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Abstract 

 

This paper examines the finite sample properties of the Quasi-Maximum Likelihood Estimator 

(QMLE) of the Logarithmic Autoregressive Conditional Duration (Log-ACD) model. Proofs of 

consistency and asymptotic normality of the QMLE for the log-ACD model with a log-normal 

density are presented. This is an important issue as the Log-ACD is used widely for testing 

various market microstructure models and effects. Knowledge of the distribution of the QMLE is 

crucial for purposes of drawing valid inferences and diagnostic checking. The theoretical results 

developed in the paper are evaluated using Monte Carlo experiments. The experimental results 

also provide insight into the finite sample properties of the Log-ACD model under different 

distributional assumptions. Finally, this paper presents two extensions to the Log-ACD model to 

accommodate asymmetric effects. The practical usefulness of the new models is evaluated using 

empirical data from Australian stocks.  

 

Keywords: Conditional Duration, Asymmetry, Autoregressive Conditional Duration, 
Logarithmic Autoregressive Conditional Duration, Monte Carlo Simulations. 
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1. Introduction 
 

An accurate description of the dynamics of duration between stock price changes has important 

implications and applications for the analysis of financial markets. Engle and Russell (1997) 

proposed the Autoregressive Conditional Duration (ACD) model, which assumes that the 

duration between price changes follows a process similar to that of Bollerslev�s (1986) 

Generalised Autoregressive Conditional Heteroscedasticity (GARCH) model.  Both models are 

based on dynamic time series processes in the underlying variables. Due to the structural 

similarity between the GARCH and ACD models, Engle and Russell (1997) provided a proof of 

consistency and asymptotic normality for the QMLE of the ACD model following the approach 

of Lee and Hansen (1994), arguing that the theoretical results could be applied directly to the 

ACD model. Based on this result, researchers have subsequently proposed numerous extensions 

to the ACD model in a similar manner to the extensions of the GARCH model (for a discussion 

of the structural and statistical properties of a variety of univariate and multivariate conditional 

volatility models, see McAleer (2005)). These extensions include Bauwens and Giot�s (2000) 

Logarithmic ACD (Log-ACD) model, Dufour and Engle�s (2000) Box-Cox ACD (BCACD) 

model and Exponential ACD (EXPACD) model, Zhang, Russell and Tsay�s (2001) Threshold 

ACD (TACD) model, and Hujer, Kokot and Vuletic�s (2003) Markov Switching ACD (MSACD) 

model.  

 

This paper is concerned with the asymptotic and finite sample properties of the Quasi-Maximum 

Likelihood Estimator (QMLE) for the Log-ACD model. The motivation is two-fold. First, Engle 

and Russell (1997) derived the asymptotic properties of the ACD model based on the results of 

Lee and Hansen (1994) for the GARCH model. However, such asymptotic properties are not yet 

available for the volatility counterpart of the Log-ACD model, namely Nelson�s (1991) 

Exponential GARCH (EGARCH) model. Therefore, the distribution of the QMLE for Log-ACD 

is still unknown, which is particularly important as the ACD model is often used for testing 

hypotheses about the market microstructure. Thus, the distribution of QMLE is crucial for 

purposes of drawing valid inferences and diagnostic checking. Second, in the GARCH literature 

the standardised residuals are often assumed to be normally distributed. The QMLE based on the 

normal density has been proved to be consistent and asymptotically normal under fairly general 

conditions (see Ling and McAleer (2003)). However, the assumption of normality cannot be 

applied to ACD (or Log-ACD) models as the standardised residuals of these models are required 

to be positive. The Weibull, exponential, generalised gamma and log-normal are four of the most 

widely used probability density functions (pdf). A natural question is the nature of the statistical 
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properties of QMLE for the Log-ACD model based on a variety of alternative probability 

distributions.  

 

This paper established proofs of consistency and asymptotic normality of the QMLE for the Log-

ACD model with log-normal density. The theoretical results developed in the paper are evaluated 

using Monte Carlo experiments. The experimental results also provide insight into the finite 

sample properties of the Log-ACD model under different distributional assumptions. 

 

Moreover, the relationship between the Log-ACD and the Autoregressive Moving Average 

(ARMA) model will also be discussed in detail. As the structural and statistical properties of the 

ARMA process are well established, the properties for the ARMA model will also apply to the 

Log-ACD model. Moreover, the statistical properties of the ARMA model with exogenous 

variables (ARMAX) will also apply to the Log-ACD model with exogenous variables. This is 

particularly important as ACD models with exogenous variables are often used for purposes of 

testing hypotheses about market microstructures. Therefore, these properties are crucial for 

ensuring valid inferences and diagnostic checking. 

