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ABSTRACT

We present timing models for 20 millisecond pulsars in the Parkes Pulsar Timing Array. The
precision of the parameter measurements in these models has been improved over earlier
results by using longer data sets and modelling the non-stationary noise. We describe a
new noise modelling procedure and demonstrate its effectiveness using simulated data. Our
methodology includes the addition of annual dispersion measure (DM) variations to the timing
models of some pulsars. We present the first significant parallax measurements for PSRs
J1024—-0719, J1045—-4509, J11600—3053, J1603—7202, and J1730—2304, as well as the first
significant measurements of some post-Keplerian orbital parameters in six binary pulsars,
caused by kinematic effects. Improved Shapiro delay measurements have resulted in much
improved pulsar mass measurements, particularly for PSRs J0437—4715 and J1909—-3744
with M, = 1.44 £ 0.07 and 1.47 4 0.03 Mg, respectively. The improved orbital period-
derivative measurement for PSR J0437—4715 results in a derived distance measurement at the
0.16 per cent level of precision, D = 156.79 &+ 0.25 pc, one of the most fractionally precise
distance measurements of any star to date.

Key words: astrometry —ephemerides — parallaxes — proper motions — pulsars: general.

many years. The times of arrival (ToAs) of pulses from MSPs are

1 INTRODUCTION highly predictable using timing models that describe the spin evolu-

The Parkes Pulsar Timing Array (PPTA; Manchester et al. 2013),
like its North American (Demorest et al. 2013) and European
(Kramer & Champion 2013) counterparts, is a programme in which
an array of millisecond pulsars (MSPs) is observed regularly over

* E-mail: daniel.reardon @monash.edu

© 2015 The Authors

tion and astrometric properties of the pulsar and any companions, as
well as taking into account the motion of Earth and pulse propaga-
tion through curved space—time and the interstellar medium (ISM).
The parameters of the timing model are determined, or improved,
by a least-squares fit of the model to the ToAs. The differences
between the measured and predicted ToAs (the ‘timing residuals’)
after this fit contain the measurement error, stochastic fluctuations
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in the apparent pulsar rotation rate (known as timing noise; Shan-
non & Cordes 2010), and other unmodelled effects such as those
of gravitational waves (GWSs), errors in the assumed time stan-
dard, and errors in the Solar system ephemeris. Most of these ef-
fects are stronger at lower frequencies, i.e. they have a ‘red’ power
spectrum.

The main goal of a pulsar timing array (PTA) is to search for
and eventually detect and study nanohertz frequency GWs (e.g.
van Haasteren et al. 2011; Demorest et al. 2013; Zhu et al. 2014;
Wang et al. 2015), but there are many secondary objectives such
as testing general relativity (GR; e.g. Freire et al. 2012; Zhu et al.
2015), constraining common models of supermassive black hole and
galaxy formation (e.g. Shannon et al. 2015), measuring planetary
masses (e.g. Champion et al. 2010), studying the ISM (e.g. You et al.
2007; Keith et al. 2013, hereafter K13), developing pulsar-based
time standards (e.g. Hobbs et al. 2012), and precise measurements
of properties of the pulsars themselves (e.g. Verbiest et al. 2008,
hereafter VOS8). The latter includes for example the much improved
distance and mass measurements for PSR J0437—4715 presented
in this paper, which will be important for future limits to changes
of Newton’s gravitational constant, and the Neutron Star Interior
Composition Explorer (NICER) mission that will attempt to measure
its radius (Gendreau et al. 2012). The new and improved distance
measurements for pulsars presented in this paper are also useful for
future galactic electron density models (cf. Cordes & Lazio 2002).

It has long been known that least-squares fitting for the pa-
rameters of the timing model can be biased and can underesti-
mate the uncertainties on the parameters when the residuals con-
tain significant red noise. To account for this effect, VO8 used
Monte Carlo simulations for PSR J0437—4715 to determine pa-
rameter uncertainties. Verbiest et al. (2009, hereafter V09), how-
ever, prewhitened the residuals for the three pulsars with the most
red noise in their sample by fitting harmonically related sine/cosine
pairs (Hobbs, Edwards & Manchester 2006). Coles et al. (2011,
hereafter C11) demonstrated that this method can result in biased
parameter measurements and underestimated uncertainties. For all
pulsars, V09 then doubled the formal uncertainties obtained from
the fit.

For our work, we use an extension of the ‘Cholesky’ algorithm
developed by C11 and implemented in the timing software package
TEMPO2 (Edwards, Hobbs & Manchester 2006; Hobbs et al. 2006).
For the results presented in C11, the red noise was modelled as
wide-sense stationary, i.e. having a single power spectrum. How-
ever, the algorithm only requires that the red noise be described
by a covariance matrix. In our data set, the red noise is not sta-
tionary because the earlier data contain uncorrected fluctuations in
the dispersion measure (DM; the column density of electrons along
the line of sight to the pulsar) of the ISM, while the later data do
not. Accordingly, we use, and describe below, a modification of the
algorithm in C11 that we refer to as the ‘split-Cholesky’ algorithm,
which allows for two different red-noise models in the data set.

In Section 2, we describe the observations and methodology
for determining white-noise parameters. In Section 3, we describe
the parameters of the timing model. In Section 4, we describe the
new split-Cholesky algorithm, modelling of the DM variations, and
present parameters describing the red-noise and DM-noise models.
In Section 5, for each pulsar, we present the new timing model
parameter values. In Section 6, we present simulations of the split-
Cholesky algorithm and compare the method to alternate Bayesian
pulsar timing analysis algorithms (e.g. van Haasteren et al. 2011;
van Haasteren & Levin 2013; Lentati et al. 2014a), and derive a
precise pulsar distance for PSR J0437—4715.
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2 OBSERVATIONS

The observations used here were published as the extended first
PPTA datarelease (DR1E) by Manchester et al. (2013). All observa-
tions were taken using the Parkes 64 m radio telescope. The data set
includes observations at three observing bands (with approximate
centre wavelengths of 10, 20, and 50 cm) from the PPTA project
that commenced in 2005 (these observations alone are referred to as
datarelease one, DR1), along with observations prior to 2005 (in the
20 cm band only) from previous observing programmes. The earli-
est data were obtained from a timing programme that commenced
during the Parkes 70 cm survey (Bailes et al. 1994) and were pub-
lished by Bell et al. (1997) and Toscano et al. (1999). The sample
of pulsars was increased by MSPs discovered during the Swinburne
intermediate-latitude survey (Edwards et al. 2001) and elsewhere.
Updated timing solutions were published by Hotan, Bailes & Ord
(2006) and Ord et al. (2006). Throughout this paper, we refer to the
archival 20 cm observations taken prior to the PPTA as the ‘early’
data and the multi-band PPTA observations as ‘recent’ data.

An intensive observing campaign was used to study PSR
J0437—4715 in detail. Results were published in van Straten et al.
(2001). VO8 (for PSR J0437—4715) and V09 (for the other 19
pulsars in the PPTA) combined the earlier data with the initial
PPTA data to determine timing ephemerides. Here we use the extra
~3 years of data provided by Manchester et al. (2013) to improve on
the results of V08 and V09. Along with the extra data span, our new
data set provides significantly improved observing cadence and, for
the recent data, the ability to remove the effects of DM variations
(ADM) more precisely than previously possible. Most of the raw
observation files used in this analysis are available from the Parkes
pulsar data archive (Hobbs et al. 2011).

Throughout this paper, we make use of the TEMPO2 software
package to analyse the pulse arrival times (Hobbs et al. 2006).
Our analysis method, described below, relies on knowledge of the
noise affecting the residuals. Radiometer noise affects all pulsars
and is well modelled by the ToA uncertainty that is obtained from
the template-matching procedure carried out when determining the
ToA. However, in almost all cases the observed scatter in the resid-
uals is greater than that expected from radiometer noise alone. This
is not unexpected. Such excess can arise from intrinsic pulse jitter!
(e.g. Ostowski et al. 2011; Shannon et al. 2014), calibration errors,
instrumental effects, or a poor selection of templates used in the
template-matching process. TEMPO2 currently has only two methods
for correcting the measured ToA uncertainties: (1) uncertainties for
a set of observations can be multiplied by a scaling factor (this is
termed an ‘Erac’) or (2) adding a specified amount of extra noise
in quadrature with the original uncertainties (termed an ‘EQuap’). If
both methods are implemented, then the resulting uncertainty is

o/ = EFAC X \/ 0} 4 EQUAD?, (1)

where o is the original uncertainty for the ith observation. Deter-
mining the EFAC and/or EQUAD is non-trivial as any low-frequency
noise in the residuals must be accounted for and the ErFac and EQUAD
parameters are covariant. We follow the procedure below for each
data set using the EFACEQUAD plug-in for TEMPO2 (Wang et al. 2015).

