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Abstract

Conventional spectral Te studies use the real part of the admittance between gravity 

anomalies and topography or alternatively the square of the magnitude of the 

coherency (i.e., coherence). Here we show the utility of treating both the admittance 

and coherency as complex quantities. Inverting the real parts to estimate Te, we use 

the imaginary parts to tell if the inversion is biased by noise. One method inverts the 

square of the real coherency, with the internal-to-total load ratio F derived (as a 

function of wave number) directly from the gravity and topography. The other method 

inverts the real part of the admittance assuming that F is wave number-independent. 

We test the methods using synthetic elastic plate models loaded at the surface and 

Moho in such a way that the final relief is the actual North American topography. In 

some of the models, we add gravity noise generated by a model having both surface 

and internal loads such that the final topography is zero, and find that both methods 

are susceptible to noise. Application of the two methods to North America gives Te

maps showing substantial agreement except in regions affected by noise, but these are 

not a dominant part of the total area. Given the suggested mechanisms by which noise 

might arise, it is not surprising that it is not a more widespread feature of the North 

American craton. Importantly, both methods show that large parts of the Canadian 

Shield are characterised by Te > 100 km. 
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1. Introduction 

The effective elastic thickness (Te) of the lithosphere is a convenient measure of the 

flexural rigidity (D), which is the resistance to bending under applied loads. The two 

are related by the equation: 
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where the elastic constants E and � are Young’s modulus and Poisson’s ratio, 

respectively (see Table 1). In general, Te does not correspond to a physical depth, but 

rather represents the integrated brittle, elastic and ductile strength of the lithosphere 

(Watts and Burov, 2003). That is, while the real lithosphere comprises materials of 

varying rheologies, Burov and Diament (1995) demonstrated that Te is a valid 

measure of the flexural rigidity for any rheology. Since Te governs many dynamic 

properties of the Earth, for instance subduction and orogenesis, glacial isostatic 

adjustment, and stratigraphy (e.g., Watts, 2001), it is an important parameter; however 

its magnitude over the continents is currently the subject of much controversy. 

Te is commonly estimated through spectral analysis of gravity and topography data. In 

one approach, the admittance (Q) is used, while another employs the coherence (�2).

The admittance is the wave number (k) domain transfer function between gravity (G)

and topography (H). Here capitals indicate either Fourier or wavelet transforms. Thus: 
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where the * indicates complex conjugation, and the angular brackets indicate an 

averaging process described in Section 4.1. The coherence between gravity and 
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topography gives an indication of their statistical relationship, and is computed 

through the formula: 

� �
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The gravity anomaly in Eqs (2) and (3) can either be the free-air or Bouguer anomaly. 

In order to determine Te from these quantities, they are computed from observed data, 

and then compared against the predictions from a thin elastic plate model. The 

predicted coherence/admittance will depend upon (amongst other parameters) Te, so 

the best-fitting predicted model gives the Te for the region under consideration. 

Historically, while Lewis and Dorman (1970) were the first to employ the admittance, 

they computed an Airy isostatic anomaly, and did not consider the flexural rigidity. 

The first spectral Te estimates were obtained from the admittance by McKenzie and 

Bowin (1976) in the oceans, and Banks et al. (1977) over the continents, by 

comparison of the observed admittances with those predicted by a thin plate model 

with topographic (surface) loading only. However, subsequent studies (e.g., Cochran, 

1980; McNutt, 1980), found that the admittance tends to be biased towards regions of 

high (continental) topography, where the plate is likely to be weaker. 

This problem was addressed by Forsyth (1985), who developed the Bouguer 

coherence method. Although the coherence had been employed in earlier studies (e.g., 

McKenzie and Bowin, 1976; Watts, 1978), it was used merely in terms of quality 

control of the data. Forsyth’s advance was to estimate Te by fitting the observed 

coherence with a predicted coherence based on a model involving initial subsurface 

(internal) loading at some depth, in addition to the initial surface load. Importantly, by 
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solving a pair of linear wave number domain equations, both initial loads (and their 

wave number-dependent amplitude ratio, f) can be determined directly from the 

observed gravity and topography. This process has been termed “load deconvolution” 

(Lowry and Smith, 1994) and because the solution fits the observed gravity and 

topography it automatically fits the admittance. Thereafter, most continental Te

estimates were obtained with the coherence method (e.g., Watts, 2001), until papers 

by McKenzie and Fairhead (1997) and McKenzie (2003) raised doubts regarding its 

efficacy. These papers generated some controversy, which we describe in detail in 

Section 2, but give a brief overview of below. 

McKenzie and Fairhead (1997) and McKenzie (2003) wrote that the problem with 

Forsyth’s deconvolution method lay in the way it models the initial internal load, 

particularly in continental shields with heavily eroded topography. Load 

deconvolution, they said, only correctly models those initial internal loads that 

produce some degree of measurable signal in the final topography after flexure 

(“expressed loads”). It cannot model, they said, a separate type of initial internal load 

that, together with an initial surface load, produces flat topography (“unexpressed 

loads”); or more to the point, load deconvolution will always treat large unexpressed 

loads as showing evidence of a strong plate. Unfortunately McKenzie and Fairhead 

(1997) used the term ‘noise’, without being explicit, to describe the gravity anomalies 

caused by unexpressed initial internal loads, which is probably why the controversy 

arose. This particular wording caused numerous authors (e.g., Simons et al., 2000; 

Banks et al., 2001; Armstrong and Watts, 2001; Swain and Kirby, 2003a) to miss the 

real issue, and the matter was thought by some people to have been put to rest. 

However, in McKenzie (2003) the arguments against load deconvolution methods, 
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and particularly the coherence method, were made clearer. Although Pérez-Gussinyé 

et al. (2004) and  Pérez-Gussinyé and Watts (2005) responded to many of McKenzie’s 

claims, we feel that more work is still required to address the most important of his 

issues, namely that in regions of subdued, eroded topography, Te estimates obtained 

from the coherence method are upper bounds which may be many times larger than 

the true values. 

We tackle the problem by following McKenzie (2003)’s definition of ‘noise’ as those 

gravity anomalies caused by unexpressed initial internal loads. Therefore, ‘noise’ in 

this paper constitutes that part of the observed gravity field not predicted by the load 

deconvolution method. Although we simulate noise (using the formulations in 

Appendix A2) and add it to synthetic data, we do not explicitly model it during 

inversion of observed admittance/coherence data. We do, however, present a method 

for its detection, via the imaginary components of the coherency (from which the 

coherence is derived) and admittance. As shown in Appendix B1, finite values of the 

imaginary component of the cross-spectrum, GH* in Eqs (2) and (3), indicate parts of 

the spectrum where two signals are out of phase (or have random phase). When the 

wavelet transform is used, the spatial locations of such regions are revealed as well. 

Hence, if features in one signal are not expressed to any degree in a second signal, 

then Im(GH*) is non-zero. In terms of flexure, then, those internal loads that produce 

no topographic expression, and which cannot be accounted for by the deconvolution 

method, can be detected by analysis of Im(GH*), via the complex admittance or 

coherency.
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A related issue is that the load deconvolution method assumes that the two initial 

loads must have a random phase difference (i.e., be “statistically uncorrelated”). 

McKenzie (2003)’s model of unexpressed loading, however, requires that the initial 

loads must have a phase difference of zero (i.e., be correlated or coherent) in order to 

produce a flat final surface topography after flexure. The reverse, that 100%-

correlated initial loads will always produce flat topography after flexure, is not 

necessarily true though, and in Appendix A1 we present a theoretical formulation of 

loading on an elastic plate by including varying degrees of correlation between initial 

loads. While this model does not describe ‘noise’ under our definition (and hence is 

not used for that purpose), it is useful for: 1) explaining how initial load correlations 

can bias Te estimates upwards or downwards, as was found in practice by Macario et 

al. (1995) and Kirby and Swain (2008); and 2) demonstrating that even 100%-

correlated initial loads do not always result in an unexpressed loading regime. 

McKenzie’s “zero-final-topography” model, therefore, is a special case of the more 

general model presented in Appendix A1. 

To investigate the efficacy of Te-recovery methods in regions where ‘noise’ is likely 

to bias results, we perform synthetic modelling of a typical cratonic region, that of 

North America (Section 5): we add noise to some of the synthetic models, but, as 

mentioned, do not invert for it and merely note its effect on recovered Te estimates. 

We then present results of the actual Te distribution over this continent (Section 6). 

The method we use is an improved version of the ‘fan’ wavelet coherence and 

admittance method (Kirby and Swain, 2004; Swain and Kirby, 2006; Kirby and 

Swain, 2008). While an intensive ‘calibration’ of the method has already been 

performed (Kirby and Swain, 2008), this was undertaken using an earlier version of 
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our fan wavelet method. The new method presented here uses the square of the real 

part of the coherency rather than the conventional coherence, which turns out to be (a) 

consistent with most Fourier methods and (b) less sensitive to correlations between 

initial loads (Section 4 and Appendix B1). 

2. The Controversy 

According to McKenzie and Fairhead (1997) and McKenzie (2003), continental 

elastic thickness should rarely exceed 25 km, even in Precambrian cratons. This value 

was based on: 1) estimates they derived from the free-air admittance without using 

load deconvolution; and 2) an investigation of Forsyth’s coherence method which, 

they said, would often yield upper bounds on Te, especially in eroded continental 

interiors. 

The ability of Forsyth’s coherence method to accurately estimate Te rests on two 

assumptions. First, that the loads that initially deform the plate are statistically 

uncorrelated or incoherent. This assumption was acknowledged by Forsyth (1985) and 

all other studies that used the method. The second assumption is that the initial 

internal load should produce a measurable response in the final surface topography. 

The arguments of McKenzie and Fairhead (1997) and McKenzie (2003) mainly 

focussed on the second assumption, but also involved the first. Ancient shield regions, 

they said, are predominantly characterised by eroded, and hence subdued, topography: 

the coherence between any two signals will necessarily be zero if one of these signals 

is uniformly zero. Of course, one interpretation, mentioned by Swain and Kirby 

(2003a), is that if topography is almost flat and there is a large Bouguer anomaly 
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(indicating substantial internal loads), then the plate must be strong in order to resist 

the buoyancy force of the internal loads. 

However, McKenzie (2003) advanced a different interpretation, which allows for low 

Te values in such cases. Where Forsyth (1985) described a plate model with two initial 

loads (surface and internal), McKenzie (2003) split the initial internal load into two 

components: initial internal loads that have a surface topographic expression 

(“expressed loads”), and initial internal loads that don’t (“unexpressed loads”). It is 

the latter type of load, he said, that is not only unaccounted for in Forsyth’s model, but 

is also the most prevalent in shields. [We should point out here that in McKenzie and 

Fairhead (1997), this distinction was not made obvious, and the unexpressed loads 

were referred to as just “noise”. It was probably this shortcoming that caused so much 

confusion. Nevertheless, the matter was addressed properly in McKenzie (2003). So 

as mentioned in the Introduction, the term ‘noise’ in this article refers to the gravity 

effect of unexpressed internal loads.] Under McKenzie’s model, a flat topography can 

result if: the initial surface and internal loads are completely correlated (i.e., with a 0�

phase difference); surface topography is then produced by flexure; erosion or 

sedimentation then takes place which reduces the topography; further rebound may 

take place, but further erosion removes this; eventually the sheer weight of the 

present-day internal loads resists rebound and a flat peneplain results (McKenzie, 

2003). Under this scenario, Te can be low, but the reasoning does not discount a high 

Te: as mentioned, the strength of the plate would resist rebound, letting erosion do its 

work.
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An argument against this proposal was made by Pérez-Gussinyé et al. (2004). They 

suggested that as erosion removes the surface topography, isostatic adjustment would 

reduce the amplitude of the internal load, if it were manifested as relief on some 

internal interface. That is, both surface topography and the gravity anomalies due to 

the internal load would decrease. However, they said, this is not observed in shields, 

where the gravity anomalies are still large, indicating a substantial internal load that 

must be mechanically maintained by a strong plate. 

Aside from the mechanical considerations, McKenzie and Fairhead (1997) and 

McKenzie (2003) also stated that Forsyth’s method only gives accurate Te estimates 

when the power in the free-air anomaly is of the same order of magnitude as the 

power in the “uncompensated topography” (which is 2	
�h, the simple planar 

Bouguer correction). McKenzie and Fairhead (1997) reasoned that the dominant 

signal in free-air anomalies is the gravity effect of the topography, so if the 

topography is almost flat yet there are still substantial free-air anomalies (due to 

unexpressed internal loads), then Forsyth’s second assumption (above) is not satisfied. 