 

The second part of the paper proposes two alternative methods for accommodating asymmetric 

effects. The Log-ACD model assumes that the duration between price movements is affected 

only by the previous duration but not by the direction of the price change. However, since the 

market frequently has a different attitude to price rises as compared with price falls of equal 

magnitude, it is important to examine how the direction of the price movement affects the future 

duration.  

 

Although many alternative asymmetric ACD models have been proposed in the literature, 

including Zhang, Russell and Tsay�s (2001) Threshold ACD (TACD) model, and Hujer, Kokot 

and Vuletic�s (2003) Markov Switching ACD (MSACD) model, these models often lack 

structural and/or statistical properties and can be difficult to estimate. Moreover, using these 

models for purposes of testing hypotheses about market microstructure is not always 

straightforward. However, the methods proposed in this paper are simple and straightforward to 

implement in practice. Moreover, the structural and statistical properties of the Threshold 

Autoregressive (TAR) model and ARMAX model can be applied directly to the two new 

asymmetric models that are proposed in this paper.  
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The empirical performance of the models will be examined using tick-by-tick data for eight 

Australia shares that are traded on the Australia Stock Exchange (ASX).  

 

The remainder of the paper is organised as follows. Section 2 discusses the Log-ACD model and 

the distributions that are most frequently used for obtaining the QMLE. A novel method of 

estimation is also proposed. The statistical properties of QMLE for the Log-ACD model with log-

normal density will be analysed in detail. Section 3 provides the Monte Carlo experiments and 

numerical results to examine the finite sample properties. Section 4 presents two new models for 

accommodating asymmetric effects. The data are discussed in Section 5. Empirical examples and 

estimates are given in Section 6. Finally, Section 7 contains some concluding comments.  

 

2. Model Specifications and Theoretical Results 

 

2.1 ACD Model  

 

Engle and Russell (1994) proposed the Autoregressive Conditional Duration (ACD) model as 

follows: 

 

  xi =ψ iε i , ε i ~ iid  

  
ψ i = ω + α j xi− j

j=1

p

 + β jψ i− j
j=1

q

 ,   (1) 

 

where  xi  is the duration and  ε i  is the independently and identically distributed (iid) innovation. 

The connection between the structures of the ACD and GARCH models is obvious. Considering 

 yi = xi  (which always holds as duration is always positive), then yi  essentially follows a 

GARCH(p,q) process.  

 

As  xi  is positive for all i, it is natural to assume that ψ i  and  ε i  are both positive. 

Mathematically,  ε i  can follow any distribution F (x)  with probability P(x < 0) = 0 . A sufficient 

condition to ensure the positivity of  ψ i  is ω > 0,α i > 0 ∀ i = 1,..., p  and βi ≥ 0 ∀ i = 1,...,q . This 

condition is identical to that of the GARCH model for ensuring that the conditional variance is 

positive.  
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However, as this sufficient condition may be too restrictive in some cases, Bauwens and Giot 

(2000) resolved the issue by proposing the Logarithmic ACD (Log-ACD) model, as follows:  

 

xi = exp(ϕ i )ε i  

ϕ i = ω + α j log xi− j
j =1

p

 + β jϕ i − j
j =1

q

 .   (2) 

 

Note that E(εi ) = ν > 0 , so that 

 

1( | ) exp( )i i iE x I ν ϕ− = , 

 

where iI  is the information set available up to the thi  price change. Let exp(φi ) = ν exp(ϕ i ) , with 

 

φi = ϖ + α j log xi− j
j =1

p

 + β jφi− j
j =1

q

 , 

 

where ϖ = ω + logν . Then 1( | ) exp( )i i iE x I φ− = , and equation (2) can be rewritten as  

 

xi = exp(φi )ηi  

φi = ϖ + α j log xi− j
j =1

p

 + β jφi− j
j =1

q

 ,   (3)  

 

where ηi =
εi

ν
. Equation (3) is more convenient for purposes of obtaining the QMLE as 

E(ηi ) = 1 , and hence avoids potential identification problems.  

 

The parameters in model (3) can be estimated by the Maximum Likelihood method. Let l(θ)  be 

the log-likelihood function with parameter vector ( ', ') 'sλ θ= , so that 

 

1
( ) log ( , )

T

i
i

l f xλ λ
=

=∑ ,     (4) 
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where 1 1( , ,..., , ,..., ) 'p qθ ω α α β β=  and 1( ,..., ) 'ks s s=  denote the additional parameters required 

by the density function, ( , )if x λ . Then the Maximum Likelihood Estimator (MLE), �λ , of λ , is 

given by  

 

� arg max ( )l
λ

λ λ
∈Λ

= .     (5) 

 

However, the functional form of the likelihood function depends on the distribution of iη . 