(i) Estimate the red noise by fitting a smooth model to the resid-
uals. The default smooth model is a linear interpolation through a

! For this work, we do not use the jitter parameters introduced by Shannon
et al. (2014) because we do not have all of the observation lengths for each
ToA in our current data set.
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set of samples on 100 d intervals. The smooth model (red-noise es-
timate) is then subtracted from the residuals, leaving only the white
noise.

(i1) Divide the data into groups based on observing systems that
are expected to have the same EFac and EQUAD values. For example,
our data set includes data taken using different ‘backend’ instru-
ments, some of which have identical firmware, bandwidths, etc.,
and are therefore expected to share the same noise properties.

(iii) For a given group selected from the whitened data set, the
reduced-x 2 value (x?) is calculated. If x> < 1, then EFaC = \/XTZ
and EQUAD = 0. Note that this is the only means to reduce a ToA
uncertainty as an EQUAD will always increase the uncertainty.

>iv) If sz > 1, then the normalized residuals (r;/o;) are deter-
mined for a particular grid of EFac and EQUAD values.

(v) For each grid position, we determine the probability that the
normalized residuals are drawn from a Gaussian distribution (us-
ing a Kolmogorov—Smirnov test) to determine optimal EFac and/or
EQUAD.

(vi) By default, we do not include the EFacs and EQuUADs for a
group that consists of less than 10 ToAs. They are added if it is
necessary to produce normally distributed residuals.

3 THE TIMING MODEL

The timing model describes the spin, astrometric, and orbital prop-
erties of a pulsar, the ISM along the line of sight, and requires the
use of a terrestrial time standard, Solar system ephemeris, and solar
wind model. For this work, we use the DE421 Jet Propulsion Lab-
oratory (JPL) Solar system ephemeris and as a time reference use
TT(BIPM2013) with units of time in Barycentric Coordinate Time
(TCB). We use the default model within TEMPO2 to account for DM
variations caused by the solar wind (wind density at 1 au: 4 cm™3;
Edwards et al. 2006). The pulsars have been observed over many
years with various different ‘backend’ instruments. These instru-
ments have different time offsets which we also measure as part of
the usual timing fit (with the split-Cholesky method).

The 13 pulsars in our sample that are in binary systems each have
a white dwarf companion. For such systems, we do not expect any
time dependences for the orbital parameters caused by mass-loss or
spin—orbit coupling. Because of the relatively low mass of the com-
panion stars and relatively long orbital periods, relativistic effects
are small in such systems. However, VO8 do report a detection of
the advance of the longitude of periastron, @, for PSR J0437—4715
that is consistent with that predicted from GR, where the compo-
nent masses were derived from the Shapiro delay measurement and
mass function (Thorsett & Chakrabarty 1999). van Straten (2013)
also measures @ for PSR J1022—1001 that is consistent with GR.

For binary pulsars in orbits with small eccentricities, the longi-
tude and epoch of periastron are not well defined and are highly
correlated. The ELL1 model (Lange et al. 2001) is used to describe
such systems, since it uses a small-eccentricity approximation to
avoid this high correlation. For PSRs J1022+1001, J1600—3053,
and J1643—1224, this approximation is not valid and so we instead
use the DD (Damour & Deruelle 1986) model to describe the binary
orbit.

Observed changes in the orbital parameters can be caused by
kinematic effects. Changes in the apparent viewing geometry of
the orbit caused by proper motion can lead to an apparent time
derivative of the projected semi-major axis of the orbit, x, and/or
o (Kopeikin 1996). For some pulsars, this kinematic x or w
may be detected individually. However, if both are well deter-
mined, we instead parametrize the effect with € and 7, which are
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the longitude of the ascending node and inclination angle of the
orbit, respectively (van Straten & Bailes 2003). This parametriza-
tion of the orbit describes the annual orbital parallax and is im-
plemented through the T2 model (Edwards et al. 2006), which we
use for PSRs J0437—4715, J17134+0747, and J1909—3744. For
PSRs J1022+1001, J1600—3053, J1603—7202, J1643—1224, and
J2145—0750, we use the x measurement to place an upper limit on
the inclination angle of the orbit (using tani < xu/x, where u is
the total proper motion), as was done by Sandhu et al. (1997).

A pulsar can have an apparent spin frequency derivative (V) or
orbital period derivative (Py) as a result of the Shklovskii effect
(Shklovskii, 1970), an apparent radial acceleration of the system
caused by proper motion perpendicular to the line of sight. As
we do not include this explicitly in the timing model, we expect
non-zero values for these parameters. The v value caused by the
Shklovskii effect is simply absorbed into the intrinsic spin-down
rate for the pulsar. However, if the expected intrinsic P;, =0, then
as shown by Bell & Bailes (1996) the observed value can be used
to determine the distance to the pulsar:

pobs
c Py

DZFPI;’ @)

where D is the pulsar’s distance, ¢ the vacuum speed of light, and p
the total proper motion. This equation neglects the differential ac-
celeration of the pulsar and the Earth in the gravitational potential of
the Galaxy. The pulsar’s distance can therefore be determined from
P™ or from the annual parallax when these effects are taken into
account. We choose to decouple these parameters (i.e. fit separately
for the two distances) in order to determine whether the distance
measurements are consistent. The pulsar timing model requires a
distance estimate when determining the orbital parallax and the an-
nual orbital parallax (Kopeikin 1995). In all cases here, we use the
default parallax distance. In Section 6.2, we discuss the significance
of this P, distance measurement for PSR J0437—4715.

3.1 Choosing parameters to include in the model

For all pulsars, we start with the timing models presented by V09
(and, for PSR J0437—4715, the model from V08). For solitary pul-
sars, model parameters include the spin (v, V), astrometric (position,
proper motion, and parallax), and ISM parameters (Section 4.1). In
all cases, we fit for the spin, position (right ascension o and dec-
lination ), and DM variation parameters (from Manchester et al.
2013). These parameters are all measured at a reference epoch of
MIJD 54500. In a few cases (in particular where the pulsar is either
close to or almost perpendicular to the ecliptic plane, respectively),
we cannot obtain a significant measurement of the proper motion
in declination () or the parallax (7).

To determine whether parameters beyond this base model are re-
quired by the data, we make use of the Akaike information criterion
(AIC; Akaike 1973), which states that a model is a better fit to the
data if

Ax? > 2k, (3)

where Ax? is the difference of the x? value before and after a fit
that includes k£ new parameters. To determine which parameters to
fit for using the AIC, we use the following procedure with solitary
pulsars.

(i) Remove non-essential parameters (proper motion in right as-
cension i, and declination ps, and parallax 7) from the timing
model (if present) and note the x> value of residuals.

MNRAS 455, 1751-1769 (2016)
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(ii) Fit for each parameter separately and note the new x? value
in each case.

(iii) Include the parameter that results in the lowest x2 value
permanently into the timing model if this parameter also satisfies
the AIC.

(iv) Repeat with remaining parameters until either all parameters
are included in the timing model, or all remaining parameters fail
to improve the timing solution, as determined by the AIC.

This procedure is also applied to pulsars in binary systems. All
non-essential binary parameters (post-Keplerian) are initially re-
moved and the AIC is used to find which should be included. If a
Shapiro delay (Shapiro 1964) is detectable for the binary system, we
parametrize this with the companion mass, M., and sine of inclina-
tion angle of the orbit, sin i, except in the cases of pulsars described
with the T2 binary model, for which we link sin i with the measured
inclination angle from the Kopeikin terms (Kopeikin 1996).

4 PARAMETER MEASUREMENT IN THE
PRESENCE OF NON-STATIONARY RED NOISE

In the original implementation of the C11 algorithm, the red noise
was characterized by a power spectrum, from which a covariance
function was estimated and finally a covariance matrix was con-
structed. This was satisfactory for analysis of the DR1 data set.
However, DRIE data contain uncorrected DM variations in the
20 cm residuals prior to multi-band observations and thus have ad-
ditional red noise. We cannot produce a single power-law model
for the entire data set because of this extra red noise which may
dominate the total red noise in a subset of the data. Instead, we pro-
duce two separate models to describe the two sources of red noise
in the residuals. One model describes the frequency-independent
noise present throughout the data set using a power law, while the
other describes the additional DM noise present only in the early
data (Section 4.1). We have updated the implementation of the al-
gorithm to synthesize a covariance matrix for DR1E observations
using these two red-noise models, which we refer to as the split-
Cholesky algorithm.

The method requires two red-noise covariance matrices, one for
the frequency-independent timing noise and another for the DM
noise. Both of these are estimated from the DR1 data alone because
for this data set we can estimate and remove the DM noise (described
in Section 4.1), allowing us to model the timing noise (Section 4.2)
independently with an analytical model,

P,
P(f)=—"—0s, (4)

{1 + (fi)z}

where P is the amplitude of the power in yr* at a corner frequency
/. and « is the spectral index. A stationary covariance matrix is then
computed from this spectral model.

