The Yuejinshan Complex probably formed
between 210 and 180 Ma, although no precise data are available. It is likely of similar age to the Jilin-
Heilongjiang high-pressure metamorphic belt (Ji-Hei belt) along the western margin of the Jiamusi-Khanka
Block, where the Heilongjiang blueschists formed between 210 and 180 Ma. Both the Ji-Hei belt on the
western margin of the Jiamusi-Khanka Block and the Nadanhada Terrane on its eastern margin are the
products of paleo-Pacific subduction.
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