Mathematically, ηi  can follow any distribution function, F(x) , such that P(x < 0) = 0 . Some of 

the most popular choices for the distribution of ηi , and their density functions, are as follows:  

 

1. Lognormal distribution: 

 
2

1
1 1 log( )( ) exp

22
x mf x
sxs π

 − = −     
   (6) 

 

2. Weibull distribution: 

 
1

2 ( ) exp
g gg x m x mf x

s s s

−  − −   = −         
   (7) 

 

3. Generalised Gamma distribution: 

 
1

3( ) exp
( )

kg gg x xf x
k s s s

−     = −     Γ     
   (8) 

 

4. Exponential distribution: 

 

4 ( ) exp( )f x s sx= − ,     (9) 

 

where m denotes the location parameter, s denotes the scale parameter, g and k denote the 

additional scale parameters, and Γ(k)  is the gamma function, such that  
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Γ(k) = sk −1 exp(−s)ds
0

∞
.  

 

The log-likelihood function in each case is given by equation (4), with ( , )if x λ  replaced by the 

appropriate density function. 

 

In practice, the true distribution of ηi  is seldom known, such that �λ , as defined in equation (5), 

will be the Quasi-MLE (QMLE) rather than the MLE. Engle and Russell (1997) suggested using 

the Bollerslev-Wooldridge (1992) robust covariance matrix, �( )H λ , instead of the asymptotic 

covariance matrix, to obtain the variance for �λ , where  

 

1 12 2

�

�( )
' '

l l l lH E

λ λ

λ
λ λ λ λ λ λ

− −

=

′′   ∂ ∂ ∂ ∂   =       ∂ ∂ ∂ ∂ ∂ ∂      
.  (10) 

 

Although several papers have attempted to derive the moment conditions for the ACD and Log-

ACD models (see, for example, Bauwens, Galli and Giot (2003)), the statistical properties of the 

QMLE for the Log-ACD model are still unknown (see Ghysels and Jasiak (1997) and Feng, Jiang 

and Song (2004)). 

 

Another interesting feature of the Log-ACD model is the possibility of linearising the process. 

Note that  

 

xi = exp(φi )ηi

log xi = φi + logηi

log xi = φi + µi

    (11) 

  

where µi = logηi . Under the assumption that ηi  follows a log-normal distribution, this implies 

that µi  follows a normal distribution. Therefore, the log-likelihood function for (11) can be 

written as  

 

l(θ) = −
1

2
log s2 +

log xi −φi

s
 
  

 
  i=1

T

 
2

.   (12) 
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Equation (11) models the logarithm of duration rather than duration itself. The advantage of this 

approach is that log ix  can now be rewritten as an ARMA(r,r) process, where max( , )r p q= , as 

shown in the following proposition:  

 

Proposition 1: If the random variable, ix , follows the stochastic process, as defined in equation 

(3), then log ix  can be represented as a ARMA(r,r) process, where max( , )r p q= , that is     

        

 
1 1

log log
r r

i j i j j i j i
j j

x w xδ θ ξ ξ− −
= =

= + + +∑ ∑% ,                   (13) 

 

where 2~ iid(0, )i ξξ σ  and 
1

( ) ( )
r

j i i
j

w w E Eθ µ µ
=

= + +∑% . 

 
Proof: See Appendix.  
 

Remark 1: It is straightforward to show that the conditional likelihood for equation (13) is 

equivalent to that of equation (12), so that the existing structural and statistical properties of the 

ARMA(p,q) model can be applied directly to the model given in equation (11). The statistical 

properties of the QMLE under a log-normal density will be presented in the next sub-section. The 

finite sample performance of this estimation method will be analysed in Section 3.  

 
2.2 Theoretical Results  

 

This section establishes the statistical properties, namely consistency and asymptotic normality of 

the QMLE with a log-normal density for the Log-ACD model, as defined in equation (3). The 

moment structure of the log-ACD model has been established in Bauwens, Galli and Giot (2003). 

 

Consider the Log-ACD model, as defined in equation (3). The associated log-likelihood function 

with a log-normal density is defined as  

 

1

2
2

2

( ) ( )

(log )1 1 1( ) log ( , ) log 2 log log
2 2 2

T

i
i

i i
i i i

l l

xl f x s x
s

λ λ

φλ λ π

=

=

−= = − − − −

∑
  (14) 
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where 1( ,..., ) 'pα α α= , 1( ,..., ) 'qβ β β= , ( , ', ') 'θ ω α β= , 2( , ') 'sλ θ= , and 0 0 0 0, , ,α β θ λ  denotes 
the true parameters of , , ,α β θ λ , respectively.  
 