To build the DM-noise model that applies to only the early DM-
uncorrected observations, we first estimate DM variations, ADM(z),
from the DM-corrected DR1 data using a process described in
Section 4.1. We can then choose to create an analytical model of the
power spectrum of ADM(#) from which we compute a covariance
function CA) (K13), or we can model the covariance function of
ADM(r) directly (Section 4.1). To create the final covariance matrix
for the entire data set, we must account for the fact that we do not
know the mean ADM for the DR1 DM-corrected data. It is adjusted
to match the end of the earlier uncorrected data with no discontinu-
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ity. We then compute the non-stationary ADM(¢) covariance matrix
Cn(ti, 1)) as follows:

Cuti,17) = Cr(|t; — 1;])

fort;, t; < T,

Culti, 1;) = Cu(T., T.) = C£(0)
for #;, t; > T, and

Culti 1)) = Co(t; — Tu)

for t; < T, t; > T., where T is MID 53430, the time in the data
set beyond which the data is DM corrected. Finally, we sum the
stationary covariance matrix for the red timing noise (C11), the
non-stationary covariance matrix for the ADM(7), and the diagonal
matrix of the variances of the white noise at each sample and apply
the Cholesky algorithm as originally formulated. In Section 6.1, we
demonstrate the effectiveness of this algorithm through the use of
simulated data.

4.1 Modelling the DM variations

With the advent of the PPTA in 2005, regular observations occurred
in multiple observing bands (10, 20, and 50 cm). For these data, we
are, in principle, able to obtain a measurement of the DM because
the group delay is ocA?. However, as the pulse profiles of MSPs in
our sample evolve significantly with frequency (Dai et al. 2015),
the effect of an absolute DM on the residuals is coupled with the
frequency evolution of the pulse profile and is therefore difficult to
determine. We are however able to measure changes in DM, which
we refer to as ADM(7), using interband measurements with the
required accuracy (*1: 10%). Residual errors in these corrections
are an important source of noise in the PPTA (and all other PTAs).
Such time series (obtained from the same observations we analyse
here but with different ErFacs and EQuADs) were analysed by K13.
We assume that the ADM(#) are caused by the movement of the
line of sight from the Earth to the pulsar through spatial variations in
the ISM. If the velocity of the line of sight were constant, ADM(?)
would simply represent a cut through the ISM in the direction of the
velocity. If the fluctuations are due to homogeneous Kolmogorov
turbulence, then the power spectrum of ADM(z) would be (K13)

Pom(f) 2 3.539D(x)t /3 f 7803, )

where D(t) is the structure function at time lag t. Here D(t) is
measured in s2, T in s, fin yrfl, and Ppy(f) in yr3.

Many of the pulsars in K13 showed a clear linear trend in ADM(¥),
possibly indicating a constant spatial gradient over the observing
span. In such cases, the Earth’s orbital motion causes an annual
sinusoid in ADM(#) and this was also observed by K13. Although
this gradient may be part of a stochastic process, for the purpose
of analysing our observations it can be considered deterministic
and included in the timing model. Accordingly, if it is statistically
significant (determined using an AIC test), we fit and remove a linear
gradient (dDM/d¢) and an annual sinusoid that has been added to
the parameters of the timing model in TEMPO2 with the equation

DM, = Asin (2rtyr' (t — Ty)) + Bcos (2myr ™' (t — Tp)),  (6)

where A and B are the parameters in the timing model that describe
the amplitude and phase of the DM annual variations and 7 is the
reference epoch for the DM measurements. If ADM(#) has a linear
trend and/or annual variation, which we include in the timing model
using dDM/dz, and/or A and B, then we need to measure and model
the covariance, Cov(t), of the residual ADM(¢).
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Table 1. Parameters describing the DM model used for each pulsar. DM noise in the earliest residuals is described by the DM covariance function
parameters (a and b) in equation (7), which are calculated after the removal (if necessary) of a linear trend, dDM/d¢, and annual variations described
by the sine (A) and cosine (B) amplitudes. Afpy is the separation of ADM measurements in the multi-frequency section of the data set for each pulsar.

Timing model parameters

DM covariance

DM dDM/dt B Afpm a b
Pulsar name (cm™3 Pc) (cm™3 pc yr’l) (10~*cm™3 po) (10~* cm™3 pc) (d) %) (d)
J0437—4715¢ 2.644 98 - - - 60 _ _
J0613—0200 38.7756 - —-1.0£02 —-1.0£02 365.25 55x%x 10714 317
JO711-6830 18.4099 9=+7) x 1073 - - 200 5.8 x 10713 331
7102241001 10.2531 - - - 200 1.2 x 10713 153
J1024—-0719 6.488 03 (22+0.6) x 1074 - - , _ _
11045—4509 58.1438 (—=3.66 £0.13) x 1073 —8.1+23 —09+4 182.62 1.7 x 10711 179
J1600—3053 52.3249 (—6.3 +£0.3) x 107 - - 125 52 x 10713 146
J1603—7202 38.0489 - - - 100 6.3 x 10713 64
J1643—1224 62.4143 (—1.23 £ 0.005) x 1073 —2940.7 —5940.7 365.25 1.5 x 10712 113
J1713+40747 15.9903 - - - 365.25 2.6 x 10714 171
J1730—2304 9.616 34 (5.6 +05) x 1074 - - , _ _
J1732—5049 56.8365 (88+12)x 1074 - - - _ _
J1744—1134 3.136 95 (—132+£0.18) x 1074 - - , _ _
J1824—2452A 119.892 (1.15+£0.08) x 1073 - - 82.5 _ _
J1857+0943 13.2984 (28+05) x 1074 - - , _ _
J1909—3744 10.3932 (—2.97 £0.06) x 104 - - 105 - _
7193942134 71.0227 (—=5.9+03)x 107+ 244+ 1.1 1.6+1.2 50 32 x 10713 112
J2124-3358 4.600 96 - - - _ _ _
J2129-5721 31.8509 (—1.6+04) x 1074 - - _ _ _
12145-0750 8.997 61 (12403)x 1074 - - - _ _

Note. “Kolmogorov model from K13 is used to model the DM noise instead of a covariance function.

We measure ADM(f) with a 5 yr~' cadence for each pulsar
using the DR1 multi-band data, and convert each measurement
to a time delay in the 20 cm band using fpy(v) = DM/(Kv?),
where v is the observing frequency (1400 MHz in this case) and
K = 2410 x 107* MHz? cm™? pc s™! (You et al. 2007). We
then model the covariance functions of the detrended (if required)
ADM(¢) with a function of the form

Cov (DM(t)) = a exp (-(%)Q). @)

The covariance (Cov) is a function of lag t (in days), a is the
amplitude of the red noise (in s?), b is the characteristic time-scale
(in days), and the exponent was chosen to be @ = 2 so that the
covariance function will have a positive definite Fourier transform,
which is the power spectrum.

The annual variation, linear trend, and covariance function pa-
rameters that we have used to construct a DM model for each pulsar
are given in Table 1. In some cases, no dDM/dt is apparent in the
data, but the ADM(#) noise is nevertheless well modelled by the
covariance function since it is small. For all pulsars with the ex-
ception of PSR J0437—4715 (which is very well modelled by a
Kolmogorov power law), we find that these covariance function
models successfully whiten the residuals and we therefore include
them in our combined red-noise models. For PSR J0437—4715, we
use the Kolmogorov power law presented in K13 to model the DM
noise present in the early data.

For PSR J1603—7202, there is an extreme scattering event (ESE;
Fiedler et al. 1987), lasting ~250 d, which was reported by K13
and is described in detail in Coles et al. (2015). The ESE dominates
the shape of the non-DM-corrected 20 cm residuals in that region.
We examined the early 20 cm data searching for ESEs comparable
with the one reported by K13 and found none. We obtained the
covariance model for ADM(z) by linearly interpolating across the
ESE before computing the covariance function.

Maitia, Lestrade & Cognard (2003) reported on a 3-year-long
ESE (centred on the year 1998) detected in the direction of
PSR J1643—1224 by studying flux variability of the pulsar us-
ing observations undertaken at the Nancay observatory. Unfor-
tunately, we have poor data during this time and consequently
do not find evidence for such an event. For PSR J1713+0747,
we see a peculiar ‘dropout’ in the ADM(¢) that is probably re-
lated to an ESE-like structure. We therefore computed the covari-
ance of ADM(¢) for PSR J17134-0747 by interpolating across this
dropout.

The deterministic terms in the model for each pulsar include
an absolute DM measurement (which we hold constant because
it is covariant with pulse profile evolution; Dai et al. 2015), and
if required, the additional terms dDM/dz, A and B, or ADM(?)
measurements taken at a spacing of Arpy days to remove any
residual red noise. The sampling interval Azpy is ideally the widest
spacing required to remove the red noise since the measurements
add white noise to the residuals. We start with the Atpy published
with the data set in Manchester et al. (2013). We sample more
frequently if there is residual red noise because the published Azpy
were selected to minimize the rms residual in the best band for each
pulsar, and not to absorb the most red noise. However, adding the
deterministic DM parameters often allows us to reduce the ADM(z)
measurement cadence relative to that published in Manchester et al.
(2013).