In addition to the comparison of power spectra, McKenzie and Fairhead (1997) and 

McKenzie (2003) proposed that a measure of such violation would be that the free-air 

coherence (i.e., the coherence between free-air anomalies and the topography) is close 

to zero at short wavelengths. If the free-air coherence is low, they said, then the 

Bouguer coherence must also be low, but not because of mechanical support of the 

shorter-wavelength topography: it would be low because of “noise” (i.e., unexpressed 

internal loads) in the gravity field. In such cases, the Te calculated from the Bouguer 

coherence method must therefore be an upper limit, and not a true estimate, according 

to them. 
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Showing the results from some analyses over shields, using the multitaper method of 

spectral estimation, McKenzie and Fairhead (1997) and McKenzie (2003) suggested 

that most of the Earth’s shield regions fall into the low free-air coherence category, 

indicating that unexpressed loads were widespread there, and meaning that the high Te

estimates computed from load deconvolution methods were upper bounds. Instead, 

they proposed that Te is more reliably recovered by inversion of the observed free-air 

admittance using an analytic formula where both Te and the loading ratio, f, are 

adjustable, independent variables. Importantly, f in this method is not a function of 

wave number, because it is not estimated from the data. For this reason, we call this 

approach the “uniform-f” method, to distinguish it from the load deconvolution 

method in which f is estimated from the data and is generally wave number-

dependent.

In summary, the reasons behind McKenzie and Fairhead (1997) and McKenzie 

(2003)’s suggestion of using the uniform-f free-air admittance instead of the load-

deconvolution Bouguer coherence method were: 1) Forsyth’s equations do not take 

account of unexpressed internal loads; 2) admittance rather than coherence should be 

used because the latter is biased by gravitational noise, whereas the former is not 

(although the error estimates increase); and, 3) that the free-air rather than Bouguer 

anomaly should be used because low free-air coherence at short wavelengths indicates 

the presence of unexpressed internal loads, which cannot be identified if the Bouguer 

anomaly is used. 
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As a final note, we choose to display the loading ratio results in terms of the F

parameter introduced by McKenzie (2003). The relationship between the f introduced 

by Forsyth (1985) and F is: 

1
fF

f
�

�
 (4) 

Thus, whereas f is the ratio of the initial internal load amplitude to the initial surface 

load amplitude, F is the ratio of the initial internal load amplitude to the total 

amplitude of both initial loads. Purely surface loading gives f = F = 0, purely internal 

loading gives f = 
 and F = 1, while equal loading gives f = 1 and F = 0.5. Remember 

that f and F are, in general, wave number-dependent parameters. However, while the 

load-deconvolution methods estimate a wave number-dependent f from the data and 

model, the uniform-f methods assume that f has the same value at all wave numbers. 

3. The Wavelet Transform 

The method we use for effective elastic thickness estimation using ‘fan’ wavelets is 

explained in detail in Kirby and Swain (2008) and references therein. The reader 

should consult these references for detailed information about the method. Briefly, the 

fan wavelet method computes 2D Morlet wavelet coefficients of gravity and 

topography at a number of azimuths spanning 180�, which ensures isotropy but does 

not average the imaginary components of the coefficients to zero (see discussion in 

Section 4.1). The wavelet admittance and coherence between gravity and topography 

are then formed via Eqs (2) and (3), and provide estimates of these quantities at each 

grid node of the study area. The scale of the wavelet is adjusted so that small-scale 

wavelets resolve the shorter wavelengths, while large-scale wavelets resolve the 

12



longer wavelengths. Scale may then be directly mapped to an equivalent Fourier wave 

number using a simple algebraic expression (Kirby, 2005). 

The advantage over methods that use the windowed Fourier transform (e.g., 

multitapers or the Gabor transform) is that the data need not be windowed. Since the 

wavelet, which spans the whole study area, is convolved in the space domain with the 

whole data area, the full spectrum is recovered. In contrast, the choice of window size 

in multitaper methods limits the bandwidth of the spectrum, meaning that, sometimes, 

large flexural wavelengths cannot be recovered. 

4. Te Estimation by Spectral Methods 

In this section we review the coherence method and show that, as conventionally 

implemented, it actually uses the square of the real part of the coherency rather than 

the square of its modulus. We therefore reformulate our wavelet version of the 

method in terms of this quantity and point out the utility of its counterpart, the squared 

imaginary coherency. 

4.1 Averaging 

In the Bouguer coherence method of Forsyth (1985), and its wavelet adaptation by 

Swain and Kirby (2006), the observed coherence between Bouguer anomaly and 

topography data is calculated in the wavenumber domain through Eq. (3). If the 

spectra are computed using the classical Fourier periodogram technique, the angular 

brackets in Eq. (3) indicate an averaging process that is performed around concentric, 

isotropic annuli spanning 360� in the wavenumber domain (e.g., Banks et al., 1977). 

In this approach, the coherence becomes a function of 1-D radial wave number (k = 
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|k|): . With the multitaper method, the averaging is performed over a number of 

tapers (e.g., McKenzie and Fairhead, 1997; Simons et al., 2000), and the coherence is 

a function of 2-D wave number, , thus revealing its anisotropy. However, most 

multitaper implementations that use isotropic coherence (e.g., Pérez-Gussinyé et al., 

2004) also use annular averaging. In the fan wavelet method, the averaging is 

performed over a series of azimuths, and the coherence is a function of (equivalent 

Fourier) wave number and spatial location (x), . In contrast to annular 

averaging, the rotation of the wavelets spans only the upper two quadrants of the 

wavenumber domain (i.e., over 180�) in order to make the wavelets complex as well 

as isotropic. As Kirby (2005) showed, there is no loss of information incurred when 

restricting the angular range, because the lower two quadrants of a signal’s Fourier 

transform contain duplicated, and hence redundant, information.  

2 ( )k�

2 ( )� k

2 ( , )k� x

4.2 Coherency and Coherence 

The coherency is defined in the wavelet or Fourier domains by: 

1
2 2

*

* *

GH

GG HH

 � 1  (5) 

Note that the terms “coherency” and “coherence” for this function and its modulus-

squared appear to have been introduced by Weiner (1930), but were also used by 

Tukey (1984) and this usage is followed widely in geophysics (e.g., Claerbout, 1976; 

Kanasewich, 1981). In the wavelet case, the term “coherency” is also used by Liu 

(1994). On the other hand, Wieczorek (2007) uses the term “degree-correlation”, 

though for a spherical harmonic analysis. [Our reasons for not using the symbol � for 

the coherency will shortly become apparent.] 
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Because the product GH* is complex, the coherency is a complex variable, 

, and therefore contains important information that the coherence does 

not. [Throughout this article, subscripts R and I indicate real and imaginary parts, 

respectively.] Now, comparison of Eqs (3) and (5) shows that 

R i
 � 
 � 
 I

2�  = *

  = 2
  = 

. That is, the classical coherence should actually be the sum of two 

components, which we call the ‘squared real coherency’ (SRC, 

2 2
R I
 �


2
R
 ) and ‘squared 

imaginary coherency’ (SIC, ).2
I


Several authors (e.g., Forsyth, 1985) have noted that observed admittances are real, 

though since the admittance and coherency have the same numerator, this would not 

be expected always to be the case. The explanation for it lies in a consideration of 

how the averaging of the numerator of Eq. (5) is performed: 

* *( ) ( )RGH GH i GH� � *
I , and similarly for 

**GH . Since both G and H are 

Hermitian,  is also Hermitian, and its lower two quadrants contain the same 

information as its upper two quadrants: both the real and imaginary parts are 180�-

rotated versions of the upper two quadrants, but the imaginary part is further 

multiplied by �1. Hence, if a 360� averaging is performed over concentric annuli in 

the wavenumber domain, as in the periodogram and isotropic multitaper methods, 

then

*GH

*

360
( )I 0GH �  and the imaginary information vanishes. Thus the “coherence” 

in this conventional implementation, although real, is in practice the square of the real 

coherency and not its modulus squared, i.e. 
22 *

360
( )RGH� � .
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In the fan wavelet method, the averaging is performed over the two upper quadrants 

only (i.e., over 180�). Hence *

180
( )IGH 0� , and 

2 22 * *

180 180
( ) ( )R IGH GH� �� .

Therefore, to make the fan wavelet method consistent with 360� annular-averaging 

methods, we therefore use the square of the real part of the coherency: 

� �2*
2

*

Re
R

GH

GG HH

 �

*
 (6) 

from Eq. (5), instead of the coherence. 

4.3 The Bouguer Squared Real Coherency Deconvolution (BCD) Method 

In the Bouguer coherence method of Forsyth (1985), referred to from now on as the 

“BCD method”, Te is estimated by comparing the coherence between observed 

Bouguer anomalies and topography (the “observed coherence”) with that predicted 

from the loading and flexure of a thin elastic plate (the “predicted coherence”). Load-

deconvolution allows for the estimation of the two initial loads from the observed 

gravity and topography data, assuming an initial value for Te, from which the (wave 

number-dependent) initial internal-to-surface loading ratio, f, is determined and used 

in the computation of the predicted coherence (see Appendix A1.1). The value of Te

that provides the best fit between observed and predicted coherence is then chosen. 

In our modification of Forsyth’s method we use the wavelet, instead of Fourier, 

transform, and the SRC instead of the coherence. The �2 misfit between the observed 

and predicted Bouguer SRC is minimised using Brent’s method of 1-D minimisation 

(Press et al., 1992), at each grid node of the study area, and is calculated through: 
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 �
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(e.g., Press et al., 1992), where  is the observed Bouguer SRC,  is the 

predicted Bouguer SRC, and 

2
, ,B o R


2
, ,

2
, ,B p R


B o R
�



 are the errors on the observed Bouguer SRC. 

While we have previously weighted �2 by the inverse of wave number when using the 

coherence (Kirby and Swain, 2006; Swain and Kirby, 2006; Kirby and Swain, 2008), 

we now use jackknifed error estimates with the SRC (Thomson and Chave, 1991; 

Swain and Kirby, 2006). Inverse wave number weighting has the effect of damping 

the spurious high, short-wavelength Bouguer coherence due to random correlations 

between initial synthetic loads (Kirby and Swain, 2008). However, since many of 

these correlations propagate through to both the observed Bouguer SRC and SIC, they 

have a greater effect upon the coherence than upon the SRC. With the multitaper 

method, however, the coherence should not be sensitive to initial load correlation as 

long as the auto- and cross-spectra are annular-averaged over 360� to remove the 

imaginary part, as discussed above. This has been found to be the case with synthetic 

data by Pérez-Gussinyé et al. (2009). 

We note here that Forsyth (1985) assumed that the surface and subsurface loading 

processes are independent, or statistically uncorrelated, which allows for solution of 

the flexure equation for predicted coherence (and admittance). However, in Appendix 

A1 we derive an expression for the predicted Bouguer SRC without forcing the 

assumption of independent loads. While we do not invert the correlated-load SRC, the 

model provides useful insights into correlated-load flexure. Most notably, this 
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modelling has shown that cases of positive observed real Bouguer coherency, ,

should be set to zero before inversion, because such values are not admitted by the 

uncorrelated-loads plate model (Figure A2a). This step further helps to reduce the 

effects of load correlation. 

, ,B o R


We also compute confidence limits on Te, defined by 2
min

2� �� � ; for one degree of 

freedom, 95% limits correspond to ��2 = 4, while 99.99% limits correspond to ��2 = 

15.1 (Press et al., 1992). Since the loading ratio is not an independent variable in this 

method, but is estimated from deconvolution of the observed gravity and topography 

data, we can not estimate its confidence interval. 

4.4 The Free-air Admittance Uniform-f (FQU) Method 

An alternative spectral method used in Te-estimation, and the one recommended by 

McKenzie and Fairhead (1997) and McKenzie (2003), is to fit analytic admittance 

curves to the observed admittances. In contrast to load-deconvolution methods, this 

“uniform-f” method assumes that the loading ratio is independent of wave number. 

From now on we refer to this method as the “FQU method”. Here, the observed 

(complex) wavelet admittance between the free-air anomaly and topography is 

computed, but only the real part is inverted. We use an iterative least squares method 

(Tarantola, 1987; Swain and Kirby, 2003b) to find those values of Te and F that give 

an analytic admittance curve [the real part of Eq. (A21) with � = 90�] that provides 

the best �2 fit to the observed admittance, as in Eq. (7). This process is repeated for all 

grid nodes in the study area. Again, confidence limits are computed (see Section 4.3), 

but the method now allows for the estimation of limits on F as well as Te.
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5. Synthetic Modelling 

5.1 Synthetic Data Generation 

As discussed in Section 2, a main criticism of Forsyth’s Bouguer coherence method is 

that it does not perform well when: 1) the power in the uncompensated topography is 

much less than the power in the free-air anomaly; and 2) the short-wavelength free-air 

coherence is close to zero (McKenzie and Fairhead, 1997; McKenzie, 2003). The 

synthetic modelling performed in Kirby and Swain (2008), and in many other papers 

(e.g., Macario et al., 1995; Stark et al, 2003; Pérez-Gussinyé et al., 2004; Audet and 

Mareschal, 2007), uses fractal topography whose power spectrum is of the same order 

of magnitude as the free-air anomaly at all wavelengths. Therefore, we develop 

synthetic models with subdued topography in the following manner. First, the space-

domain flexure equation describing the flexure (v) of a thin elastic plate subject to an 

initial surface load hi, and an initial internal load at the Moho wi, is (where all vertical 

displacements are positive upwards): 

� � � � � � � �4 , m f c f i m cD v gv gh gw� � � � � �� � � � � � �� i  (8) 

(e.g., Kirby and Swain, 2008) where: 

� � � � � �
2 2 2 2 2 2

4 2 2
2 2 2 2, 1 2D v D v D vD v D v

x y x y x y y x
�

� �� � � � � �
� � � � � � �� �� � � � � � � �� �

�  (9) 

�f is the density of the overlying fluid (water or air), and other constants are given in 

Table 1. Instead of using two initial loads to generate final topography and Bouguer 

anomaly as is commonly done, we now rearrange the flexural equation so that the 

inputs are final topography (h) and a random fractal initial internal load, and the 

outputs are initial topography (which is not used further) and final Moho topography. 