The theoretical results are derived based under the following assumptions: 

1. Λ  is an open subset of the Euclidean space, 1p qR + + , such that 0λ ∈Λ .    
 
2. ix  is stationary and ergodic.  
 
3. ( )Lα  and ( )Lβ  are left co-prime, where 

1
( ) p i

ii
L Lα α

=
=∑  and 

1
( ) q i

ii
L Lβ β

=
=∑ . Moreover, 

0 0
1 1

1
p q

j j
j j

α β
= =

+ <∑ ∑ . 

 
4. 2 2

0(log ) 0 [(log ) ]i iE E sη η= =  1,...,i T∀ = . 
 
 
Assumption 2 can be replaced by any conditions that ensure the stationarity and ergodicity of the 

duration process. The conditions of the existence of moments can be found in Bauwens, Galli and 

Giot (2003). Assumption 3 ensures the invertibility of the process and identification of the 

parameters. Moreover, Assumption 3 is likely to be a sufficient condition for Assumption 2. If 

this is the case, then Assumption 2 can be omitted. Assumption 4 is needed to ensure the 

existence of the first two moments of log ix , which is required for the log-normal density.  

 
Proposition 2:  
 
Under Assumptions (1)-(4), the Quasi-Maximum Likelihood Estimator (QMLE) in equation (14) 

for the log-ACD model, as defined in equation (3), is consistent, that is, 0
�

p

λ λ→ . 
 
Proof: See Appendix. 
 
 
Proposition 3: 
 
Under Assumptions (1)-(4), the Quasi-Maximum Likelihood Estimate (QMLE) in equation (14) 
for the log-ACD model, as defined in equation (3), is asymptotically normal, 

1 1
0 0 0 0

�( ) (0, ( ) ( ) ( ) )
d

T N A B Aλ λ λ λ λ− −− → , where  
 

0

2
1

0( ) lim
'T

lA T E
λ λ

λ
λ λ

−

→∞
=

 ∂=  ∂ ∂ 
 and 

0

1
0( ) lim

'T

l lB T E
λ λ

λ
λ λ

−

→∞
=

∂ ∂ =  ∂ ∂ 
. 

 

Proof: See Appendix. 
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Remark 2: The results in Propositions 2 and 3 apply explicitly to the Log-ACD model, as 

defined in equation (3), where the standardised residual, iη , has a unit mean. It is unclear whether 

these results hold for models, as defined in equation (2), where the standardised residuals, iε , 

may have a mean that is different from unity. This should not pose a serious problem in practice 

as estimation is typically conducted for a Log-ACD model, as specified in equation (3), rather 

than the alternative specification, as defined in equation (2).  

 

3. Finite Sample Properties  

 

This section provides Monte Carlo evidence for the finite sample properties of the MLE and the 

QMLE, as defined in equation (5). The Data Generating Process (DGP) for each of the 

realisations is given by: 

 

xi = exp(φi )ηi

φi = 0.01 + 0.2 log xi + 0.7φi−1.
 

 

The steps for the Monte Carlo analysis in this section are as follows:  

 

1. For each of the distributions as defined in equations (6)-(9), the DGP defined above will 

be used to generate realisations with sample sizes of 500, 1000 and 3000. 

2.  The parameters of the Log-ACD models will be estimated from the realisations generated 

in step 1 above by maximising the log-likelihood functions, as defined in equation (5), 

based on the distributions defined in equations (6)-(9) and the log-likelihood function 

defined in equation (4).  

3. Repeat Steps 1 to 2 above 3000 times, so that there are 3000 replications.  

 

The first set of results given in Tables 2a-2c provide an analysis of the properties of the QMLE as 

applied to the Log-ACD model, based on the Log-normal probability distributions. [Similar 

tables of results are available upon written request for the Weibull, exponential and generalised 

gamma distributions, all of which produce the required positive standardised residuals, but these 

are not provided for space considerations.] The results of the Monte Carlo experiments in Tables 