4.2 Modelling the red timing noise

The analytical model (equation 4) for the frequency-independent red
noise (e.g. timing noise) must be estimated with data that have the
frequency-dependent red-noise contributions from DM variations
already removed. We therefore use the DM-corrected DR1 data and
fit the analytical model (equation 4) to the power spectrum. In most
cases, we find that f, = 1/T) fits the data reasonably well, where T
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Table 2. Parameters for the red-noise model for each pulsar. The pa-
rameters are used to describe the frequency-independent noise in the
data with a power law (equation 4), where « is the spectral index and Py
is the power at corner frequency, fc.

Pulsar name o Py (yr3) fe (yr’l)
J0437—4715 3 1.14 x 1077 0.067
J0613—0200 5 5.5 x 10728 0.40
J0711-6830 - - -
J102241001 - - -
J1024—0719 6 1.8 x 10723 0.066
J1045—-4509 3 2.0 x 1072 0.059
J1600—3053 2.5 3.0 x 10728 0.40
J1603—7202 2.5 1.2 x107% 0.065
J1643—1224 4 1.5 x 10°% 0.15
J1713+40747 2 3.0 x 10777 0.059
J1730—2304 - - -
J1732—5049 2 3.0 x 10777 0.25
J1744—1134 - - -
J1824—2452A 3.5 3.0 x 1072 0.17
J1857+0943 - - -
J1909—3744 2 1.2 x 1072 0.50
7193942134 45 1.5 x 1072 0.064
121243358 3.5 20x 1072 0.06
J2129-5721 1 1.0 x 10777 0.065
J2145-0750 4 3.0 x 10720 0.3

is the length of the DR1 data. For these cases, we assume that the
model will fit the entire DR1E with f, = 1/T%, where T is the length
of the DR1E data set, and we scale Py to this new f. accordingly.

In many cases, extrapolating the timing noise model by adjusting
fe will underestimate the noise at f~ 1 /7 because fitting for the spin
frequency and its derivative removes much of the low-frequency
power at f ~ 1/T. For pulsars where the timing noise dominates
the DM noise, we create a single spectral model for the entire
DRIE span directly. If this model ultimately whitens the residuals
adequately, we do not need to estimate the covariance matrix of
the DM variations. If however the timing noise model does not
extrapolate well and the DM noise is too significant to ignore, we
construct a red-noise model using the DRIE data, but reduce the
amplitude, Py, to account for the known DM noise in the data. The
amplitude needs to be reduced such that the residuals are sufficiently
whitened by the red-noise model.

For PSRs J0613—0200, J1600—3053, and J2145—0750, we find
that the red-noise model from the DR1 data alone does not extrap-
olate well over the entire data set since the power spectrum of the
DRIE data is observed to turn-over at f, > 1/7g. This was not
obvious when analysing the DR1 data alone. We observe a similar
turn-over for PSR J1909—3744; however, the data set used for this
pulsar includes multi-band observations across the entire span and
so is largely DM corrected (see Section 5.16). For this pulsar, we
therefore model the power spectrum of the entire data set and use
this with the original Cholesky algorithm.

The parameters describing the red timing noise models for each
pulsar are given in Table 2. The DM models that are used with these
red-noise models are described in Section 4.1, with parameters in
Table 1.

4.3 How do we know when our models are optimal?

The split-Cholesky algorithm produces the best linear unbiased
estimators if, and only if, the residuals after whitening are white
and normally distributed. If this is not the case, one or more of
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the red-noise model, EFACS, or EQUADS are incorrect. We utilize two
tests to check that the final residuals are what we require to have
confidence in the parameter measurements and uncertainties.

The first of these is an Anderson—Darling (AD) test for normality
(Anderson & Darling 1954). We apply this to our whitened, nor-
malized residuals to determine whether they are consistent with a
normal distribution with u = 0 and ¢ = 1. The result is the mod-
ified AD statistic, A*2. This is used to test the hypothesis that the
residuals obey the described normal distribution. The hypothesis
is rejected if A*? > 2.492 with 5 per cent significance (Stephens
1974), since the expected distribution function for the normalized
residuals is known. For example, panel (a) of Fig. 1 shows the post-
fit whitened and normalized residuals for PSR J1713+0747 and
panel (c) shows the cumulative distribution of these residuals. The
modified AD statistic, A*> = 1.03, indicates that the normalized
residuals are consistent with a standard normal distribution.

We then test for ‘whiteness’ by inspecting the power spectrum
of the whitened, normalized residuals (see also C11). Panel (b)
of Fig. 1 shows the Lomb—Scargle periodogram of these residuals
for PSR J17134-0747. We compute this power spectrum by first
converting the whitened components in panel (a) to a time series
using the ToAs of the unwhitened residuals. The frequency axis of
the resulting power spectrum is not well defined, and we term it
the pseudo-frequency. However, the whitening process provides a
diagonally dominant whitening matrix such that low frequencies in
the unwhitened residuals translate to low frequencies in the pseudo-
time series of the whitened components. The pseudo-frequency
power spectrum can therefore be a useful test of the red-noise model
used in the whitening process, since it must be flat. The power
spectrum of the unwhitened residuals is shown in panel (d) of Fig. 1
with the timing noise model used for this pulsar. If the test fails
for any pulsar, we update the red-noise model and re-fit the timing
model until the residuals are successfully whitened as required.

5 RESULTS

In this section, we present our final timing solutions for each pulsar,
with the post-fit residuals given in Fig. 2. We compare our measured
parameters with those in the literature, including very long baseline
interferometry (VLBI) measurements and distances derived from
the pulsar DMs using the Taylor & Cordes (1993, hereafter TC93)
and NE2001 (Cordes & Lazio 2002) galactic free electron distri-
bution models (giving distances accurate to approximately 25 and
20 per cent, respectively).

Much of the comparison in this section will be with V08 and
V09, which used a subset of our data set and is therefore not in-
dependent. However, V08 and V09 used a different Solar system
ephemeris, DE405, and time standard, TT(TAI), to our analysis,
which results in apparent changes to some parameters. Use of the
DEA405 ephemeris in particular induces significantly different posi-
tion parameters compared to the newer DE421 ephemeris, while the
use of TT(TAI) changes the apparent spin frequency and its deriva-
tive. For each pulsar, we find that inconsistencies in the position
parameters are explained by the use of this different ephemeris.

Although K13 measured DM variations for all PPTA pulsars and
determined an optimal sampling time, Manchester et al. (2013)
did not publish any ADM measurements for seven pulsars. This
is because ADM values were only published by Manchester et al.
(2013) if their inclusion improved the rms residuals. For our work,
we must account for all red noise in the residuals since this is re-
quired for the split-Cholesky algorithm (this process is described
in Section 4). The testing of red- and white-noise models for
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Figure 1. (a) Whitened and normalized post-fit residuals for PSR J1713+0747. (b) Power spectra of whitened and normalized post-fit residuals. Dotted line

marks f = 1 yr~!

and dashed lines indicate expected mean and variance for the spectrum. The pseudo-frequency is determined by converting the whitened

components to a pseudo-time series using the ToAs of the unwhitened residuals. (¢) Cumulative distribution of whitened and normalized post-fit residuals
(solid line) with expected distribution based on normal distribution with zero mean and unit variance (dashed line). Modified AD statistic for this distribution

with the expected distribution is labelled. (d) Power spectra of post-fit residuals. Dotted line marks f= 1 yr

—1 and solid flat line is an estimate of the white-noise

level. Dashed line is the power-law model of the frequency-independent timing noise.

each pulsar is described in Section 4.3, where we present the
analysis of PSR J17134-0747 as an example. We do not present
the analysis of the other pulsars, with the exception of PSR
J0437—4715, which shows some variation that we discuss below in
Section 5.1.

For each pulsar, we also compare the various distance measure-
ments available in the literature to check that our new distance
measurements from 7 or Py, are consistent with these. For each par-
allax measurement, we calculate the Lutz—Kelker (Lutz & Kelker
1973) corrected parallax value and the corresponding corrected dis-
tance using the method of Verbiest et al. (2012) and with the mean
flux of each pulsar given in Manchester et al. (2013). The parallax
measurements for PSRs J1024—0719, J1045—-4509, J1603—7202,
and J1857+0943 have high fractional uncertainties (parallax mea-
sured with less than 30 confidence) and therefore the bias-corrected
values for these closely resemble the prior distributions used. The
measurements however are important for placing an upper bound
on the parallax value, or similarly, a lower bound on the distance
measurement. A table of these values, and the distances from P,
and DM are given in Table 3.

For each pulsar, we derive the characteristic age, surface magnetic
field strength, and energy loss rate from the spin-down. Where
available, we use the pulsar mass function (Thorsett & Chakrabarty
1999) and a precise Shapiro delay measurement to calculate a pulsar
mass, and use the kinematic X measurements to place a limit on the

inclination angle of the orbit. These derived parameters are given
in Appendix A with the tables of parameters.