This involves substitution of: 

ih h v� �  (10) 
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into Eq. (8), giving: 

� � � � � � � �4 , m c c f m cD v gv gh gw� � � � � �� � � � � � �� i  (11) 

We use finite difference equations in the space domain to determine the flexure (v)

(Appendix A of Kirby and Swain, 2008) because one of the model plates we use has 

spatially-variable Te (see below). Then, the final Moho topography (w) is obtained 

from: 

iw w v� �  (12) 

which is then upward continued via the formula of Parker (1972) to obtain a final 

Bouguer anomaly. 

The input final topography we used was the actual topography over North America 

(Figure 1a), which contains extensive regions of both subdued and mountainous 

topography (clearly visible in a plot of its variance – Figure 1b). The data were taken 

from the recently-released EGM2008 harmonic coefficients model (Pavlis et al., 

2008), expanded to degree and order 1000, and represented on a 20 km grid of the 

Lambert conic conformal projection. See Section 6.1 for further information. We then 

generated an initial random fractal internal load of fractal dimension 2.5 at depth 35 

km, and used Eqs (11) and (12) (with a certain Te distribution, described below) to 

determine the corresponding final Bouguer anomaly. We did this 100 times using 100 

different internal loads, then averaged the 100 final Bouguer anomalies to give a 

single final Bouguer anomaly that would be used, together with the North American 

topography, in the wavelet Te-recovery algorithm. Our motivation for averaging the 

100 final Bouguer anomalies was to avoid biasing the result toward one particular 

(random fractal) internal load geometry. Finally, we computed a synthetic free-air 

anomaly by adding the simple Bouguer correction to the averaged synthetic Bouguer 
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anomaly. An approximate initial loading ratio (calculated as an average in the space 

domain between the 100 pairs of hi and wi) for the model is f � 0.16, or F � 0.14. 

We chose two Te distributions by which to generate synthetic gravity anomalies. The 

first was uniformly 10 km, while the second was a superposition of 2-D Gaussian 

functions, rising from 10 km to 140 km over the subdued topography regions of North 

America (Figure 1c). The dimensions of these grids are 6380 � 6380 km, on a 20 km 

grid spacing. The free-air anomalies from the two plates are shown in Figure 2. 

5.2 Modelling Unexpressed Internal Loads 

As discussed in Section 2, McKenzie’s chief criticism of the coherence method was 

that the predicted coherence is determined using a plate model where all internal 

loads are expressed, to some degree, in the topography. Therefore, in his Appendix A, 

McKenzie (2003) presented a method by which to determine the gravity anomaly due 

to surface and internal loads that, after flexure, produce zero topography. As 

discussed in Section 1, we refer to this gravity anomaly as ‘noise’, as did McKenzie 

and Fairhead (1997). The technique was subsequently applied to synthetic data by 

Crosby (2007), who added this ‘noise’ to the final, flexed, gravity anomaly from 

surface and expressed internal loading without altering the topography. Hence, this 

noise gives the effect of unexpressed internal loading. 

Unfortunately, the “zero-topography transfer functions” (between the unexpressed 

internal load and its gravity field) derived by McKenzie (2003) and Crosby (2007) are 

both incorrect (for different reasons). In our Appendix A2 we derive a correct 

equation and explain their mistakes. [We also note that our models are two-layer with 
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loading at the surface and Moho, while McKenzie and Crosby use a three-layer model 

with loading at the surface and mid-crust. Nevertheless, we have computed the correct 

transfer function for the three-layer case and find it has the same spectral 

characteristics as the two-layer model.] As discussed in Appendix A2.1, and shown in 

Figure A3, the zero-topography transfer function has the properties of a bandpass 

filter, suppressing both long and short wavelengths, but preferentially passing 

wavelengths close to the Bouguer coherence transition wavelength (which we now 

refer to as the “Bouguer rollover”). Thus, we would expect that the position of this 

rollover is shifted by the noise, resulting in biased Te values. However, the magnitude 

of the bias will depend upon the shape of the noise spectrum, and as we show in 

Appendix A2.2, can actually result in very little change to Te.

Since our loading model (Section 5.1) does not include unexpressed internal loads, 

we simulated these in the following manner. We first generated a random fractal 

surface with fractal dimension 2.5 to use as the initial internal load (called a “type-I” 

load, and shown in Figure 3a), then solved Eq. (11) with the constraint that h = 0, for 

both of our Te distributions. The final gravity anomalies after application of Eq. (12) 

and upward continuation (called type-I noise), are shown in Figure 3b for the 

uniform-Te plate, and 3c for the Gaussian-Te plate. These were then added to the 

gravity anomalies due to expressed loads (Section 5.1), with the topography left 

unaltered.

Crosby (2007) used high pass-filtered noise in his study (cutoff wavelength of 750 

km), though this high pass filter may have been needed because his zero-topography 

transfer function is wrong and remains high at long wavelengths. To maintain 
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consistency, we also high pass filtered our type-I load (but using a cutoff wavelength 

of 250 km) to produce a “type-II” load (Figure 3d), and then followed the same 

procedure as above to generate type-II noise (Figures 3e and 3f). Our choice of lower 

cutoff wavelength will be made clear in the remainder of this section. 

Note that we had to use space-domain modelling due to the variable Te distribution 

shown in Figure 1c, but we have verified that this result is equivalent to the result 

obtained from a uniform-Te plate and the Fourier solution to Eq. (11). We also 

checked that the initial loads give a final topography of zero when used in Eq. (8). 

5.3 Te Results 

The fan wavelet method was only applied over a subset of the total region, shown in 

Figure 1 and measuring 5100 × 5100 km, because the synthetic gravity anomaly was 

generated with periodic boundary conditions in the finite difference algorithm, and 

real data are not periodic. Furthermore, since a primary issue of the controversy 

outlined in Section 2 concerns the merits of the Bouguer coherence/SRC load-

deconvolution (BCD) method versus the free-air admittance uniform-f (FQU) 

method, we restrict our figures to those two sets of results. 

Our first significant finding was that, even in the absence of added noise, subdued 

topography causes moderate Te overestimates. Moreover, this overestimation affects 

both the BCD and FQU methods, with the maximum difference with respect to the 

uniform Te = 10 km plate being ~14 km (BCD), and ~18 km (FQU). Comparison of 

Figures 4a and 4b with the topographic variance map (Figure 1b) shows that the 

regions of Te overestimation approximately correspond with regions of low 
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topographic variance (<103.5�104 m2), whereas when this variance is large Te is 

faithfully recovered or even slightly underestimated (by up to 4 km for both methods). 

When Te is high however (Figures 4c and 4d), the amount of overestimation is 

difficult to ascertain. This is due to the relatively large width of the transition wavelet 

(Figure 1c) compared to the width of the Gaussian bump, causing smoothing of the 

wavelet coefficients between high- and low-Te regions, as described in Kirby and 

Swain (2008). Hence from now on, the no-noise Te values will be used as benchmarks 

for comparison with results from noisy data. 

When type-I (i.e., full-spectrum) noise is added to the gravity, the overestimation 

increases with respect to the no-noise results, with considerable differences mainly 

over the subdued topography regions (Figures 4e�h). While the bias is most 

noticeable in the BCD results (Figures 4e and 4g), the FQU results are also affected 

by the noise, occasionally to a greater extent than the BCD results. 

McKenzie and Fairhead (1997), McKenzie (2003) and Crosby (2007) state that noise 

will increase the variance of the free-air admittance, but will not bias it. Indeed, 

theory would suggest that they are correct. If the gravity Fourier transform (G) in Eqs 

(2) and (3) is replaced by G + N, where N is the Fourier transform of some noise 

which is statistically uncorrelated with the topography, then the admittance should be 

unchanged because *NH  = 0, while the coherence becomes biased (see Appendix 

A2.2 for a full discussion). However, our results show that this is not true in practice, 

and that the FQU Te can occasionally be just as biased as the BCD Te. It is important 

to note that McKenzie (2003) also implies that if the errors in the admittance are large 

enough then it may not be possible to distinguish between high and low Te models, if 
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their confidence intervals overlap – so the fact that the best-fit Te is biased might not 

be significant. However, as shown in Section 5.7, we have carefully estimated the 

confidence intervals to show that for both methods the bias with type-I noise and 

subdued topography can be significant. 

When we add the type-II (high-pass filtered) noise to the gravity, however, the results 

change considerably (Figures 4i�l), with much less additional Te bias caused by this 

type of noise. Compared to the FQU results, the BCD results tend to have a more 

systematic bias over subdued topography, though this bias is small (<10 km on 

average). The FQU bias, however, while lower on average, has larger extremes and 

does not appear to correlate that well with subdued topography. These results imply 

that the presence of band-limited noise does not greatly affect the BCD method. This 

is especially true when Te is large, considering that estimation errors increase with 

increasing Te (Kirby and Swain, 2008). 

5.4 Amplitude vs Phase 

We next turn to the claim by McKenzie and Fairhead (1997) that the Bouguer 

coherence method can only give reliable Te estimates when the power spectrum of the 

free-air anomaly is of the same order of magnitude as that of the Bouguer correction 

(Section 2). This is incorrect. Forsyth’s method is mainly concerned with the phase 

relationships between loads, so one should not compare amplitude or power spectra, 

which are largely phase-independent. Consider two arbitrary signals with 

Fourier/wavelet transforms G and H. If the amplitude and phase of each of these 

signals are independent, then the coherency can be written as the product of two 

terms, the “amplitude-coherency” and the “phase-coherency”: 
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(e.g., Nolte et al., 2004), where � is the phase of the signal. Figure 5 shows the 

relationship between these three for one of the synthetic models (which model is 

immaterial: the relationship holds for all data, real and synthetic). It can be seen that 

the coherency variation is dominated by the phase-coherency for both Bouguer and 

free-air anomalies, and not by the amplitude-coherency which is mostly in the range 

0.5�1.

The flaw in the argument can be demonstrated using a third type of noise, which is 

simply a filtered fractal surface added directly to the final gravity anomalies, i.e., 

without using the zero final topography procedure outlined in Section 5.2. For this 

surface we used the field shown in Figure 3d, scaled to have a range of  20 mGal, 

called type-IIa noise. This was then added to the Gaussian-Te Bouguer anomaly, and 

Te recovered using the BCD method. 

Figure 6 shows plots of the wavelet power spectra of the “uncompensated 

topography” (i.e., 2	
�h), and three free-air anomalies (with no noise, type-II noise, 

and type-IIa noise), from the Gaussian-Te plate. In the synthetic Cordillera where the 

topography is highly variable, the four signals have very similar power at 

wavelengths less than ~220 km, indicating that most of the free-air power comes from 

the attraction of the topography in this wavelength band. Te is recovered by the BCD 

method very well in all cases. 

26



However, in the synthetic shield where the topography is subdued, while the power in 

the noiseless free-air anomaly is very similar to that in the uncompensated 

topography, the noisy free-air anomalies have much greater power at wavelengths 

less than ~400 km. While the type-II noise Te is slightly overestimated (relative to the 

no-noise result), the type-IIa noise Te is no different from the no-noise value, even 

though the power in its free-air anomaly is much greater than the power in the 

uncompensated topography at short wavelengths. If McKenzie’s argument were 

correct, then Te from the type-IIa noisy data should be overestimated relative to the 

no-noise value, which it isn’t. 

We have used a different noise type here to illustrate a point: that having low relative 

topographic power does not necessarily imply that Te will always be overestimated by 

the BCD method in the presence of noise. Whether type-II or type-IIa noise is an 

accurate model of actual unexpressed loading we return to in Section 7, but here we 

note that the sharp decrease of the type-II free-air anomaly spectrum at the shortest 

wavelengths (due to the shape of the zero-topography transfer function in Figure A3) 

is not normally observed in nature. 

In summary, we conclude that comparing the power spectra of free-air anomaly and 

uncompensated topography tells us very little about whether or not a method based on 

the coherence can work. [Swain and Kirby (2003a) reached a similar conclusion, 

though using synthetic topography that was not ‘subdued’.] 