2a-2c simulate the finite sample properties on the basis of sample sizes of 500, 1000 and 3000, 

each with 3000 simulations.  
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Overall, both MLE and QMLE are close to their true values, even in relatively small samples. It 

is interesting to note that the (Q)MLE based on the log-normal density, as defined in equation (6), 

is identical to those obtained by maximising equation (12). This should not be surprising as 

equation (12) is a monotonic transformation of the likelihood function based on the log-normal 

density, as defined in equation (6). Although the transformation does not affect the estimates, it 

does affect the standard deviation of the estimates, as can be seen in Tables 2a-2c, as well as for 

the other three distributions that are not shown here. The (Q)MLE produce seemingly unbiased 

estimates of the parameters. Regardless of the true underlying distribution, the (Q)MLE by 

assuming the log-normal, Weibull and normal densities seem to be robust and asymptotically 

normal, which is supported by the skewness and kurtosis of the t-ratios for the estimates. As the 

sample size increases, the skewness and kurtosis of the (Q)MLE under the log-normal, Weibull 

and normal densities tend towards 0 and 3, respectively. In addition, as the sample size increases, 

the Jarque-Bera Lagrange multiplier statistics also generally lead to non-rejection of the null 

hypothesis of normality. Moreover, the convergence rates seem to be faster for MLE than for 

QMLE in these cases, which is not surprising as MLE should be more efficient than QMLE.   

 

Although not shown here, the finite sample properties of the QMLE under the assumption of the 

generalised gamma and exponential distributions are less than desirable in some cases. The 

problem with the generalised gamma distribution is due partly to the difficulties in obtaining 

robust and accurate numerical derivatives of the likelihood functions for purposes of 

maximisation. This could be improved by specifying the analytical derivatives of the likelihood 

function in the optimisation routine. The problem with the exponential distribution is more basic. 

In many cases, the exponential distribution simply does not have the flexibility to approximate 

the true underlying distribution, which leads to poor finite sample properties, even though the 

QMLE with exponential density may be asymptotically normal.  

 

These Monte Carlo results suggest that the choice of density to determine the likelihood function 

is important. The density should be sufficiently flexible to provide a good approximation to a 

wide range of distributions, but also sufficiently accurate so that it does not induce unnecessary 

numerical difficulties.  

 

4.  Asymmetric Log-ACD Model 

 

The Log-ACD model, as defined in equation (3), assumes that the conditional duration is affected 

by the previous duration but not by the direction of the previous price change. In other words, the 
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model assumes that a positive price change has the same impact on the duration for the next price 

movement as does a negative price change of similar magnitude. It is important to note that the 

movements in both bid and ask prices contain important information regarding the overall 

performance of the stock. Thus, it would not seem reasonable to assume that the frequency of 

price changes is unaffected by the direction of previous price changes. 

 

There are numerous models that extend the basic ACD model in a variety of ways. This paper 

proposes two straightforward methods of accommodating asymmetry into the basic ACD model. 

Bauwens and Giot (2006) refer to �first generation ACD� models, which begin with the linear 

ACD model of Engle and Russell (1998) and the logarithmic ACD (Log-ACD) model of 

Bauwens and Giot (2000), together with further extensions into augmented ACD classes by 

Fernandes and Grammig (2006), and Hautsch�s (2006) semi-parametric model. As mentioned 

previously, all these models have GARCH counterparts. The �second generation� ACD models 

consist of regime-switching ACD models and mixture models. Such mixture can involve both the 

error distribution and the dynamic component. Zhang et al. (2001) develop a threshold ACD 

model (TACD), while Meitz and Terasvirta (2006) develop a class of smooth transition ACD 

models (STACD), which generalise the linear and logarithmic models in a particular way. 

  

The two extensions presented here belong to the first generation of models, and the models are 

similar in spirit to those given in Bauwens and Giot (2003). These extensions model the direction 

of the price change between consecutive trades by means of a competing risks model; in which 

the direction of the price change is triggered by a Bernoulli process, thereby leading to a form of 

asymmetric ACD model. The basic linear ACD models only capture the duration between market 

events and do not include information given by the price process, which is of great importance in 

the context of market microstructure issues and the process of information impounding. The 

combination of information given by the price process and the duration between market events is 

an important extension. This was first addressed by Engle (2000), who suggested an ACD-

GARCH model. The durations were captured by a marginal ACD model, and the volatility of 

returns was modelled by a GARCH process, conditionally on the duration. Russell and Engle 

(2005) combine an ACD model to capture durations and a generalised linear model on 

conditional probabilities of the price process in their autoregressive conditional multinomial 

(ACM) model. 

 

For this reason, two asymmetric Log-ACD models are proposed here to capture the asymmetric 

properties of the conditional duration. Model 1 uses an indicator function to capture asymmetric 
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effects in a similar manner to that of the Glosten, Jagannathan and Runkle (1992) GJR model for 

capturing asymmetric effects in models of conditional volatility. Model 2 accommodates 

asymmetric effects by using dummy variables. Although both models are intended to capture 

asymmetric effects, the interpretation of the two models is quite different. Thus, they should be 

viewed as complementary rather than competing models. In addition, it is important to note that 

Models 1 and 2 can be rewritten as Threshold Autoregressive Moving Average (TARMA) and 

ARMAX models, respectively. Hence, the structural and statistical properties of the proposed 

models can be easily established using existing theoretical results, which will facilitate the testing 

of various hypotheses regarding the market microstructure.  