The red-noise models, ToA files, and parameter files for each pul-
sar are available from the Commonwealth Scientific and Industrial
Research Organisation (CSIRO) Data Access Portal 2

The final parameters for the seven solitary pulsars JO711—-6830,
J1024—0719, J1730—-2304, J1744—1134, J1824—2452A,
J19394-2134, and J2124—3358 are given in Table Al. The binary
pulsars are separated by the binary model used to describe their
orbit. Parameters for the small-eccentricity pulsars described by
the ELL1 model, PSRs J0613—0200, J1045—4509, J1603—-7202,
J1732-5049, J18574-0943, J2129-5721, and J2145-0750,
are presented in Table A2; DD model pulsars J1022+1001,
J1600—3053, and J1643—1224 are presented in Table A3; and T2
model pulsars J0437—4715, J17134+0747, and J1909—3744 are
presented in Table A4.

5.1 PSR J0437—-4715
PSR J0437—4715 is the closest MSP currently known and the

brightest at radio wavelengths. Van Straten et al. (2001) presented
a timing solution including the full three-dimensional geometry of

2 http://dx.doi.org/10.4225/08/561 EFD72D0409
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Figure 2. Final post-fit residuals for each of the pulsars in our sample. The vertical range of each subplot is given below the pulsar name.

the binary orbit. An updated model was presented by VO08. This
included a precise distance estimate derived from an orbital period-
derivative measurement.

In Fig. 3, we show the two components of the red-noise model
with the power spectrum of the post-fit residuals (panel d). As

MNRAS 455, 1751-1769 (2016)

shown in panel (b), the model successfully whitens the residuals.
Significant uncorrected DM noise is present in the early data. There-
fore, as expected, the timing noise model underestimates the total
noise, whereas the DM-noise model alone overestimates the total
noise (since it does not apply to the entire data set). There is excess
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Table 3. Parallax values and distance measurements for pulsars in our sample. Parallax and parallax-derived distance values are corrected for
the Lutz—Kelker bias using the method of Verbiest et al. (2012). TC93 and NE2001 DM distances have approximate uncertainties of 25 and

20 per cent, respectively.

Measured values

L-K bias-corrected values DM distances (kpc)

Pulsar name Parallax 7 (mas) P, distance (kpc) Parallax 77 (mas) 7 distance (kpc) TC93 NE2001
J0437-4715 6.37 £ 0.09 0.15679 = 0.00025 637 £ 0.09 0.156.9 £ 0.0022 0.14 0.189
J0613-0200 0.86 +0.13 - 0.81 £0.13 1097014 2.19 1700
J0711-6830 - - - - 1.04 0.854
3102241001 11403 12405 1.0+03 0.74113 0.60 0.443
J1024-0719 0.5+03 - 0.57021 11704 0.35 0.381
J1045—4509 22+ 11 - 0.2970, 0.34707, 3.24 1.945
J1600—3053 048 £0.11 - 043 £0.11 1.8703 2.67 1.581
J1603—7202 1.1+0.8 39+ 1.8 0.25%04, 0.53704, 1.64 1.159
J1643—1224 1.27 £0.19 - 1.18 £0.19 0747512 >4.86 2.320
J171340747 0.86 + 0.09 31412 0.84 £ 0.09 L2t 0.89 0.889
J1730-2304 1.5+03 - 12404 0.62+013 0.51 0.529
J1732-5049 - - - - 1.81 1.392
J1744—1134 2.53 £0.07 - 252+ 0.07 0.395 £ 0.011 0.17 0415
J1824-2452A - - - - 3.64 3.042
J1857+0943 05403 - 0.15792, 1.2%07 0.70 1.168
J1909—3744 0.810 = 0.003 1.140 £ 0.012 0.810 £ 0.03 1.23 £0.05 0.55 0.457
J1939+2134 0.52+0.16 - 0.40 + 0.16 15703 3.58 3.550
J2124-3358 24404 - 2,15+ 0.4 0.41700 0.25 0.268
12129-5721 - 32+15 - - >2.55 1.686
J2145-0750 1.84 +0.17 - 1.80 £ 0.17 0.537006 0.50 0.566

noise at all frequencies (the mean of the power spectrum of normal-
ized residuals is >1). This could result, for example, by additional
uncorrected short-time-scale correlated noise in the residuals. The
normalized residuals do not pass the AD test (A*> = 6.75). This may
be because of instrumental effects or because of pulse jitter (Shan-
non et al. 2014). Non-Gaussianity has been detected previously
for PSR J0437—4715 by Lentati, Hobson & Alexander (2014b).
However, it was shown that, at this level, the non-Gaussianity and
high mean spectral power do not significantly affect the parameter
measurements or uncertainties.

Using our new, precise measurement of P,, we can calculate
an improved distance to PSR J0437—4715 of D = 156.79 £
0.25 pc. We discuss this measurement in detail in Section 6.2.
As shown in Table 3, this measurement is consistent with inde-
pendent distances, including our parallax distance measurement of
D =157 £2 pc. VO8 measured a high pulsar mass for this pulsar, of
M, =1.76 & 0.2 M. Our improved measurement of the Shapiro
delay reduces the uncertainty on the pulsar mass and we find M, =
1.44 £ 0.07 Mo, significantly smaller at the 1.50 level. This im-
proved mass measurement will be important for the N/CER mission
which will attempt to measure the neutron star radius, probing the
neutron star equation of state.

Kinematic contributions to the measured @ are included in the
timing model through the measurement of Kopeikin terms. We
therefore expect that our w measurement is solely due to the effects
of GR, as was reported in VO8. Under this assumption, the reported
@ corresponds to a combined pulsar and companion mass of M, +
M. = 1.44 &+ 0.2 M), which is just consistent with the measured
masses at the 1o level. In analysis of future data sets for this pulsar,
the improving @ measurement will be able to be used in combination
with the Shapiro delay measurement to further constrain the pulsar
mass.

5.2 PSR J0613—-0200

The only new parameters included in our PSR J0613—0200 timing
model are those describing the sinusoidal annual variations in DM
that were presented in Section 4.1.

5.3 PSR J0711-6830

The pulsar timing model for this pulsar contains the same param-
eters as in V09. As expected, our measurements are more precise
than previous work. We have not been able to obtain a parallax
measurement for this pulsar because of its proximity to the ecliptic
pole.

5.4 PSR J1022+1001

This pulsar has the smallest ecliptic latitude (—0.06 deg) of all
pulsars in the sample. Observations when the line of sight to the
pulsar passes close to the Sun have been used by You et al. (2007)
to study the solar corona. However, these observations are gener-
ally removed for high-precision timing applications. For our timing
solutions, we removed the ToAs that were obtained when the line
of sight to the pulsar passed within 5° of the Sun. The removal of
these residuals produces normalized residuals that are consistent
with zero mean and unit variance.

van Straten (2013) analysed 7.2 years of data for this pulsar
from the Parkes radio telescope using a new method of polarimetric
calibration to improve timing precision. The DR1 and DRIE data
sets did not include this new calibration procedure. With our data
set, we have detected a significant Shapiro delay using the tradi-
tional parameters M. and sini. However, while we found sini =
0.69 £ 0.18, we did not measure a significant companion mass,
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Figure 3. (a) Whitened and normalized post-fit residuals for PSR J0437—4715. (b) Power spectra of whitened and normalized post-fit residuals. Dotted line
marks f = 1 yr~! and dashed lines indicate expected mean and variance for the spectrum. The pseudo-frequency is determined by converting the whitened
components to a pseudo-time series using the ToAs of the unwhitened residuals. (¢) Cumulative distribution of whitened and normalized post-fit residuals
(solid line) with expected distribution based on normal distribution with zero mean and unit variance (dashed line). Modified AD statistic for this distribution

with the expected distribution is labelled. (d) Power spectra of post-fit residuals. Dotted line marks f= 1 yr~

! and solid flat line is an estimate of the white-noise

level. The timing noise model applies over entire data set in combined noise model, while the Kolmogorov DM-noise model only applies to residuals prior to

MID 53430.

M. = 2.2 &+ 2.4 M. Our parameters are consistent with those of
van Straten (2013).

We measured the orbital period derivative, Py =(5.5+2.3) x
1013, for the first time [this parameter was not measured by van
Straten (2013). Assuming a pulsar mass of M, = 1.4 Mg and com-
panion mass of M. = 0.2 M, the expected P, contribution from
quadrupolar GW emission is POR = —1.7 x 107!, three orders of
magnitude smaller than this measurement. We therefore expect that
our measurement is an apparent orbital period increase caused by
the Shklovskii effect. Given the proper motion of the pulsar, we
can derive the distance to the pulsar, D = 1.5 &£ 0.5 kpc, which, as
shown in Table 3, is consistent with other distance measurements.