5.5 SRC Results 
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Figure 7 shows the observed Bouguer and free-air SRCs and the Te results of the 

BCD method across the green profiles in Figure 4, for the uniform-Te plate. 

Remember that incidences of positive Bouguer real coherency are excluded from the 

inversion (Section 4.3). Looking at the Bouguer SRC (third row), we see first that 

when there is no added noise, the Bouguer SRC rollover is pushed to longer 

wavelengths than predicted by theory over the subdued topography, resulting in Te

overestimates (as discussed in Section 5.3). This contour will be used as a reference 

in the following discussion. 

When type-I noise is added, the rollover is pushed to even longer wavelengths, 

mimicking the effect of a high Te. This is what Crosby (2007) found in his experiment 

4, and could support McKenzie’s proposal that the Bouguer coherence method can 

not give reliable Te estimates when topography is subdued and there exist 

unexpressed internal loads. However, this phenomenon occurs predominantly over 

the subdued topography, and is less marked for type-II noise, as discussed later. 

While the identification of subdued topography is easy, identification of noise 

(unexpressed internal loading) is not. McKenzie and Fairhead (1997) suggested that 

analysis of the free-air coherence reveals zones where the free-air anomaly is 

incoherent with the topography, which he said shows where the gravity field is 

dominated by unexpressed internal loads. As expected, the free-air SRC ( , fourth 

row in Figure 7) over subdued topography has very low values for the noisy models, 

though not for the no-noise model. However, a confounding factor is that when F > 0, 

theory predicts a dip in  at wavelengths slightly longer than the Bouguer SRC 

rollover wavelength, with the dip deepening with increasing F, increasing Te, or 

2
,F R


2
,F R
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decreasing depth to internal loading. Thus the dip is not noticeable in the low-Te

regions of the two models (Figures 7 and 8). 

The question then arises as to how to separate the noise-induced low free-air SRC 

from the flexure-induced signal. We address this problem by using the complex 

number nature of the coherency, and compute the normalised free-air SIC ( 2
,F I
 ),

shown in the fifth row of panels in Figures 7 and 8. As shown in Appendix B1, this 

quantity can provide a better measure of the signal-to-noise ratio than can the free-air 

SRC because 1) the imaginary part of the coherency holds information about the 

uncorrelated (or unexpressed) harmonics of two signals, and 2) the normalisation 

amplifies zones with a small imaginary part when the total coherence (i.e., 2
 ) is 

low. As noted above,  for the Gaussian-Te plate (no-noise panels in Figure 8) 

shows lower values around the flexural wavelength as predicted by theory, which do 

not show up to such an extent in 

2
,F R


2
,F I
 . So, in Appendix B2 we show results of 

additional synthetic modelling that demonstrate that when the free-air SRC dips in 

response to flexure, 2
,F I
  remains zero, implying that it is a measure of noise only. 

Incidentally, McKenzie (2003) postulated that, when expressed loads are absent, a 

measure of the fraction of the total load due to unexpressed loads is  (although 

he used 

2
,1 F R�


21 F�� ), where the free-air SRC is averaged over a large wave number range 

(and his use of multitapers has averaged out the imaginary part to zero). This is not 

strictly true, because it assumes that the total free-air coherency-squared, 2
F
  = 1, 

!k, when in fact we have shown that 2
F
 " 1 (Appendices A1 and B1). His 
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postulated measure will therefore overestimate the proportion of unexpressed internal 

loads. Furthermore, this approach requires use of analytic expressions for the free-air 

coherence, which makes them model-dependent. In contrast, the normalised free-air 

SIC is determined from observed data only and also accounts for low total coherence. 

Finally, it is important to note that the wavelength of the type-I noise rollover in the 

Gaussian plate (Figure 8) correlates with the long wavelength extent of high 2
,F I
 , and 

not with the long wavelength extent of low 2
,F R
 , supporting use of 2

,F I
  over  in 

noise identification. This is not as apparent in the uniform plate plots because the 

noise is of lower amplitude and the theoretical free-air SRC dip is small, as discussed 

above.

2
,F R


While type-I noise has been shown to bias recovered Te above its no-noise values in 

subdued topography, the type-II noise models show that the addition of this kind of 

noise reduces the Bouguer SRC only within the wave number band where the noise is 

considerable. If the rollover does not fall within this band, then Te can be reliably 

estimated. This is particularly apparent in the Gaussian-Te plate, where the no-noise 

Bouguer rollover does not fall within the noise band, so the type-II noise rollover is 

not biased, and there is very little difference between the no-noise and type-II noise 

Te.

In summary, interpretation of  (or 2
,F R
 2

F� ) alone can lead to the false conclusion that 

noise is present. So McKenzie’s statement that the presence of low short-wavelength 

free-air coherence indicates failure of the Bouguer coherence method is wrong. His 

proposal assumes that low free-air coherence at short wavelengths implies low 
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coherence at all wavelengths. Rather, Forsyth’s method fails when 2
,F I
  is high 

around the true Bouguer rollover. Inspection of 2
,F I
  with real data should allow us to 

determine when gravity noise is likely to be a problem. 

5.6 Admittance Results 

The problem of reliably estimating Te in the presence of subdued topography and 

unexpressed loading still stands, though. McKenzie and Fairhead (1997), McKenzie 

(2003) and Crosby (2007) proposed that the free-air admittance can resolve the issue, 

because it is less sensitive to noise than the Bouguer SRC (coherence). However, for 

the uniform-Te plate (Figure 9), it can be seen that the FQU Te is still overestimated in 

subdued topography even when no noise is present. 

Since we know the noise field, we can compute a “noise-admittance” via 

*NH HH * , shown in the 4th row of panels in Figures 9 and 10. Immediately 

apparent is the high degree of correlation between the observed/theoretical admittance 

difference (3rd row of panels) and the real part of the noise admittance (4th row of 

panels). Hence, noise does bias admittance, which in turn biases Te. Note that it is 

possible for Te to be underestimated (from its no-noise value) in the presence of noise 

(Figures 4 and 10), whereas with the BCD method noise would always cause either Te

overestimates or no change at all. 

However, as for the BCD method, type-II noise affects the FQU method very little. 

Again, this is due to the relative positions of the peak of the noise spectrum and the 

admittance transition wavelength. [As a proxy for this latter quantity, we use the 

longest wavelength at which the admittance is 60 mGal/km, because this represents 
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the midpoint between the theoretical longest and shortest wavelength admittance 

values, for the densities we use (Table 1), and as long as f is not much greater than 1.] 

Looking at the Gaussian plate (Figure 10), the type-II noise admittance has high 

values at wavelengths below the no-noise admittance transition, and Te is not much 

different to the no-noise results. The type-I noise admittance, however, has high 

values around the no-noise transition, and Te is biased (downwards in this case). 

Whereas identification of SRC-biasing noise can be achieved with 2
,F I
 , identification 

of admittance-biasing noise is more difficult. Nevertheless, some insight can be 

gained by analysis of the imaginary component of the observed admittance (QF,I).

First, note the resemblance between the imaginary components of the observed and 

noise admittances (QF,I and QN,I) in Figures 9 and 10. While there appears to be very 

little similarity in the details between the real and imaginary components of the noise 

admittance, there is a gross correlation. That is, when the real noise admittance (QN,R)

has high variance, so does QF,I, and when QN,R has low variance, so too does QF,I.

Hence, the imaginary component of the observed admittance can provide an 

indication of where the real observed admittance is likely to be altered and Te biased. 

In summary, these results demonstrate that the FQU method can be biased by noise, 

despite McKenzie (2003) and Crosby (2007) stating that noise will only increase the 

variance of the free-air admittance without biasing it. The variance of the noisy model 

admittances in Figures 9 and 10 is indeed larger than that of the no-noise admittances, 

but this increase in variance tricks the FQU method into producing incorrect Te

estimates upon inversion. 
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5.7 Misfit Results 

Another good indicator of where noise has biased the FQU best-fitting Te and F is the 

�2 misfit surface (Figure 11). This becomes broader when the noise has a significant 

impact upon the admittance, which is most noticeable in the subdued topography 

regions for type-I noise. Note though, that when Te is high, all spectral methods will 

give larger errors due to the larger multitaper-window or wavelet sizes needed to 

resolve the flexural wavelength. Nevertheless, the 99% FQU Te confidence intervals 

for type-II noise almost always contain the true value, whereas the same cannot be 

said for the type-I noise results. Hence, type-I noise, if it is present, will bias FQU 

results.

The BCD �2 misfit curves, however, do not provide useful information about the 

presence of noise, because when noise reduces the Bouguer SRC in subdued 

topography, the inversion fits the resulting SRC curves well, but with an 

overestimated Te value, just as McKenzie and Crosby have argued. 

6. North America 

6.1 Data 

Figure 12 shows the gravity and topography grids used in this study, both being 

computed from the EGM2008 harmonic coefficients model (Pavlis et al., 2008). 

Although the model provides coefficients up to degree and order 2160 (10 arc-minute 

minimum wavelength, or ~20 km at the equator), our analysis is undertaken on a 20 

km grid, so we avoid spatial aliasing and data redundancy by only evaluating up to 

degree and order 1000 (~40 km minimum wavelength at the equator). In any case, we 

detected the presence of the Gibbs phenomenon in the gravity coefficients at high 
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latitudes using the full expansion, which were greatly reduced with the lower-degree 

expansion. In order to reduce the effects of distortion due to Earth curvature, the data 

were computed on a Lambert conic conformal projection grid (origin at 100�W, 0�N;

standard parallels at 35�N and 65�N). The study area has dimensions of 5980 km 

(easting) � 8620 km (northing). 

The gravity disturbance, rather than the gravity anomaly, was computed from the 

harmonic coefficients, for the following reason. The BCD method uses Eq. (4) of 

Parker (1972) in order to derive Moho topography from the observed Bouguer 

anomaly. However, in deriving his formula, Parker assumes that the gravity anomaly 

is the vertical derivative of the gravitational potential (U), when in fact it is the gravity 

disturbance that is given by this vertical derivative: Bg U z� � � �  (Heiskanen and 

Moritz, 1967). The gravity disturbance is thus more compatible with Parker’s method 

than is the anomaly. The free-air disturbances from EGM2008 were then converted to 

Bouguer disturbances using the Bouguer plate correction from the EGM2008 

topography and a reduction density of 2670 kg.m-3. Terrain corrections on land were 

computed from the EGM2008 topography (with the same reduction density) using the 

planar FFT method of Li and Sideris (1994), as described in Kirby and Featherstone 

(1999). Marine terrain corrections were computed using the formula of Parker (1972) 

from the EGM2008 topography. 

Finally, the bathymetry and ice sheet surfaces were converted to an equivalent 

topography before wavelet transformation (Kirby and Swain, 2008), using the ice cap 

thickness over Greenland supplied by the Arctic Gravity Project (see Figure 12 

caption). 
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The inversion of the observed wavelet SRC and admittance includes a term for the 

depth to the Moho, zm (assuming that subsurface loading occurs here). Rather than 

assuming a constant depth we used the Moho depths given by the CRUST2.0 model 

(Bassin et al., 2000), interpolated to the 20 km Lambert grid. While other Moho depth 

models exist within the study area (e.g., van der Lee and Frederiksen, 2005), they do 

not cover the whole area, and in any case, we found that the recovered Te was rather 

insensitive to small changes in zm.

6.2 Te and F Results 

The effective elastic thickness results from the BCD and FQU methods are shown in 

Figure 13, while the corresponding best-fitting F values appear in Figure 14. These 

results were obtained by inversion of the observed SRC/admittance using a two-layer 

loading model with initial loading at the surface and Moho, and the densities and 

elastic constants given in Table 1. Both methods give very large Te values (>100 km) 

over the Precambrian Shield regions of North America, with the FQU Te consistently 

higher and covering a greater area. As Kirby and Swain (2008) found, Te from the 

inversion of admittance generally has a better spatial resolution than that from the 

coherence, which is smoother. This is because the admittance transition wavelength is 

smaller than that of the SRC, requiring smaller-scale wavelets for its detection and 

affording better spatial resolution. Both methods give low values (<20 km) over the 

Cordillera, with a steep Te gradient separating this province from the Shield. The 

southerly regions of the Interior Platform are characterised by intermediate values 

(~50�70 km), except over the Mid-continental Rift (MCR) region, where the BCD 

method gives much higher Te values (~90�100 km) than the FQU method (~30�50
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km) – this region is discussed in more detail in Section 6.6. The southern Superior 

province also shows large differences between the methods, with the FQU method 

returning relatively low values (~20�40 km) while the BCD method results are much 

higher (~80�100 km). Another region of high Te occupies the northern half of the 

Greenland Shield, and in both results we note a corridor of high Te over the Innuitian 

orogen, connecting the Greenland Shield with the Arctic platform, and low Te over the 

failed Atlantic spreading centre between Greenland and north-east Canada, in Baffin 

Bay and the Labrador Sea. Finally, both methods recover Te of ~50 km over the 

Appalachian Mountains. The 95% confidence limits do not suggest excessive errors, 

though we recall (Section 5.7) that the BCD intervals are not a fair indicator of the 

true Te over subdued topography when noise is present. The FQU errors (which are 

better at indicating bias) in the Interior Platform are high, but are low over the Shield, 

suggesting that Te here appears to be very high. 