 

4.1 Model 1: Asymmetric Log-ACD using an indicator function (ALACDI)  

 

The first approach to accommodate any asymmetric effects is similar to that of the Glosten, 

Jagannathan and Runkle (1992) GJR model for capturing asymmetric effects in conditional 

volatility models. Let iD  be an indicator function, such that  

 

 
0, 0
1, 0

i
i

i

p
D

p
∆ ≥

=  ∆ <
 (15) 

 
 
where 1i i ip p p −∆ = −  and ip  denotes the price level at the thi  significant price change. The 
Asymmetric Log-ACD model can be defined as  
 

 
1 1

( ) log
r s

i j j i j i j j i j
j j

D xφ ϖ α γ β φ− − −
= =

= + + +∑ ∑ .   (16) 

 
Note that, if 0,j jγ = ∀ , then equation (16) reduces to the Log-ACD model, as defined in 

equation (3). Considering the special case, 1r s= = , the short run persistence of the conditional 

duration is 1α  if the previous price change is positive, while the short run persistence is 1 1α γ+  if 

the previous price change is negative.  

 

Using a similar argument as presented in the previous section, equation (16) can be rewritten as a 

Threshold Autoregressive Moving Average (TARMA) model. However, unlike the standard TAR 

model in the non-linear time series literature, where the threshold value is a parameter to be 

estimated, the threshold value in this case is fixed at 0. More importantly, the structural and 

statistical properties developed for the TAR model can then be applied directly to equation (16) 
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(see Tong (1983), Chan and Tong (1986), and Hansen (2001) for further details regarding the 

structural and statistical properties of TAR models).  

 

4.2 Model 2: Asymmetric Log-ACD Model using Exogenous Variables (ALACDX) 

 

The second approach to accommodate asymmetric effects is to augment the original Log-ACD 

model by including some exogenous variables. In this case, the model can be defined as 

  

 
1 1 1 1

log
p q r s

i j i j j i j j i j j ji
j j j j

x D Xφ ϖ α β φ δ λ− − −
= = = =

= + + + +∑ ∑ ∑ ∑ , (17) 

 

where iD  is an indicator function, as defined in equation (15), and jiX  denotes the value of the 

thj  exogenous variable at the thi  price change.  

 

In our subsequent empirical analysis, we adopt bid and ask volume as the exogenous variables. 

Blume, Easley and O�Hara (1994) investigate the informational role of volume traded and show 

that it is potentially useful for technical analysis. In their model, volume statistics provide 

information about information precision that cannot be deduced from price statistics alone. 

Volume may convey additional information to price but the link between information asymmetry 

and volume traded is not necessarily linear.  

 

Kyle (1985) was one of the first to develop a model whereby a single trader, presumed to have a 

monopoly on information, places orders over time so as to maximize trading profit before the 

information becomes common knowledge. Barclay and Warner (1993) find that informed traders 

concentrate their orders on medium-sized trades. They examined the proportion of a stock�s 

cumulative price change that occurs in each trade-size category using transactions data for a 

sample of New York Stock Exchange (NYSE) firms. The stealth trading hypothesis suggests that, 

if privately informed traders concentrate their trades in medium sizes, and if stock-price 

movements are due mainly to private information revealed through these investors� trades, then 

most of a stock�s cumulative price change will occur on medium-size trades. Their findings 

supported the stealth trading hypothesis, which suggests there will not necessarily be a simple 

relationship between volume and price duration.  

 

Volume at the bid and ask is a common way of viewing market depth. Does net buy and net sell 

volume of the same size convey the same amount of information? Karpoff (1988) advances an 
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argument that short selling restrictions may prevent insiders from exploiting negative information 

in the stock market. This suggests that higher information content might be attached to buy orders 

as compared with sell orders. There is some evidence in support of this short selling hypothesis in 

Karpoff (1988), Madhavan/Smidt (1991), and Chan and Lakonishok (1993). This argument also 

provides further impetus in support of our asymmetric ACD model. 

 

Note that it is straightforward to show, using similar arguments to those presented in the previous 

section, that equation (17) can be rewritten as an ARMAX model. Hence, the structural and 

statistical properties developed for the ARMAX model can be applied directly to equation (17) 

without modification.  

 

As mentioned previously, the interpretations of the two models are quite different. Model 1 

suggests positive and negative price movements have different effects on the short run 

persistence of conditional durations. However, Model 2 suggests that the unconditional 

expectation of duration is different for positive and negative price movements. Thus, these 

models accommodate two different asymmetric effects on the conditional duration. The empirical 

performance of the two models will be examined in the next section.  