The measured x is expected to be from the Kopeikin kinematic
effects discussed in Section 3. From this, we place an upper limit
on the inclination angle of the orbit of i < 84 deg using the to-
tal proper motion presented in van Straten (2013), since we do
not measure the proper motion in declination. The @ measurement
can have contributions from the same kinematic effects, but may
also be consistent with the periastron advance expected from GR.
Assuming that the observed @ comes entirely from GR, we de-
rive the combined mass of the system to be M, + M. = 2.5 &+
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1.3 M, which is consistent with a neutron star—white dwarf binary
system.

5.5 PSR J1024—-0719

The red timing noise for PSR J1024—0719 has a large spectral
exponent (i.e. it is very steep). Our usual procedure, as described
earlier, requires that we extrapolate the red-noise model obtained
from the recent, multi-wavelength data into the earlier data. For
PSR J1024—0719, we found that the red-noise model obtained
from the recent data did not extrapolate well. Since DM noise is not
detectable in the detrended data, we simply modelled the red noise
in the entire data set and did not use an additional DM-noise model.

Our measurements are consistent with those of V09, and the mea-
surement precision is improved in all cases. We measure a parallax
of m = 0.5 £ 0.3 mas (prior to Lutz—Kelker bias correction), which
was undetected by V09. A parallax was previously measured by
Hotan et al. (2006) to be 7 = 1.9 + 0.8 mas, which is also consis-
tent with our measurements. However, since a parallax was unde-
tected by V09, and PSR J1024—0719 has steep red noise that was
unaccounted for by Hotan et al. (2006), the uncertainty for their
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original parallax measurement is likely to be severely underesti-
mated.

5.6 PSR J1045—4509

A parallax measurement was presented by V09 of 7 = 3 & 4 mas,
but this measurement may have been affected by uncorrected red
noise. We now make the first significant parallax measurement of
m =22+ 1.1 mas.

5.7 PSR J1600—-3053

We present the first significant measurement of x = (—4.2 £0.7) x
107", which is attributed to the proper motion of the system
(Kopeikin 1996), and gives us an upper limit on the inclination
angle of i < 67 deg. We detect the first significant parallax of
7 = 0.48 £ 0.11 mas (compared with 7 = 0.2 £ 0.3 mas given by
V09). From the Shapiro delay companion mass measurement M, =
0.34 £ 0.15 M, and the mass function, we can provide a constraint
on the pulsar’s mass: M, = 2.4 £ 1.7 M.

5.8 PSR J1603-7202

For this pulsar, we have the first measurement of a parallax
7 = 1.1 &+ 0.8 mas (prior to Lutz—Kelker bias correction). We
also present the measured first derivatives of the orbital period,
P, = (3.1 £ 1.5) x 10713, and the projected semi-major axis, x =
(1.36 £ 0.16) x 107", Since the GR contribution (for both P, and
x) is negligible for this system, we use the proper motion of the
pulsar and our P, measurement to derive the distance to the pulsar,
D = 3.9 &+ 1.8 kpc, which is marginally consistent with other dis-
tance measurements (Table 3). However, all distance measurements
for this pulsar are poor. Using the X measurement, we place an upper
limit on the orbital inclination angle of i < 31 deg.

5.9 PSR J1643—-1224

We present the first measurement of @ = —0.007 &£ 0.004 deg. An
improved measurement of x = (—5.25 £ 0.16) x 10~'* allows us
to derive an upper limit on the inclination angle of i < 28 deg. For the
measured o to be the result of GR effects, rather than the assumed
kinematic effects, the combined mass of the system would need to be
M, + M. =54 M@, an order of magnitude larger than expected. We
therefore expect that this measurement is not contaminated by GR
contributions and instead results from kinematic effects. However,
since these measurements are not well determined and we do not
detect a Shapiro delay, we are unable to find a unique solution for
the Kopeikin terms 7 and €2, and we therefore do not re-parametrize
the orbit.

5.10 PSR J1713+0747

Splaver et al. (2005) reported on 12 years of timing observa-
tions of this pulsar from the Arecibo observatory. Their analysis
was carried out with the JPL DE405 Solar system ephemeris and
the time reference was TT(BIPMO3). They obtained 7 = 0.89 £+
0.08 mas, ity cos§ =4.917 £ 0.004 mas yrfl, and us = —3.933 £
0.01 mas yr~!. The orbital projection effects caused by this proper
motion allowed them to determine 2 = (87 &£ 6)°. Their analysis
was carried out by ‘whitening’ the residuals using eight time deriva-
tives of the pulse frequency. C11 showed that such whitening can
lead to underestimated parameter uncertainties.
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V09 obtained a less precise parallax determination of
7 = 0.94 £ 0.10 mas and proper motion components of (i, cos §
=4.924 £+ 0.10 mas yr~! and 5 = —3.85 £ 0.02 mas yr~'. They
obtained i = (78.6 & 1.7)° and 2 = (67 & 17)°. V09 also included
P, = (41 £20) x 10713,

The mostrecent VLBI observations of this pulsar (Chatterjee et al.

2009) give proper motion components of (1, = 4.751’81(1)2 mas yr~!
and 15 = —3.6770% mas yr~! and parallax of 7 = 0.957(0¢ mas.

These values are in fair agreement with our values in Table A4.

Zhu et al. (2015) have analysed 21 years of timing data from the
North American Nanohertz Observatory for Gravitational Waves
(NANOGerav) for this pulsar to conduct tests of theories of gravity. In
their analysis, they measured parameters using a number of different
noise models. Using TEMPO2 with a jitter-based white-noise model
and ared-noise model, they measured 7 = 0.87 £ 0.03 mas, (4, cOS §
=4.91540.003 mas yr~!, and ps = —3.914 £ 0.005 mas yr~'. For
the binary model, they measured the Kopeikin terms i = (71.9 £
0.7)° and 2 = (88 £ 2)°, as well as a companion mass of M, =(0.286
+ 0.012 Mg and P, = (0.36 = 0.17) x 10712, These parameters
are consistent with, and more precise than, our measurements below
because of the longer data span and higher timing precision of the
NANOGrav data set for this pulsar.

With our analysis we obtain P, = (1.7 & 0.7) x 10~'2. The in-
trinsic PbGR from GW emission is negligible and so we expect that
this result comes from the Shklovskii effect. This provides a pulsar
distance of D = 3.1 &= 1.2 kpc, which is marginally consistent with
other distance measurements (Table 3). We also use the Shapiro de-
lay companion mass measurement M, = 0.32 £ 0.05 M, and the
mass function, to calculate the pulsar mass, M, = 1.7 = 0.4 M.

5.11 PSR J1730-2304

We present the first measurement of a parallax for this pulsar of
7 = 1.5 £ 0.3 mas, prior to Lutz—Kelker bias correction. All other
parameters are consistent with the previous values from V09.

5.12 PSR J1732-5049

V09 was only able to determine 15 = —9.3 & 0.7 mas yr~'. We now
also present a measurement of the proper motion in right ascension,
g cos 8 = —0.41 & 0.09 mas yr~!, but parallax was not detected.

5.13 PSR J1744—1134

All parameters are consistent with V09 after accounting for apparent
changes resulting from the different Solar system ephemeris and
time standard used in the analysis.

5.14 PSR J1824—-2452A

PSR J1824—2452A is a solitary pulsar located in the globular clus-
ter M28. The timing residuals for this pulsar exhibit red noise,
which may be caused by acceleration within the cluster potential,
or timing noise. Our timing model includes dDM/dt but, as we do
not include any single-frequency data for this pulsar, we use the
original Cholesky routines with a single noise model. We did not
measure a significant proper motion in declination nor a parallax
even though V09 did publish a proper motion in declination.

MNRAS 455, 1751-1769 (2016)
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5.15 PSR J1857+40943

This pulsar is in an orbit that is highly inclined to our line of sight,
allowing for a precise measurement of the Shapiro delay. We do
not improve parameter uncertainties for every parameter since V09
made use of publicly available data from the Arecibo observatory
to extend the data set, while we chose to use only the PPTA DRIE
data set. Using our Shapiro delay companion mass measurement
M. = 0.25 £ 0.03 M and the mass function, we calculate the
pulsar mass to be M, = 1.5 £ 0.2 M.

5.16 PSR J1909-3744

The narrow pulse width, particularly at 10 cm, allows us to achieve
very low ToA uncertainties. Recent PPTA data for this pulsar, timed
to sub-100 ns precision over more than 10 years, have led to the most
stringent limit on the stochastic GW background to date (Shannon
et al. 2015). For this reason, this pulsar is an important tool for
testing models of galaxy and supermassive black hole formation.

For this pulsar, we use a corrected version of the DR1E data set
that is described in Shannon et al. (2013). Previously undetected in-
strumental offsets were found and corrected, and additional archival
50 cm observations were included to allow measurement of ADM
over the entire data set. We also include an additional jump corre-
sponding to a software upgrade at MJD 55319.8 that was identified
by Shannon et al. (2015). We include dDM/dt in the timing model,
which removes the majority of the DM noise. While there is no
evidence for red noise in the 10 cm residuals (Shannon et al. 2015),
we identify some slight red noise originating from the 20 and 50 cm
residuals. This could be the result of instrumental noise or residual
interstellar dispersion noise. Because of this noise, we included a
red-noise model that sufficiently whitens the residuals.