McKenzie and Fairhead (1997) and McKenzie (2003) contend that surface, rather 

than expressed internal, loads should dominate continental interiors. They postulate, 

therefore, that the loading ratio should have values very close to zero in the eroded 

topography regions, especially when determined by the FQU method. Figure 14 

suggests otherwise, and shows that expressed subsurface loading has dominated 

continental tectonics in North America, or at least been equal in magnitude to surface 

loading. Again, the 95% FQU confidence limits do not suggest excessive errors on F,

except over parts of the Interior Platform. This area will be discussed further in 

Sections 6.6 and 7. 
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However, McKenzie (2003) used a three-layer loading model for his inversions of the 

free-air admittance, with loading occurring within the crust at 15 km depth. Hence, we 

also inverted our observed Bouguer SRC and free-air admittance using such a model, 

with loading occurring at the upper-crust/middle-crust interface (as given by the 

CRUST2.0 model, which has a mean depth of ~15 km over the continent), and the 

densities shown in Table 1. The Te and F results are shown in Figures 15 and 16, 

respectively. It is well known that decreasing the depth of internal loading reduces the 

recovered Te upon inversion, and this is shown in a comparison of Figures 13 and 15, 

but it appears that the change in model affects the FQU Te more than that from the 

BCD. Very noticeable in the three-layer FQU result is the absence of the sharp Te

discontinuity at the western edge of the Shield that exists in the two-layer FQU result. 

While the characteristics of the observed admittance do change markedly over many 

of the boundaries of the Shield (Section 6.4), we believe that the aforementioned two-

layer Te discontinuity is an artefact of the inversion, since the wavelets we use cannot 

resolve such a sharp spatial gradient in either the SRC or admittance (Kirby and 

Swain, 2008). 

Hence, many of McKenzie’s low Te values can be explained by his choice of 

inversion model, but importantly, the Shield shows high (>100 km) values from both 

two- and three-layer models. Use of this model has also decreased the recovered F

values from the two-layer FQU results, but not greatly altered those from the BCD 

method, at least in the Precambrian provinces. This sensitivity of admittance methods 

to loading ratio is well-known (e.g., Forsyth, 1985; Kirby and Swain, 2008), so the 

change is not surprising. Nevertheless, the F values still suggest equal loading over 

much of the Shield. The overall misfit is similar for the two models but we note that 
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the upper 95% confidence limits in Te are somewhat smaller for the two-layer model 

over the Shield, though larger further south (Figures 13e, 13f, 15e, 15f). 

6.3 SRC Results 

Figure 17 shows coherency slices across the three transects indicated in Figure 13. 

Discussing the transect that crosses the Mid-continental Rift (MCR) first, the Bouguer 

SRC rollover passes through a zone of very low free-air SRC over the subdued 

topography region. The recovery of the BCD method here is thrown into question 

though by the occurrence of high noise levels (high 2
,F I
 ) at just slightly shorter 

wavelengths than the rollover, which suggest that the noise could be pushing it to 

longer wavelengths. Slightly to the west in the Interior Platform, however, the 

Bouguer rollover is still within the high free-air coherence and low 2
,F I
  zone, 

suggesting a reliable (and fairly large, 50 km) Te estimate in that province. 

The BCD method gives even larger Te values over the Shield. Even though the 

transect crossing the Shield exhibits more noise over subdued topography than does 

the MCR transect, the noise lies at longer wavelengths than the Bouguer rollover, so it 

cannot be noise that is pushing the rollover to longer wavelengths. Recall from 

Figures 7, 8 and A3 that it was noise lying at just shorter wavelengths than the 

rollover that caused decoherence and pushed it to longer wavelengths. Over the 

Canadian Shield this is not the case, and the high BCD-recovered Te is most likely 

correct. Further evidence can be seen in the south-north transect panels in Figure 17. 

In the Interior Platform and Superior province the noise lies at shorter wavelengths 

than the Bouguer rollover (suggesting Te overestimation), while over Shield the noise 

lies at longer wavelengths. We believe that this longer-wavelength noise is not of 
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sufficient amplitude to degrade the Bouguer SRC, and in model C of Figure A4 we 

use theoretical modelling to show that such noise does not move the Bouguer rollover. 

Remember, though, that the synthetic results suggested that subdued topography alone 

can cause Te overestimates, for both BCD and FQU methods. Even though most of the 

Shield is characterised by low topographic variance (Figure 1b), synthetic modelling 

of the region showed that if the true Te were 10 km, the maximum increase would be 

~14 km from the BCD method, and ~18 km from the FQU method, in the absence of 

noise (Section 5.3). These overestimates are not sufficient to cause great concern. 

Moreover, if the true North American Te were given by the synthetic Gaussian model, 

then Te would actually be underestimated by both methods due to the smoothing 

effect of the wavelet. 

These observations point to the preliminary conclusion that the BCD method might be 

unreliable over the Superior province and the Mid-continental Rift region, but it is 

most likely reliable in the Canadian Shield to the north. This conclusion is supported 

by an analysis of the FQU method results, following. 

6.4 Admittance Results 

Figure 18 shows cross-sections through the admittances over the three transects. 

Using the imaginary observed admittance as an indicator of noise (Section 5.6), it is 

seen that in the Shield most of the admittance-biasing noise (i.e., a high variance in 

QF,I) occurs either at wavelengths much shorter than the admittance transition, or not 

at all, suggesting accurate Te recovery in these regions. This is not the case over the 

Mid-continental Rift and southern Interior Platform, though, where the transition 
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coincides with high QF,I variance. Since our synthetic modelling shows that such 

noise can cause both Te over- and underestimates, it is difficult to place a true value 

on Te here. We return to this region in Section 6.6. 

6.5 Misfit Results 

The FQU �2 misfit surface for the location in the actual Shield (Figure 19) shows a 

similar pattern to those in the synthetic Shield with both no added noise and type-II 

noise (Figure 11), suggesting again that noise is not biasing the admittance here. 

While the Te misfits are broad, 99.99% confidence limits indicate values of at least 

100 km. The Cordilleran location shows low, but relatively well-constrained, Te

values.

6.6 Mid-continental Rift 

The large difference in Te and F values from the BCD and FQU methods over the 

Mid-continental Rift region warrants further analysis (Figure 20). Since McKenzie 

(2003) investigated this area using an FQU multitaper method with a window size of 

~1000 km, we spatially-averaged the auto- and cross-spectra over cells of dimension 

500 � 500 km, after azimuthally-averaging them. This procedure is described in more 

detail in Kirby and Swain (2006), and has the advantage that the 1-D profiles are 

representative of the mean admittance/coherency over a region and are more directly 

comparable with multitaper estimates which average the spectra over a finite window 

size.

The two-layer BCD result gives a Te of ~98 km, with F around 0.5 (f = 1), while the 

FQU result gives a Te of ~37 km with F ~0.7 (f = 2.33). However, Figure 20 shows 
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that 2
,F I
  is high at wavelengths just shorter than the Bouguer SRC rollover, which 

appears to be destroying the coherence and causing a Te overestimate. We also note 

that there is an oscillation in the observed free-air admittance between 102.9 km and 

102.6 km wavelength, which correlates with the imaginary admittance oscillation and 

indicates a degree of noise-admittance that might also bias the recovered FQU Te and 

F values. It is interesting that if the actual Te is 37 km as predicted by the FQU 

method, then a remnant of the true roll-over (coinciding with the green curve) is 

visible in the observed Bouguer SRC at a wavelength of 102.4 km. These observations 

lead us to favour our FQU results in the MCR region over the BCD results. 

While our BCD and FQU Te values are very different, they are also very different to 

the values of Te = 11.8 km and F = 0 obtained by McKenzie (2003) in the region. He 

used the multitaper method with a single window of size approximately 1000 km 

square, and inverted the free-air admittance over a bandwidth of 120�1000 km only 

(we invert the complete spectrum). McKenzie ascribes the positive admittance at his 

longest wavelength (only 1000 km, even though he plots up to 2000 km) to dynamic 

support of the topography by mantle convection. The complete spectrum (Figure 20), 

however, shows that the admittance falls to zero at long wavelengths, as predicted by 

flexural theory. Finally, McKenzie’s use of a shallower loading depth in his inversion 

inevitably produces lower Te and F estimates – when we invert the observed 

admittance using the same three-layer model as McKenzie (2003), we retrieve similar 

values to him: Te = 9.6 km and F = 0.03. 

However, the MCR region has a very broad FQU misfit surface (Figure 19), similar to 

the type-I noise misfit surfaces for the synthetic plates (Figure 11), suggesting again 
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that noise is causing admittance bias here. We therefore conclude that neither of the 

methods gives reliable Te estimates in this region. 

7. Discussion 

Our studies of real North American data have shown that some kind of noise indeed 

affects the gravity field in this continent, and it is an undoubted fact that noise causes 

decoherence between any two signals. It is called ‘noise’ because it is not predicted by 

any general model of loading of an elastic plate, which implies that the loads causing 

it have no topographic expression. The noise is not simply that part of the gravity field 

that produces low free-air coherence, however, because our theoretical and synthetic 

modelling has shown that there are other causes of this. To model the noise one could 

simply add a fractal surface directly to the gravity (as in the type-IIa noise in Section 

5.4), but this would imply zero flexure which is physically unrealistic unless Te is 

uniformly very large and the ‘noise’ is supported by the plate. Therefore we have 

chosen to model it by the method proposed by McKenzie (2003) and add it to some of 

our synthetic data sets. This model can be questioned (e.g., Pérez-Gussinyé et al., 

2004), but it gives results that mimic in some ways the results from real data. 

We have found two model-independent ways to detect noise and determine whether 

or not it is likely to bias Te estimates. Figure 21a shows a map of the value of 2
,F I
  at 

wavelengths just below the observed Bouguer SRC rollover, while Figure 21b shows 

the value of ,F IQ  at wavelengths just around the real admittance transition. The 

agreement between these maps is very good, pointing to a consistent identification of 

Te-biasing noise. So if unexpressed internal loads are indeed the cause of this noise, 

then Figures 21a and 21b show locations where such loading might have occurred, 
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and where load-deconvolution methods fail. If we mask out regions in Figures 13a 

and 13d where the corresponding noise levels are high and are likely to grossly bias 

Te, then in Figures 21c and 21d we see that high (>100 km) Te values still remain in 

the northern Shield, with approximately equal (expressed) loading here (compare 

Figures 14b, 16b and 21a,b). 

It is interesting that these regions occur mainly in the Superior Province, the southern 

Interior Platform and the southern Appalachians. They include a number of 

intracratonic basins (e.g., the Illinois and Michigan Basins) as well as the Mid-

continental Rift. McKenzie (2003) gives an account of the evolution of the Mid-

continental Rift, stating that the loads associated with the large gravity anomalies 

there have no topographic expression, which implies that the initial loads correlated 

perfectly. In the case of intracratonic basins, a common model (e.g., Allen and Allen, 

1990) is that of a sag basin caused by down-flexure of the crust during a thermal 

contraction phase following the emplacement of dense rocks in the lower crust. This 

intrusion constitutes an initial internal load. After flexural adjustment the sag will fill 

with sediments, which constitute a surface load and cause further down flexure, but 

ultimately stabilising to produce a flat topography. The loads representing the 

intrusion and the sedimentary pile must be in phase, or fully coherent, for the latter to 

be true. 

Other mechanisms could perhaps be invoked to explain the occurrence of noise in the 

southern Superior Province and southern Appalachians, but we see no reason to 

expect such mechanisms to be ubiquitous in cratons. 
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8. Conclusions 

Through theoretical and synthetic modelling we have shown that important 

information about the admittance and coherency between gravity anomalies and 

topography can be extracted when these quantities are treated as complex variables. 

This has not been noticed before (except perhaps in one or two studies) because the 

averaging of the auto- and cross-spectra has effectively removed their imaginary 

parts. While we use the real parts to estimate Te through inversion, analysis of the 

imaginary terms tells us whether or not the inversion is being biased by noise in the 

data. Such noise has been the subject of much controversy in the past decade, and has 

been attributed, by McKenzie (2003), to a particular loading regime that produces no 

final topography after flexure. The nature of the noise, though, is not the primary 

subject of this paper: we do not dispute that noise exists and can bias Te estimates, but 

merely provide methods for its detection. 