 

5.  Data  
 
The two asymmetric models were applied to eight shares listed on the Australian Stock Exchange 

(ASX) using tick-by-tick data for the period 1/7/2003 to 1/10/2003. The eight shares are 

Commonwealth Bank of Australia (CBA), BHP Billiton (BHP), QANTAS Airways (QAN), 

Coles-Myer Limited (CML), Telstra (TLS), Australia and New Zealand Bank (ANZ), 

Woolworths (WOW) and Woodside Petroleum (WPL). These eight companies cover a wide 

range of industries and service areas that include the mining, energy and retail industries, 

telecommunications and the banking sector.  

 

Data were provided by our industry research partner, Securities Industry Research Centre of the 

Asia Pacific (SIRCA). SIRCA is a not-for-profit research consortium of 26 universities drawn 

from Australia and New Zealand, together with a number of industry partners, including the 

Australian Stock Exchange (ASX), the Sydney Futures Exchange (SFE), and Reuters. This 

research draws upon SIRCA�s ASX intra-day data, which captures all the transactions occurring 

on the ASX via the Stock Exchange Automated Trading System (SEATS). The data possess a 

wealth of information, including the date and time (to the nearest hundredth of a second that the 
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trade took place), price information, including details of the bid and ask prices, volumes, order 

flow (disclosed and undisclosed), value and volumes of trades, broker IDs, and order flags.  

 

This paper applies the various Log-ACD models discussed above to eight Australian companies, 

representing five different industries in Australia. Australia and New Zealand Banking Group 

Limited (ANZ) and Commonwealth Bank of Australia (CBA) are selected to represent the 

banking industry of Australia. BHP Billiton Limited (BHP) and Woodside Petroleum Limited 

(WPL) are selected to represent the Mining and Energy Industry of Australia. Coles Myer Ltd 

(CML) and Woolworths Limited (WOW) are selected to represent the Retail Industry of 

Australia. Telstra Corporation Limited (TLS) and QANTAS Airways Limited (QAN) are selected 

to represent the Telecommunications and Transportation Industries for Australia, respectively.  

The summary statistics and their sample sizes are given in Table 1. 

 

The calculation of duration follows Engle and Russell (1998), and the data are further filtered by 

the cubic spline method, as suggested in Engle and Russell (1998), to remove the time-of-day 

effects.  

 

6. Empirical Results 

 

Tables 3a-3d contain the parameter estimates of Models (3), (16) and (17) for ANZ. In order to 

save space, the tables for the remaining seven companies are not reported, but are available upon 

written request. For all companies, each model was estimated four times with different 

distributional assumptions, namely the log-normal, Weibull, exponential and normal 

distributions, as discussed in Section 2. The generalised gamma distribution is omitted due to its 

computational difficulties, as outlined in Section 3.  Additional exogenous variables, namely the 

bid and ask volumes, are also included in the ALACDX model to examine the impact of traded 

volumes in the previous price change on the duration of the subsequent price change.  

 

The Ljung-Box Q-statistics and the BDS statistics are also calculated using the standardised 

residuals for each case. The results support serial independence in the standard residuals, which 

support the consistency of the QMLE. However, the Kolmogorov-Smirnov test provides strong 

evidence to reject the null hypothesis of the assumed distribution in each case, which indicates 

that the underlying distribution is unlikely to be the correct distribution. However, the existence 

of some outliers and extreme observations may be the cause of these test outcomes, and would be 

an interesting area for further research.  
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6.1 Banking Industry  

 

As shown in Tables 3a-3d for ANZ, the α  and β  estimates are positive and significant for ANZ, 

and also for CBA, for each of the four estimated models. These results suggest that past durations 

are helpful in predicting the duration before the next price change. However, there is no evidence 

to support asymmetric effects on duration from price changes as both the γ  and δ  estimates are 

insignificant for both banks. Interestingly, both the 1λ  and 2λ  estimates are positive and 

significant in each case, indicating that the traded bid and ask volumes at the last price change 

have a positive impact on duration. In addition, the inclusion of the bid and ask volumes also has 

a negative news impact on the β  estimates, which suggests that the correct specification of the 

model is crucial for obtaining valid inferences and diagnostic checks. Moreover, the problem of 

omitted variables could have important implications for the interpretation of the various models. 

The long run persistence of past duration on future conditional duration would also appear to be 

substantially lower when the bid and ask volumes are included in the analysis. The estimates have 

different values for the two banks, and the differences are most pronounced in the asymmetric 

models that include bid and ask volumes. 