V09 did not include Kopeikin terms in the timing model, but in-
stead fitted for x; @ was not measured. We now include the Kopeikin
terms, giving the inclination angle, i = 93.52 % 0.09 deg, and the
longitude of ascending node, 2 = 39 £ 10 deg. We measure the
orbital period derivative to be P, = (5.03 & 0.06) x 10~!3. The ex-
pected contribution from quadrupolar GW emission to this mea-
surement is POR = —2.7 x 10~'%, two orders of magnitude smaller
than this measurement. This expected value was calculated from
the measured companion mass M. = 0.2067 £ 0.0019 M, and the
calculated pulsar mass from the Shapiro delay and mass function of
M, = 1.47 £ 0.03 M. From this P, measurement and the proper
motion, we derive a distance of D = 1.140 £ 0.012 kpc, which is
consistent with the parallax distance. The distances derived from
the DM and galactic electron density models are evidently under-
estimated.

5.17 PSR J1939+2134

PSR J1939+4-2134 was the first MSP discovered (Backer et al. 1982),
and it is currently the second fastest spinning pulsar known. The
timing residuals for this pulsar are dominated by red noise.

5.18 PSR J2124-3358

All measured parameters for this pulsar are consistent with V09 and
the uncertainties have decreased in all cases.

MNRAS 455, 1751-1769 (2016)

5.19 PSR J2129-5721

We have the first measurement of the orbital period derivative,
P, = (7.9 £ 3.6) x 10'3. Using this measurement and the proper
motion, we derive a distance of D = 3.2 & 1.5 kpc, which is con-
sistent with the DM distances (Table 3); however, all distance mea-
surements for this pulsar are poor. We do not yet detect a parallax
for this pulsar because of its proximity to the ecliptic pole.

5.20 PSR J2145-0750

We have the first measurement of x = (8.0 & 0.8) x 10~'3, result-
ing from the proper motion of the pulsar. Using this value, we place
an upper limit on the inclination angle of the orbit of i < 69 deg. All
parameters are consistent with the previous results. V09 published
X, P;,, and o values, but the measurements were not significant.
Furthermore, the uncertainties were likely to be underestimated be-
cause of the red noise present in these observations.

6 DISCUSSION

6.1 Advantages of using the split-Cholesky algorithm

The methodology that we have used in this paper is based on tradi-
tional, frequentist analysis of pulsar timing residuals. An alternate
approach is through Bayesian algorithms, such as those described
in van Haasteren et al. (2009), van Haasteren & Levin (2013), or
the TEMPONEST algorithm developed by Lentati et al. (2014a). These
algorithms have successfully been used by the NANOGrav and
European Pulsar Timing Array groups (e.g. van Haasteren et al.
2011; Arzoumanian et al. 2014). When the same algorithms are
applied to PPTA data sets, uncertainties arise in the noise models
because of the covariance between DM variations and timing noise
processes in the single-wavelength (20 cm) early data. At present,
there is no way for current implementations of the Bayesian algo-
rithms to model such non-stationary red noise in the way that the
split-Cholesky algorithm allows. Instead, the Bayesian algorithms
assume that the noise is wide-sense stationary. Constructing sepa-
rate red-noise models for the timing noise and DM variations allows
us to better understand our noise model, by avoiding large uncer-
tainties in our early data. We therefore chose to use a frequentist
approach to analyse our data set since it is less computationally ex-
pensive than the Bayesian alternatives and gives us greater control
of our noise models.

To demonstrate the necessity for the split-Cholesky algorithm
with our data set, we created 500 realizations of PSR J0437—4715
data with red noise and DM noise at the level presented in Section 4.
The parameters in the timing model were fitted (including jumps
and DM variations) with three different noise treatments: no red-
noise model, extrapolated DR1 red-noise model in the Cholesky
algorithm only, and a two-component red-noise model with Kol-
mogorov DM noise in the split-Cholesky algorithm. In Fig. 4, we
show the distribution of post-fit parallax values represented by the
number of standard deviations from the true value. When no noise
model is used (panel a), the parameter uncertainties are clearly un-
derestimated. When the single-component red-noise model is used
(panel b), there is a significant improvement but the parameter un-
certainties remain underestimated. Finally, when a two-component
red-noise model is used with the split-Cholesky algorithm (panel c),
we can accurately model the total red noise for the pulsar, and as
a result we avoid underestimation of uncertainties. This is true for
all parameters with the exception of v and v (as was the case in the
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Figure 4. Distribution of parallax values from timing model fits to 500
realizations of simulated PSR J0437—4715 data. o is the number of standard
deviations from the true value for each of the N realizations. We used
three different noise treatments: (a) no red-noise model, (b) red-noise model
from DR1 data, extrapolated to apply over the entire data set, was used
with the Cholesky algorithm, and (c) two-component red-noise model with
Kolmogorov DM model is used in the split-Cholesky algorithm. For each
panel, the black line is a normal distribution fit to the distribution and
the red dashed line is a normal distribution with zero mean and standard
deviation equal to the average of the standard TEMPO2 uncertainties for the
500 realizations, scaled to the same area as the black-line distribution.

original Cholesky algorithm; see C11). The distributions of post-fit
values for each parameter in the PSR J0437—4715 timing model
(excluding v and v), using the split-Cholesky method, are given in
Fig. 5 with the AD statistic used to test the distribution. We see that
the distributions are consistent with the expected zero mean, unit
variance distribution for all parameters except for declination and
proper motion, which have slightly overestimated uncertainties.

6.2 PSR J0437—4715: kinematic distance measurement
from P,

As described in Section 3, the measurement of P;, for PSR
J0437—4715 can be used to measure the pulsar’s distance, using
equation (2). Contributions to the observed Pb value can come from
changes intrinsic to the pulsar system, 2™, from the kinematic or
Shklovskii effect, PX", and from differential acceleration of the So-
lar system and pulsar system caused by mass in the Galaxy, Pfal.
Therefore,

.[:,bs — Pbim + PbGal + P;dn, (8)

where we have measured Pb"bs = (3.7276 + 0.0058) x 1072,

The intrinsic orbital decay for neutron star—white dwarf systems
such as PSR J0437—4715 is dominated by quadrupolar GW emis-
sion, which can be calculated using the relation

. . 192nG3 -
Bt B = - (2 (1= )
PE
73 37 _
X (1 + ﬂez + %e4) mpne (mp —|—mc) 13 )
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(Peters & Mathews 1963; Taylor & Weisberg 1982). For PSR
J0437—4715, this GR contribution is P,,GR = —3.2 x 107'°, which
is smaller than the value calculated by V08 because of their mea-
surement of a high pulsar mass. This GR contribution is an order of
magnitude smaller than the uncertainty in the observed value.

The galactic acceleration component can be estimated by com-
bining the accelerations from differential rotation and the galactic
potential. The differential rotation acceleration is found using the
galactic longitude and distance to the pulsar, and the galactocentric
distance and circular velocity of the Sun. Acceleration in the galac-
tic potential varies as a function of height and can be computed
from a model of the local surface density of the Galaxy, given the
galactic latitude of the pulsar and its parallax distance. V08 used the
Holmberg & Flynn (2004) and calculate the total galactic contri-
bution to be P& = (=1.8 —0.5) x 107 = —2.3 x 10", Since
the value of the galactic acceleration is larger than the uncertainty
of our observed value, the uncertainty in this component may be-
come important. Bovy et al. (2012) find that the uncertainty for the
circular velocity of local sources is approximately 3 per cent by
using data from the Apache Point Observatory Galactic Evolution
Experiment. From Holmberg & Flynn (2004), the uncertainty in
the surface density resulting in the vertical component of acceler-
ation is approximately 10 per cent. Using these uncertainties, we
have Pf"‘l = (—2.340.08) x 10~'*, which is small compared to
the uncertainty in our measurement.

The kinematic contribution to P2 from the Shklovskii effect
and the distance to the pulsar can be found through

2

B — bR i b = P, (10)
where p is the total proper motion of the pulsar and D is
the distance. This gives P,l‘i“ = (3.7513 £ 0.006) x 10~'2 and
D = 156.79 £ 0.25 pc, which is consistent with our independently
measured parallax distance of D = 156.9 £ 2.2 pc. This is the
most precise distance measurement for all pulsars and one of the
most fractionally precise distance measurements for any star. Our
distance measurement is also consistent with the VLBI parallax
distance of D = 156.3 £ 1.3 pc, measured by Deller et al. (2008).
Since P, produces an effect in the residuals that grows over time,
we can expect the uncertainty in Pb‘)bs to decrease significantly in
future data sets, leaving the distance uncertainty to be dominated by
the uncertainty in models used to calculate the contributions from
galactic acceleration. Precise distance measurements such as this
will be important to PTAs in the future since these allow the use of
the pulsar term in single-source GW detection, which is essential
for accurately determining the source location (Lee et al. 2011).