These new methods improve upon those suggested by McKenzie and Fairhead (1997) 

and McKenzie (2003), who advocated use of the free-air coherence and free-air 

anomaly power spectrum, though importantly, just focussing on their short-

wavelength characteristics (McKenzie and Fairhead, 1997), or their average over a 

large bandwidth (McKenzie, 2003). We have found, though, that these two parameters 

give misleading information about the presence of noise that can result in bona fide Te

estimates being rejected. Instead, our theoretical and synthetic modelling has shown 

that it is high values of noise only at immediately shorter wavelengths than the 

observed Bouguer SRC transition wavelength, or immediately surrounding the 

observed real free-air admittance transition wavelength, that are important. 
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Despite the claims of McKenzie and Fairhead (1997), McKenzie (2003) and Crosby 

(2007), our results show that noise can affect the admittance just as much as the 

coherence, but both quantities are usually unbiased when the topographic variance is 

high. Although noise will result in systematic overestimates of Te from the BCD 

method, it can lead to both under- and overestimates of Te from the FQU method. 

Nonetheless, if noise is not present but the topographic variance is low, the BCD 

method will give Te overestimates and the FQU method both under- and 

overestimates. While the bias is not extremely large, spectral methods for Te-

estimation should be used with care in regions where the topography is subdued. 

We have found that noise is widespread in the southern Superior province of North 

America, the southern Interior Platform, and the southern Appalachians, and go so far 

as to say that Te and loading ratio cannot be reliably estimated by any method in these 

regions, whether from spectral analysis or forward modelling, without additional 

information. Elsewhere, though, the noise levels are not large enough to bias either 

the BCD or FQU results, and suggest that expressed internal loads have played a 

significant role in shaping at least the Precambrian regions of the continent. 

Most importantly, though, both the BCD and FQU methods imply that the elastic 

thickness of the Shield is very high, well over 100 km, and that its boundaries are 

characterised by a rapid and large Te decrease. The results also suggest that the 

Canadian and Greenland Shields are fused. Even when a three-layer inversion is 

performed, and the lower 95% (and even 99.99%) confidence interval is chosen, the 

Te values are much higher than the 25 km maximum postulated by McKenzie and 
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Fairhead (1997) and McKenzie (2003). One can only conclude, then, that most of the 

strength of the Shield is borne by the upper mantle. 

Appendix A: The Complex Coherency and Admittance 

A1. Expressed Internal Loading Regime 

A1.1 Predicted Quantities 

Consider the Fourier/wavelet transforms of two initial loads Hi and Wi applied at the 

surface and Moho (at depth zm from sea level), respectively, of a thin elastic plate of 

known Te. Here we assume that there are no unexpressed loads present (though see 

Appendix A2). These initial loads are related to the final, observed gravity anomaly 

and topography after flexure (G and H) by: 
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[c.f. Eq. (18) of Forsyth (1985)], where the wave number-dependent deconvolution 

coefficients are: 
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where k is wave number, A is a parameter that has the value 1 if the gravity anomaly 

(G) is free-air or 0 if it is Bouguer, 
 is the Newtonian gravitational constant, d is 

ocean depth (set to zero if on land), and where: 
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where D is flexural rigidity, g is the gravitational acceleration, �c and �m are crust and 

mantle densities, respectively, �f is the density of the overlying fluid (air or water), 

��1 = �c � �f , and ��2 = �m � �c (see Table 1). 

A predicted coherency (
p) formula for the plate is found by substituting G and H

from Eq. (A1) into Eq. (5). Alternatively, a predicted admittance is found by 

substituting Eq. (A1) into the admittance formula, Eq. (2). The auto- and cross-spectra 

are then: 

* * * *
W W i i H H i i W H i i H W i iGH WW H H W H H W# $ # $ # $ # $� � � � *  (A7) 

� �* 2 * 2 * * *
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W i i H i i W H i i i iHH WW H H W H H W$ $ $ $� � � �  (A9) 

In the classical method of Forsyth (1985), the restriction of having statistically 

uncorrelated initial loads is expressed by setting the average of terms containing the 

product of surface and subsurface loads to zero, i.e., * * 0i i i iW H H W� � . Here, we 

choose not to make this restriction, and instead let Hi
i iH H e *�  and Wi

i iW W e *� ,

where * is the phase of the load, and W H� * *� �  is the phase angle or lag between 

the two initial loads and is a wave number-dependent parameter. Here, we limit � to 

values in a range 0� to 90�, and as will be shown in Appendix A1.2, � = 90�

corresponds to randomly correlated initial loads, while � = 0� corresponds to 
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correlated initial loads. Thus, the auto- and cross-spectra become, after expansion of 

the complex exponentials, and separation of real and imaginary parts: 

� �2 2*Re cosW W i H H i W H H W i iGH W H W H# $ # $ # $ # $� � � � �  (A10) 

� �*Im sinW H H W i iGH W H# $ # $ �� �  (A11) 

2 2* 2 2 2W i H i W H i iGG W H W H cos# # # #� � � �  (A12) 

2 2* 2 2 2W i H i W H i iHH W H W H$ $ $ $� � � cos�  (A13) 

where the deconvolution coefficients can be taken out of the averaging because they 

are constants at a given wave number. 

In Forsyth’s method, the ratio between the initial subsurface and surface load 

amplitudes, f, is wave number-dependent, and is computed through: 
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where we define r = ��1/��2.

When used in the admittance or coherency, the auto- and cross-spectra appear as 

ratios, which means that when we substitute Eqs (A10)�(A13) into Eqs (2) and (5) 

and divide numerator and denominator by 2
iH , we get, using Eq. (A14): 
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where:
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In practice, we find that the Y term (i.e., the imaginary component of the predicted 

admittance/coherency) is vanishingly small for all degrees of load correlation, because 

the surface/internal load plate model does not generate out-of-phase final loads. 

Hence  and , and similarly for the predicted admittance, which is 

why we only invert the real part of the observed SRC/admittance. 

2
, 0p I
 + 2 2

,p p� + 
 R

In the classical load-deconvolution method of Forsyth (1985) X = 0, which, as we 

shall show, corresponds to � = 90�, !k. Incidentally, the method we present (when X

= Y = 0) gives identical results to the method that Forsyth (1985) originally proposed, 

whereby G, H, Wi and Hi are used to separate the surface and internal components of 

the loads, which are then used in his Eq. (25). 

A1.2 Analytic Quantities 

We cannot yet determine a reasonable method by which to compute a predicted 

Bouguer SRC/admittance when taking into account correlated initial loads, due to the 

difficulty in evaluating the X and Y terms in Eqs (A17) and (A18). Indeed, this may be 

impossible without some form of additional independent constraint. We can, however, 

achieve a theoretical understanding of their significance by deriving an analytic 

(rather than predicted) formula when making certain assumptions in Eqs (A17) and 

(A18). Note that these assumptions are made only to derive a useful analytic equation, 

and since we do not invert for load correlation in this study, they do not impact upon 
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our Te results. First, if we assume that the amplitudes and phases of a given load are 

independent, then cosi iW H �  = cosi iW H �  in the X term in Eq. (A17), and 

similarly for the Y expression. Second, if we then assume that the amplitudes of the 

two initial loads are independent, then we may approximate 2
i i iW H H  by fr,

using Eq. (A14). And, third, if we further assume that � is independent of azimuth (an 

assumption addressed below), then cos�  = cos�  and sin�  = sin� . Hence we 

find:

cosX fr ��  (A19) 

sinY fr ��  (A20) 

which may be substituted in Eqs (A15) and (A16), to give the analytic, rather than 

predicted, admittance and coherency, Qa and 
a:
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Recall that the free-air and Bouguer versions are determined by the value of the 

parameter A in the deconvolution coefficients, Eqs (A2) and (A3). 

What is the relationship, then, between coherency and coherence? From Eq. (A22) it 

can be shown through algebra that 2 2 2
, , 1a a R a I
 � 
 �
 �  at all wave numbers for both 

Bouguer and free-air coherencies. Hence, let us consider the square of just the real 

part of the Bouguer coherency at � = 90�. Using Forsyth’s expressions 

4
21 Dk g, �� � �  and 4

11 Dk g- �� � �  we can derive from Eq. (A22): 
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This expression is identical to the analytic Bouguer coherence formula from the 

classical Forsyth method (e.g., Kirby and Swain, 2006), implying that � = 90�

corresponds to the case of randomly correlated loads. Of course, in reality � here will 

not be uniformly 90� at all wave numbers and all azimuths, but from tests on data sets 

with varying degrees of correlation, we have found that randomly correlated loads 

exhibit the property that cos� � 0, while loads with a correlation coefficient of 

0.999 exhibit the property that cos� � 1. This, then, explains why we assign � = 

90� to randomly correlated loads, and � = 0� to correlated loads, in the analytic 

equations.

Furthermore, Eq. (A23) also implies that the analytic Bouguer coherence is actually 

the square of the real part of the analytic Bouguer coherency, rather than its modulus 

squared, i.e., . Eq. (A22) also reveals that when � = 0�, we have 

 and  at all wave numbers, in keeping with the outcomes of 

having perfectly correlated loads. 

2 2
, ,B a B a R� � 


, , 0B a I
 �

,

, , 1B a R
 �  

Finally, the significance of the imaginary component of the coherency and admittance 

is illustrated by consideration of their phases. If this phase is computed via: 
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then it is evident that the phase of the admittance and coherency are identical, from 

Eqs (A21) and (A22). Figure A1 shows plots of the phase for the Bouguer 

51



admittance/coherency, for various values of wavelength-independent initial load 

phase. At the longest wavelengths the phase is always 180� no matter what the phase 

relationship of the initial loads. That is, very wide initial loads of any phase difference 

will always flex the plate so as to produce anti-phase final loads, regardless of the 

plate strength; such anti-phase final loads are akin to the compensation mechanism of 

Airy isostasy. At the shortest wavelengths, conversely, � asymptotically approaches 

�. That is, very narrow initial loads will not flex the plate at all, hence preserving their 

existing phase relationship. These observations suggest therefore, that while � is the 

phase difference of the initial loads, � measures the load phase difference after 

flexure. Note that if the imaginary component were to be zero at all wavelengths, then 

the final loads would always be perfectly in phase, which evidently is not true. 

A1.3 Wavelength-dependent Load Correlation 

In the real world, the phase relationship between the initial loads would most likely be 

wave number-dependent, �(k). In one scenario, qualitative reasoning suggests that 

long-wavelength initial loads, generated by large-scale tectonic events, could be 

correlated, while short-wavelength loads could be randomly correlated or 

uncorrelated. In Figure A2 we show analytic curves when � follows this reasoning, 

and linearly increases from 0� (correlated) at long wavelengths to 90� (randomly 

correlated) at short wavelengths. 

Figure A2a shows that the correlated-load Bouguer coherency departs from the 

classical (i.e., � = 90�) curve and becomes positive, but as wavelength decreases and 

the initial loads become less correlated, it falls back to the classical curve. Hence, 
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when squared to give the Bouguer SRC, the solid red curve in Figure A2b emerges. 

This second rollover appears in many observed coherence profiles and corresponds to 

positive values of the real coherency. While Simons et al. (2003) proposed that such 

occurrences could arise from a “short-wavelength anisotropic coherence”, we see here 

that such a signature can also arise from some degree of initial load correlation. 

It is also noticeable in Figure A2b that the half-SRC transition wavelength of the red 

curve is larger that that predicted from the classical coherence for the same Te,

leading to a Te overestimation in this case. However, one can construct scenarios 

where the best-fitting SRC follows the second (shorter wavelength) rollover of the red 

curve, leading to Te underestimation. Such scenarios can arise when the initial loads 

are only correlated in a narrow wave number band, as often occurs with synthetic data 

(Kirby and Swain, 2008). If high initial load correlation occurs at wave numbers close 

to the Bouguer rollover, the possibility arises that a classical coherence inversion will 

lead to either Te overestimates or underestimates. 

With the free-air SRC (Figure A2c), the characteristic dip observed in the classical 

curve is amplified under initial-load correlation. Not only does this mimic the effect 

of a shallower subsurface load, it could also give the misleading impression that noise 

is present in the gravity data if a classical, uncorrelated initial-loads model is used to 

interpret the free-air coherence. 

With regard to the admittance (Figure A2d), the initial-load correlation gives rise to a 

“dipolar” admittance profile (red curve). The inversion fits this as a curve that gives 
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Te and F overestimations, but it is also possible that underestimates result if the model 

F is different (see caption). 

A2. Unexpressed Internal Loading Regime 

A2.1 Gravity 

According to McKenzie (2003), unexpressed initial internal loads are those that 

produce no surface topography after flexure. If there are no expressed internal loads 

present we may still use Eq. (A1) to derive equations for gravity and topography. In 

this case, the equation for H in Eq. (A1) yields: 

0W i H iH W H$ $. .� � �  (A25) 

or:
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where Wi. is the initial internal load that produces no final topography, and Hi. is the 

corresponding initial surface load. Since the ratio of the coefficients is purely a wave 

number-dependent parameter, the two loads are in phase. Then, substitution of Eq. 

(A26) into Eq. (A1) for G gives the final gravity anomaly due to unexpressed internal 

loading, G., which, again, is in phase with both initial loads: 

0 iG W/. �  (A27) 

where the “zero-topography transfer function” is: 

� �0
H W

W
H

k # $/ #
$

� �  (A28) 

Since there is no final topography, the Bouguer and free-air anomalies are equal. So, 

from Eqs (A2)�(A5), Eq. (A28) becomes, for the two-layer Moho-loading model: 
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This transfer function, shown in Figures A2a and A2b, exhibits the characteristics of a 

band-pass filter, its peak and bandwidth dependent upon Te. Interestingly, both very 

long and very short wavelengths in Wi. are suppressed in the final gravity field, but 

disturbingly, the filter maximises those wavelengths close to the coherence transition 

wavelength (“rollover”). Indeed, Figure A3c shows that the coherence rollover will 

always lie within the half-width of the transfer function no matter what the Te value. 

This implies that, if Wi. contains significant power at wavelengths close to the 

rollover, then the coherence may be biased, and Te may be incorrectly estimated. This 

need not be the case though, as discussed in Appendix A2.2. 

In McKenzie (2003)’s implementation of this “zero-topography” model, he correctly 

derives the three-layer equivalent of our Eq. (A26) [his Eqs (A26) and (A27)], but 

then computes the gravity effect of this flexed internal load using only the internal 

load equations [his Eq. (A31), which is merely a rearrangement of his Eqs (A7), (A9) 

and (A10)]. That is, he does not add the gravity effect of the flexed initial surface load 

that must be present in order to balance the initial internal load. Crosby (2007), using 

a slightly different notation, gives a correct version of this equation [his Eq. (14)], but 

unfortunately his Eq. (12) contains an error (the second �w should be �u) which also 

occurs in his Eq. (13). 

A2.2 Coherency 

We may now combine the expressed and unexpressed loading regimes. Eq. (A1) now 

becomes: 
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When computing the auto- and cross-spectra for use in the admittance and coherency, 

we can make certain assumptions. The unexpressed internal load must be, by 

definition, statistically uncorrelated with both expressed internal and expressed 

surface loads; if it were not then it would generate a measurable final surface 

topography because it would share characteristics with the expressed load. That is, the 

expressed and unexpressed loading regimes must be independent. Therefore, terms 

such as *
i iW H.  and *

i iW W .  vanish, leaving only the auto-spectrum 
2

iW . . Thus 

Eqs (A10), (A11) and (A13) remain unchanged, but Eq. (A12) becomes: 

22 2* 2 2 2
02 cosW i H i W H i i iGG W H W H W# # # # � / .� � � �  (A31) 

Since the admittance does not contain a *GG  term, it should, in theory, be 

unaffected by unexpressed loading. The coherency, however, becomes: 
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from Eq. (A22), where we have introduced an “unexpressed loading ratio”: 

2

2
2 2

1 i

u

i

W
f

r H

.

�  (A33) 

and the case fu = 0 corresponds to no unexpressed loading. 

Since Wi. cannot be known if both expressed and unexpressed loading are present, 

there is no possibility of estimating fu, and thence the coherency. We can, however, 
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guess at realistic values of fu, but would not expect it to reach very large values. 

Synthetic modelling shows that hi, the initial (expressed) surface load in the space 

domain, can have very high relief, of the order of tens of kilometres. Using Eq. (A33) 

as a guide, with crust and mantle densities of 2800 and 3300 kg.m-3, even fu = 1 

suggests that the unexpressed initial internal load would have a relief of over five 

times the initial expressed surface load. Therefore fu is probably much less than 1 in 

nature, and if so, the noise it represents would probably not bias Te very much. 

Supposing that the noise is band-limited, we can construct theoretical SRC curves, 

shown in Figure A4. In model A (which corresponds to the type-II noise synthetic 

simulations in Section 5), the presence of short-wavelength noise does not disturb the 

position of the Bouguer SRC rollover, and Te will not be biased. In model B (similar 

to type-I noise), the noise has a bandwidth that includes the rollover, which is pushed 

to longer wavelengths, and Te will be overestimated. Model C is an attempt to 

represent the noise regime in the Canadian Shield of the actual North American study 

(Section 6.3). The noise is long-wavelength but fades at the Bouguer rollover, which 

is not shifted from its no-noise position: Te will not be biased, even though the free-air 

SRC is low here. Finally, model D shows that very long-wavelength noise will not 

affect the position of the rollover, nor reduce the long-wavelength Bouguer SRC from 

1.

Appendix B: Significance of the Imaginary Coherency 

B1. Signal Correlation 

Although theory shows that  (see Appendix A1.2), we have shown that, 

in practice for observed data  due to the averaging process. So 

2 2
, , 1a R a I
 �
 �

2 2
, ,o R o I �
 � 
 � 2 1o "
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when the total coherence is low at a given wavelength, it becomes difficult to 

interpret . Here we define the normalised coherency-squared, which effectively 

represents the relative power in the real and imaginary parts of the coherency: 

2
,o I


� � � �2 2
2

2 2

Im
I


 


 � 
 �


 

2 Re
R  (B1) 

This normalisation now means that 2 2 1R I
 �
 � , and these quantities make it easier to 

interpret the relative contribution of the real and imaginary parts to the total 

coherence.

The importance of the imaginary coherency may be demonstrated by considering two 

random, fractal surfaces in the space (x) domain, u(x) and v(x), of fractal dimension 

2.5, generated on a grid of dimensions 5100�5100 km with a 20 km grid spacing. A 

further surface, v., was then generated from u and v by varying the correlation 

coefficient (R) between them, as did Macario at al. (1995), via: 

21v Ru v R. � � �  (B2) 

In our simulations, we used values of R = 0, �0.33 and �0.67, these values 

representing an increase of correlation. 

Figure B1 shows slices through the 3-D arrays of observed SRC/SIC and normalised-

SRC/SIC between the two surfaces. In Figure B1, the SRC and SIC are both very low 

when R = 0, though isolated spikes of high coherency can be seen. As |R| increases, 

the SRC increases as one would expect, given that the surfaces are now partially-

correlated, and the isolated high-SRC values for R = 0 are amplified. Also, the SIC 

decreases, though it is not easy to identify variations in this parameter. The 
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normalised-SRC and -SIC plots reinforce this trend however, and show the relative 

distribution of real and imaginary components of the coherency. Thus, from this 

analysis, we can conclude that the imaginary component of the coherency reveals the 

locations, in both space and wave number domains, where part of one signal is not 

expressed in the other signal, manifested as a high value of 2
I
 , the normalised-SIC. 

Conversely, a low value of 2
I
  shows where the signals are correlated to some degree. 

This property of the imaginary component of the cross-spectrum (and hence 

coherency and admittance for the flexural case), that it is zero for correlated signals, 

may be shown mathematically as follows. Taking the Fourier (or Morlet-wavelet) 

transform of Eq. (B2) (where U and V are the transforms of u and v), the cross-

spectrum between the two surfaces is: 

* * * 1V U RUU VU R. � � � 2

�

 (B3) 

When R = 1 (i.e., correlated surfaces), the imaginary component of the cross-

spectrum is: 

� � � �* *Im Im 0V U UU. �  (B4) 

because UU* is real-valued. Conversely, when R = 0 (i.e., randomly correlated 

surfaces), the imaginary component of the cross-spectrum is: 

� � � �* *Im Im I R R IV U VU V U V U. � � �  (B5) 

The only way in which this imaginary component can be zero, in general, is if VIUR = 

VRUI, or: 

I

R R

V U
V U

� I  (B5) 

Taking the inverse tangent of both sides gives: 
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V U� ��  (B6) 

where the �’s are the phases of the signals. That is, the imaginary component is only 

zero when the signals are in phase at all wave numbers, i.e., correlated. If the phases 

differ, then the imaginary component will be non-zero. 

B2. Free-air Coherence 

Theory predicts a dip in the free-air coherence (actually its SRC) between post-

loading gravity and topography when F > 0. This dip deepens for larger Te and larger 

F. In this section we determine the corresponding effect upon the observed normalised 

free-air SIC ( 2
,F I
 ).

To do this we chose four values of Te and three values of F (i.e., 12 plates, Figure B2), 

and computed 100 free-air anomaly/topography pairs after loading (at the surface and 

at a Moho of 35 km depth) by random, fractal surfaces on each of the 12 plates 

(dimensions 5100�5100 km with a 20 km grid spacing). Note the topography in this 

simulation is “regular”, and not subdued. We then used the wavelet method to 

compute the observed free-air SRC and normalised-SIC in the following manner. For 

each plate and for each of its 100 simulations, we computed the gravity and 

topography auto-spectra and the gravity/topography cross-spectra at every grid node 

(i.e., local wavelet spectra), and stored these separately. After computing the 

remaining 99 simulations, we averaged the 100 auto- and cross-spectra separately, and 

then averaged the local spectra over all space-domain grid nodes at each wave number 

to give global spectra (e.g., Kirby and Swain, 2004). We then used Eq. (5) for the 

coherency to give global (i.e., 1-D) mean profiles of the free-air coherency for that 

plate. We can perform the spatial averaging because the plates are of uniform Te.
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The results in Figure B2 show that, even when the free-air SRC falls to low values, 

the normalised-SIC remains zero and does not increase. That is, any high values of 

2
,F I
  seen in the data will not be due to flexure. 
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Figure Captions 

Figure 1. a) EGM2008 topography over North America, used as the final topography 

in the synthetic modelling. b) The logarithm of the variance of the topography, 

calculated in a moving square window of side 100 km. c) The Gaussian Te distribution 

used to generate synthetic gravity anomalies from the topography in (a). In the other 

synthetic tests, a uniform Te of 10 km was used. The green circles show the half-width 

of the space-domain Morlet ‘transition wavelet’ needed to resolve the coherence 

transition wavelength for Te = 140 km (larger circle, diameter 2160 km), and Te = 10 

km (smaller circle, diameter 300 km). The black-outlined box shows the area over 

which the wavelet analysis was performed. 

Figure 2. Synthetic (noise-free) free-air anomalies from (a) the uniform Te = 10 km 

plate, and (b) the plate with the Gaussian Te distribution shown in Figure 1c. The 

black-outlined box shows the area over which the wavelet analysis was performed. 

Map axes are grid eastings and northings in km. 

Figure 3. The top two panels show the initial unexpressed internal loads (wi.) used to 

give zero final topography after flexure: a) type-I (range  3100 m), d) type-II (range 

 1040 m). The bottom four panels show the final gravity anomalies after flexure of: 

(b) type-I load on the uniform Te = 10 km plate (range  20 mGal); (c) type-I load on 

the Gaussian Te plate (range  90 mGal); (e) type-II load on the uniform Te = 10 km 

plate (range  20 mGal); (f) type-II load on the Gaussian Te plate (range  30 mGal). 

Axes are as for Figure 1. 
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Figure 4. Recovered Te differences with respect to: (a)�(d) the synthetic models, i.e., 

recovered Te minus model Te, where the models are a uniform Te (10 km) plate and 

the Gaussian Te distribution shown in Figure 1c; and (e)�(l) the no-noise results, e.g., 

Figure 4k is the type-II noise Gaussian BCD Te minus the no-noise Gaussian BCD Te.

The green lines show the locations of the cross-sections in Figures 7�10. Axes are as 

for Figure 1, though over the smaller area shown in the black box in Figure 1. 

Figure 5. Relationship between the observed SRC, amplitude-SRC and phase-SRC, 

for the uniform-Te synthetic plate with type-I added noise (Bouguer and free-air). 

Cross-sections through the 3-D SRC arrays are from west to east along the green line 

in Figure 4e. If the amplitude- and phase-coherency are truly independent, then their 

product should equal the total coherency. This condition is mostly satisfied, but there 

are some zones where it is not. 

Figure 6. Isotropic fan wavelet power spectra of the Bouguer plate correction (i.e., 

2	
�h, green), and the free-air anomalies with no added noise (red), type-II (blue), 

and type-IIa noise (pink, see Section 5.4) at two locations in the Gaussian-Te plate: (a) 

in the synthetic Cordillera, coordinates E�1000 km, N5000 km; (b) at the peak of the 

Gaussian, coordinates E500 km, N6460 km). In each panel the true (i.e., model) Te at 

the location is indicated, together with the estimates from the BCD method (in km). 

Figure 7. Cross-sections through various 3-D coherency/squared-coherency arrays, 

from west to east along the green line in Figure 4, for the uniform-Te plate (BCD 

method). The first row of panels show the Te recovered by the BCD method (red) and 

its 95% confidence limits (grey shading – not visible in this particular figure), 
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together with the model Te (thick black line), and the topography across the transect 

(thin black line, scaled by a factor of 0.3). The second row shows the real part of the 

observed Bouguer coherency. The third, fourth and fifth rows show the Bouguer SRC, 

the free-air SRC, and the normalised free-air SIC ( 2
,F I
 ), respectively; the black line 

in these plots is the SRC rollover ( 2
,B R
  = 0.5 contour) from the no-noise result; the 

thinner grey line is the SRC rollover from the given noise type. The thick grey line in 

the no-noise Bouguer SRC panel is the analytic Bouguer SRC transition wavelength 

for the plate (Kirby and Swain, 2008). 