7 CONCLUSION

We have presented new models for red noise caused by DM varia-
tions in single-frequency data sets, obtained by first including de-
terministic components in the timing model, and then modelling
the covariance function of the remaining noise. For 14 of the pul-
sars in our sample, we detect a linear trend in the DM variations
and include this in the timing model, and for four pulsars (PSRs
J0613—-0200, J1045—-4509, J1643—1224, and J1939+4-2134) we
also include new parameters that describe annual DM variations.
The new DM-noise models apply only to the early data where
excess noise is present, and are used in conjunction with a red-
noise model for the frequency-independent noise that is present in
the entire data set. These two-component models were used in the
new ‘split-Cholesky’ algorithm to whiten the residuals to provide
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Figure 5. Distributions of parameter values from timing model fits with the split-Cholesky algorithm to 500 realizations of simulated PSR J0437—4715 data.
o is the number of standard deviations from the true value for each realization. Data were simulated with statistically identical red-noise properties to those of

PSR J0437—-4715.

unbiased parameter measurements. We have described this algo-
rithm and demonstrated its effectiveness on simulated data. Model
parameters were shown to be unbiased and have accurate uncertain-
ties through simulations based on PSR J0437—4715.

Determining new timing models for the 20 PPTA pulsars in
the DRIE data set required these new models and algorithm be-
cause of the non-stationary red noise for most pulsars. The mod-
els we present provide the best description of the noise currently
possible with the PPTA data sets, and result in the most accu-
rate and precise parameter measurements to date for most pul-
sars in our sample, as well as the detection of several new pa-
rameters. Most notably, we presented the first significant parallax
measurements for PSRs J1024—0719, J1045—4509, J1600—3053,
J1603—7202, and J1730—2304, and determined the distance to
PSR J0437—4715 at the 0.16 per cent level of precision. We also
measured an improved pulsar mass for PSR J0437—4715, which
at M, = 1.44 £ 0.07 M is somewhat lower than the previous
measurement.

The analysis described here can easily be applied to future PPTA
data releases and to any PTA data with non-stationary noise pro-
cesses. Longer data sets for PSR J0437—4715 will further improve
the distance measurements based on both the parallax and the or-
bital period derivative from Shklovskii acceleration. If the timing
parallax distance becomes more precise than the current VLBI

MNRAS 455, 1751-1769 (2016)

distance, these two independent measurements can be used for
example to further improve current constraints on the change to
Newton’s gravitational constant (Freire et al. 2012). It may also
be possible to measure, or place limits on, the acceleration of the
pulsar system caused by mass in the Galaxy. With longer data sets,
improving @ measurements, particularly for PSR J0437—4715, can
complement the Shapiro delay to further improve measurements of
the pulsar mass.
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1768  D. J. Reardon et al.

Table A3. Parameters for the binary pulsars described by the DD binary model, PSRs J10224-1001, J1600—3053, and J1643—1224. Numbers in parentheses
are the TEMPO2 1o uncertainties on the last quoted decimal place, including split-Cholesky analysis.

Pulsar name

MIJD range

Data span (yr)

Number of ToAs

Rms timing residual (pLs)

Right ascension (RA), o (hh:mm:ss)
Declination (Dec.), § (dd:mm:ss)

Pulse frequency, v (s~ 1)

First derivative of pulse frequency, v (s~2)
Proper motion in RA, jt, cos 8 (mas yrfl)
Proper motion in Dec., /s (mas yr—')
Parallax, 7 (mas)

Orbital period, P (d)

Projected semi-major axis, x (It-s)

Epoch of periastron, Ty (MJD)

Orbital eccentricity, e

Longitude of periastron, wq (deg)

First derivative of orbital period, P,

First derivative of x, x

Periastron advance, & (deg yr—!)
Companion mass, M. Mp)

Sine of inclination angle, sin i

Dispersion measure, DM (cm > pc)

logjo(characteristic age, yr)
logo(surface magnetic field strength, G)
logio(spin-down luminosity, erg s~!)
Pulsar mass, Mp (M)

i limit from x measurement (deg)

J1022+1001
52649.7-55618.6
8.13

615

1.8

Measured quantities

10:22:58.0007(13)
+10:01:52.77(5)
60.779 447 963 6137(3)
—1.600 95(6) x 1016
—17.09(3)

1.1(3)

7.805 1360(16)

16.765 395(14)
49778.4080(11)
9.683(17) x 1073
97.64(5)

5.5(23) x 1013
1.15(16) x 1014
0.012(4)

22(2.4)

0.69(18)

Set quantities

10.2531

Derived quantities

9.78
8.93
32.58

<84

J1600—-3053
52302.0-55618.8
9.08

715

0.8

16:00:51.903 452(7)
—30:53:49.3653(3)
277.937 707 021 3120(12)
—7.3385(4) x 10710
—0.99(4)

—7.22(15)

0.48(11)

14.348 457 7721(3)
8.801 6536(13)
53295.5390(7)

1.737 29(10) x 1074
181.832(17)

—42(7) x 10715
0.34(15)
0.87(6)

52.3249

9.78
8.27
33.91
2.4(1.7)
<67

J1643—1224
49421.8-55618.9
16.97

488

2.8

16:43:38.160 985(9)
—12:24:58.6783(6)
216.373 337 179 973(9)
—8.6433(5) x 10710
5.94(5)

3.94(18)

1.27(19)

147.017 28(7)
25.072 6150(7)
49577.972(3)

5.057 53(9) x 107*
321.857(6)

—5.25(16) x 10714
—0.0007(4)

62.4143

9.6
8.47
33.87

<28

Table A4. Parameters for the binary pulsars described by the T2 binary model, PSRs J0437—4715, J1713+0747, and J1909—3744. Numbers in
parentheses are the TEMPO2 1o uncertainties on the last quoted decimal place, including split-Cholesky analysis. In each case where a companion mass
is measured from the Shapiro delay, the corresponding sin i parameter is linked to the Kopeikin parameter, i.

Pulsar name

MIJD range

Data span (yr)

Number of ToAs

Rms timing residual (ps)

Right ascension (RA), « (hh:mm:ss)
Declination (Dec.), § (dd:mm:ss)

Pulse frequency, v (s~ 1)

First derivative of pulse frequency, v (s~2)
Proper motion in RA, jt, cos§ (mas yr’l)
Proper motion in Dec., /s (mas yr—')
Parallax, 7 (mas)

Orbital period, P (d)

Projected semi-major axis, x (It-s)

Epoch of periastron, 7 (MJD)

Orbital eccentricity, e

Longitude of periastron, wq (deg)

J0437—-4715
50191.0-55619.2
14.86

5065

0.3

Measured quantities

04:37:15.896 1737(6)
—47:15:09.110 714(7)
173.687 945 812 1843(5)
—1.728 361(5) x 1013
121.4385(20)
—71.4754(20)

6.37(9)

5.741 0459(4)

3.366 714 44(5)
54501.4671(3)

1.918 11(15) x 107°
1.363(17)

J17134+0747
49421.9-55618.9
16.97

622

0.4

17:13:49.532 7220(19)
+07:47:37.497 95(6)
218.811 840 434 8011(11)
—4.083 80(6) x 10710
4.912(7)

—3.888(14)

0.86(9)

67.825 130 978(4)
32.342 4210(5)
51997.5804(9)

7.493 73(17) x 1073
176.201(5)

J1909—-3744
52618.4-55619.1
8.22

1368

0.2

19:09:47.434 6749(11)
—37:44:14.466 T4(5)
339.315 687 288 2446(3)
—1.614 817(5) x 1013
—9.517(5)
—35.797(17)

0.810(3)

1.533 449 474 406(13)
1.897 991 18(4)
53631.39(4)

1.14(10) x 1077

156(8)
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Table A4. — Continued.

First derivative of orbital period, Py 3.728(6) x 10712
Periastron advance, @ (deg yr’l) 0.0138(13)
Companion mass, Mc (M) 0.224(7)
Inclination angle, i (deg) 137.56(4)
Longitude of ascending node, Q2 (deg) 207.0(12)

Set quantities
Dispersion measure, DM (cm ™ pc) 2.644 98

Derived quantities

logjo(characteristic age, yr) 92
logjo(surface magnetic field strength, G) 8.76
logjo(spin-down luminosity, erg s~!) 34.07
Pulsar mass, M, (M) 1.44(7)

1.7(7) x 10712
0.34(5)

69(3)

99(4)

15.9903

9.93
8.3
33.55
1.7(4)

5.03(6) x 10713
0.2067(19)
93.52(9)

39(10)

10.3932

9.52
8.31
34.34
1.47(3)

This paper has been typeset from a TX/IATEX file prepared by the author.
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