Figure 8. As Figure 7, except for the Gaussian-Te plate. 

Figure 9. Cross-sections through various 3-D admittance arrays, from west to east 

along the green line in Figure 4, for the uniform-Te plate (FQU method). The first row 

of panels show the Te recovered by the FQU method (red) and its 95% confidence 

limits (grey shading), together with the model Te (thick black line), and the 

topography across the transect (thin black line, scaled by a factor of 0.3). The second 

row shows the real part of the observed free-air admittance. The third row shows the 

difference between QF,R and the analytic admittance for the plate. The fourth row 

shows the real part of the noise admittance. The fifth and sixth rows show the 

imaginary part of the observed free-air admittance, and noise admittance, respectively. 

The black line in these plots is the 60 mGal/km contour from the no-noise result, used 

as a proxy for the free-air admittance transition wavelength (valid for f < 2, 

approximately); the thinner grey line is the 60 mGal/km contour from the given noise 

type. The thick grey line in the no-noise QF,R panel is the 60 mGal/km contour from 

the analytic admittance for the plate. 
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Figure 10. As Figure 9, except for the Gaussian-Te plate. 

Figure 11. FQU and BCD �2 misfits at two locations in the uniform-Te and Gaussian-

Te plates. The Cordilleran point is at coordinates E�1000 km, N5000 km; the Shield 

point is at coordinates E260 km, N7000 km. The true Te for the uniform-Te plate is 10 

km at both locations; that for the Gaussian-Te plate in the Shield is 116 km; for both 

plates, the true F � 0.14. The top three rows of panels show the �2 misfit surfaces 

from the FQU method as a function of Te and F; the red crosses mark the location of 

the best-fitting Te and F values, while the thick black and thin black contours show the 

95% and 99.99% confidence limits, respectively, on these values. The bottom three 

rows of panels show the �2 misfit curves from the BCD method (recall F is not an 

independent variable here but is estimated from the data). 

Figure 12. EGM2008 data used for the computation of the North American elastic 

thickness. a) Complete Bouguer gravity disturbance. b) Topography/bathymetry, with 

equivalent topography shown over Greenland computed using ( )i c i ch h t � � �. � � � ,

where ti is the ice-sheet thickness, �c is mean crustal density (2800 kg.m-3), and �i is 

the density of ice (900 kg.m-3). The major provinces are bounded with the grey lines 

in (b): Su, Superior; Ch, Churchill; Sl, Slave; Be, Bear; Gr, Grenville; In, Innuitian 

orogen; Ar, Arctic platform; Hu, Hudson platform; Ap, Appalachian orogen; At, 

Atlantic plain; Ou, Ouachita orogen. 

Figure 13. The effective elastic thickness of North America and Greenland from: 

(a)�(c) the BCD method; and (d)�(f) the FQU method. The two-layer model of 
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Forsyth (1985) was used to invert the observed SRC and admittance. (b) and (e) show 

the lower 95% confidence limits, while (c) and (f) show the upper limits. In both 

images topography shaded relief is superimposed (illumination from north-west). The 

major provinces are bounded with grey lines; see Figure 12 for province names. The 

green lines in show the location of the cross-sections in Figures 17 and 18: the 

northern west-east line is the “Shield” transect; the southern west-east line is the 

“MCR” (Mid-continental rift) transect. 

Figure 14. Loading ratio, F, corresponding to the Te results in Figure 13. (a) shows F

recovered from the BCD method: this value is the transition-F (i.e., the value of F

around the Bouguer SRC rollover), and no confidence limits are computed. (b)�(d) 

show F recovered from the FQU method: this value is the value at all wavelengths; (c) 

and (d) show the lower and upper 95% confidence limits, respectively. The green 

lines are explained in Figure 13. 

Figure 15. Te of North America, except using the three-layer model of McKenzie 

(2003) to invert the SRC and admittance. See Figure 13. 

Figure 16. Loading ratio, F, corresponding to the Te results in Figure 15 (loading 

model of McKenzie, 2003). 

Figure 17. Cross-sections through various 3-D coherency/squared-coherency arrays, 

along the three green lines in Figure 13. The first row of panels show the Te recovered 

by the BCD method (red) and its 95% confidence limits (grey shading), together with 

the topography across the transect (thin black line, scaled by a factor of 0.3). The 
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second row shows the real part of the observed Bouguer coherency. The third, fourth 

and fifth rows show the Bouguer SRC, the free-air SRC, and the normalised free-air 

SIC ( 2
,F I
 ), respectively; the black line in these plots is the 2

,B R
  = 0.5 contour 

(Bouguer rollover). The blue arrows mark the approximate locations of the boundaries 

between the following provinces: Cord, Cordillera; Int, Interior Platform; App, 

Appalachians; Sup, Superior. The arrow labelled MCR shows the location of the Mid-

continental Rift. 

Figure 18. Cross-sections through various 3-D admittance arrays, from west to east 

along the three green lines in Figure 13. The first row of panels show the Te recovered 

by the FQU method (red) and its 95% confidence limits (grey shading), together with 

the topography across the transect (thin black line, scaled by a factor of 0.3). The 

second row shows the real part of the observed free-air admittance. The third row 

shows the predicted admittance from the FQU inversion. The fourth row shows the 

imaginary part of the observed free-air admittance. The black line in the spectral plots 

is the QF,R = 60 mGal/km contour, used as a proxy for the free-air admittance 

transition wavelength (valid for f < 2, approximately). The blue arrows are described 

in the Figure 17 caption. 

Figure 19. FQU and BCD �2 misfits at three locations in the North American 

continent. The Cordilleran point is at coordinates W112� 05., N40� 31.; the Shield 

point is at coordinates W90� 56., N59� 32.; and the Mid-continental Rift point is at 

coordinates W93� 22., N45� 41.. The top row of panels show the �2 misfit surfaces 

from the FQU method as a function of Te and F; the red crosses mark the location of 

the best-fitting Te and F values, while the thick black and thin black contours show the 
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95% and 99.99% confidence limits, respectively, on these values. The bottom row of 

panels show the �2 misfit curves from the BCD method (recall F is not an independent 

variable here but is estimated from the data). 

Figure 20. 1-D profiles of the squared-coherency and admittance over the Mid-

continental Rift (coordinates W93� 22., N45� 41.). The auto- and cross-spectra were 

spatially averaged into 500�500 km bins before coherency/admittance computation. 

The first row shows the observed Bouguer SRC (black line and black/blue circles with 

error bars; the blue circles/error bars show those values that have a positive real 

Bouguer coherency, and were thus excluded from the inversion); the best-fitting 

predicted SRC (BCD method, red line); the values of the best-fitting Te and transition-

F from the BCD method (red); and the analytic Bouguer SRC for Te = 37 km and F = 

0.7 (f = 2.33) (green) which are the best-fitting values from the FQU method in the 

MCR region (below). The second row shows the observed free-air SRC (black line 

and circles with error bars); and the observed normalised free-air SIC ( 2
,F I
 , pink). 

The third row shows the observed real free-air admittance in mGal/km (black line and 

circles with error bars); the best-fitting analytic admittance (FQU method, red line); 

the values of the best-fitting Te and F from the FQU method (red); the analytic free-air 

admittance for Te = 11.8 km and F = 0 (f = 0) (green), which were the values obtained 

by McKenzie (2003) for the MCR region; and the observed imaginary free-air 

admittance (dotted blue line). Note that we used a two-layer Moho-loading model 

with depth to Moho of zm = 35 km in the inversion, while McKenzie used a three-

layer model, with mid-crustal loading at 15 km; densities for both models are given in 

Table 1. 
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Figure 21. (a) The maximum value of the normalised free-air SIC ( 2
,F I
 ) at the three 

wavelet scales just shorter than the observed Bouguer SRC rollover wavelength. (b) 

The maximum absolute value of the imaginary free-air admittance ( ,F IQ ) at the five 

wavelet scales around the observed real free-air admittance transition wavelength. (c) 

The BCD Te with regions of 2
,F I
  > 0.5 masked in grey. (d) The FQU Te with regions 

of ,F IQ  > 50 mGal/km masked in grey. While the threshold values in (c) and (d) 

might seem arbitrary, we note the very sharp changes from low values of 2
,F I
  and 

,F IQ  to high values. 

Figure A1. The phase of the Bouguer admittance/coherency from Eq. (A24), for a 

range of values of the wavelength-independent initial load phase (�). The � = 90�

curve is shown in red, and corresponds to initial loads with a random correlation. In 

all cases Te = 30 km, F = 0.33 (f = 0.5), and zm = 35 km (two-layer model). 

Figure A2. (a) Analytic Bouguer real coherency; (b) Bouguer squared real coherency 

(SRC); (c) free-air SRC; and (d) free-air real admittance – from Eqs (A21) and (A22). 

The black curves show the classical (i.e., � = 90�, !k) values expected for this model, 

while the red curves show the functions dependent on an initial load phase (�) linearly 

increasing from 0� at long wavelengths to 90� at short wavelengths. In all cases Te = 

30 km, F = 0.33 (f = 0.5), and zm = 35 km (two-layer model). The dashed red curves 

show the best-fitting classical SRC/admittance if the red curves are treated as 

observed data: in (b), the best-fitting Te = 45.2 km and F = 0.50; in (d) the best-fitting 

Te = 61.6 km and F = 0.61. If, however, we change the model F to 0.5, then the best-
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fitting Bouguer SRC Te = 34.5 km with F = 0.52; while the best-fitting free-air 

admittance Te < 0.01 km with F = 0. 

Figure A3. (a) and (b) The wave number domain “zero-topography transfer function”, 

/0 [red, from Eq. (A29)] for two different Te values, that relates the spectra of 

unexpressed initial internal loads, Wi., to their resulting gravity field, G., i.e., when it 

is assumed that the final topography is zero. The figures also show the analytic 

Bouguer SRC (black) for the corresponding Te (F = 0.5), scaled to match the peak 

amplitude of /0. (c) The locus of the peak wavelength of /0 (red) as a function of Te,

with its half-width shaded in grey. The black line is the locus of the coherence 

transition wavelength (F = 0.5). 

Figure A4. Four models showing the effect of unexpressed internal loads (“noise”) 

upon the Bouguer and free-air squared real coherencies. The dotted curves show the 

Bouguer SRC (red) and free-air SRC (blue) with no noise (where they are not visible 

they coincide with the solid curves). The green curves show the values of fu (the 

“unexpressed loading ratio”) that were used to generate the noise-influenced Bouguer 

(solid red) and free-air (solid blue) SRCs; the green curves are hence an indicator of 

2
,F I
 , and fu = 0 corresponds to no added noise; these curves have also been scaled – 

the actual maximum fu = 1. Parameters for the four models are: A and B, Te = 90 km, 

F = 0.14; C and D, Te = 150 km, F = 0.6. In all cases the initial loads were randomly 

correlated (� = 90�), and a two-layer loading model was used, with loading at a Moho 

of 35 km depth and the densities given in Table 1. The red and blue curves were 

generated using Eq. (A32). 

77



Figure B1. Cross-sections (at 2500 km northing) through the coherency-squared (rows 

2 and 3) and normalised coherency-squared (rows 4 and 5) between two random, 

fractal surfaces (u and v.) of varying correlation (R). The top row shows cross-sections 

through u (blue) and v. (red). Note how 2
R
  increases and 2

I
  decreases, as |R|

increases, but that the corresponding decrease in 2
I
  is not so obvious. 

Figure B2. Observed free-air SRC (black circles) and its normalised-SIC (pink 

circles) from synthetic modelling using regular topography, averaged over 100 

models, then averaged over the space domain at each wave number, which yields 

global (1-D) profiles. The green curves show the analytic free-air SRC for each 

model. F = 0.09 corresponds to f = 0.1; F = 0.5 to f = 1, and F = 0.8 to f = 4. 
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Constant Symbol Value Units

Young’s modulus E 100 GPa

Newtonian gravitational 

constant


0 6.67259�10-11 m3kg-1s-2

Poisson’s ratio � 0.25

Gravity acceleration g 9.79 ms-2

Mantle densityc �m 3300 kg m-3

Crust densitya �c 2800 kg m-3

Upper crust densityb �u 2600 kg m-3

Lower crust densityb �l 2900 kg m-3

Sea water densityc �w 1030 kg m-3

Table 1. Symbols and values of constants. Densities used in inversion are: a two-layer 

loading model; b three-layer loading model; c both two- and three-layer models. Note 

that McKenzie and Fairhead (1997) use E = 100 GPa and � = 0.5 (which will yield 

7% underestimated Te compared to our values), while McKenzie (2003) uses E = 95 

GPa and � = 0.295 (which yields 1% overestimates). 
























