 

6.2 Mining and Energy Industry 

 

The estimates for BHP and WPL, which represent the mining and energy industry of Australia, 

are not presented here. However, as in the case of the banking industry, the α  and β  estimates 

are positive and significant for both BHP and WPL, indicating that past durations contain 

important information about the future duration of price changes. Although there is no evidence 

for asymmetric effects on duration from price changes, traded bid and ask volumes appear to 

have significant and positive effects on the conditional duration as 1λ  and 2λ  are both positive 

and significant. Again, the inclusion of the bid and ask volumes has a negative impact on the β  

estimates. Moreover, the long run persistence of past duration on future conditional duration 

would appear to be lower when the bid and ask volumes are included in the analysis.  

 

6.3 Retail Industry 

 

Estimates for CML and WOW, which are two of Australia�s largest retail corporations, are such 

that, as in the previous results, the α  and β  estimates are positive and significant for both 
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corporations. There appears to be an asymmetric effect on the conditional duration from previous 

price changes as the δ  estimates are negative and significant in all cases except one, namely it is 

not significant for CML under the exponential distribution. This would suggest that the presence 

of asymmetric effects would be industry dependent. In addition, the coefficients of the bid and 

ask volumes continue to be positive and significant. The large differences in estimates occur in 

the context of the asymmetric model after the inclusion of volume statistics.  

 

6.4 Transport and Telecommunication Industries 

 

The parameter estimates for QAN and TLS, which represent the air and telecommunications 

industries for Australia, respectively, are such that, somewhat interestingly, both the δ  and γ  

estimates are significant, but with opposite signs. This would suggest that a negative price shock 

has lower short run persistence on the conditional duration but has a positive impact on future 

conditional duration. In other words, a negative price change will lead to a longer duration before 

the next price change, but the impact will not last as long as a positive price change. Again, bid 

and ask volumes play important roles in determining future duration as the estimates of 1λ  and 

2λ  are both positive and significant for QAN. However, the results for TLS are qualitatively 

identical to those of the banking industry. No evidence is found for asymmetric effects on 

duration from price changes, but the estimates of 1λ  and 2λ  are both positive and significant, 

which indicates the importance of the bid and ask volumes in predicting the duration for the next 

price change.  

 

6.5 Bootstrapped Confidence Intervals 

 

Section 2 showed that the QMLE based on the log-normal density is consistent and 

asymptotically normal for the log-ACD model. It is, however, unclear whether the same results 

hold when different densities are used to construct the QMLE. Moreover, although the Monte 

Carlo results presented in Section 3 provided support for the theoretical results, the usefulness of 

the asymptotic results in finite samples is still unclear from an empirical perspective. Therefore, 

this section compares the bootstrapped confidence intervals and the confidence intervals 

constructed by using the robust standard errors (asymptotic confidence intervals) of the estimates 

obtained in the empirical section.  

 



   19 
 

As reported in the empirical section, the diagnostic tests indicated that the standardised residuals 

of the Log-ACD model under different distributional assumptions are IID in all cases, but the 

residuals did not follow any of the assumed distributions. Therefore, bootstrapping techniques 

can be used to provide an accurate approximation of the underlying distribution of the QMLE in 

finite samples. Thus, comparing the bootstrapped confidence intervals and the asymptotic 

confidence intervals will provide insight into the applicability of asymptotic normality in finite 

samples. The bootstrapped confidence intervals are constructed by using the percentile method, 

as proposed in Efron and Tibshirani (1993).  

 

Tables 4a-4d provide the estimates of the Log-ACD model, their bootstrapped confidence 

intervals and the asymptotic confidence intervals for the eight companies using four different 

densities, namely the log-normal, Weibull, exponential and normal distributions. The Generalised 

Gamma distribution is not used in this section due to the computational difficulties, as mentioned 

previously. The widths of both confidence intervals are also presented for purposes of 

comparison. In addition, the asymptotic confidence intervals assume symmetry, whereas 

bootstrapped confidence intervals do not impose such an assumption. Therefore, a measure of 

asymmetry is also presented in Tables 4a-4d to examine the symmetric property of the confidence 

intervals in finite samples.  

 

Let �θ  denote the QMLE of θ , and let Lθ  and Uθ , respectively, denote the lower and upper 

bounds of the confidence interval for �θ . A simple measure of asymmetry can be calculated as  

 

� �( ) ( )U Lτ θ θ θ θ= − − − . 

 

Obviously, if the confidence interval is symmetric, then 0τ = ; if 0τ >  ( 0τ < ), then the 

confidence interval is positively (negatively) skewed.  

 

As shown in Tables 4a and 4d, the asymptotic confidence intervals and the bootstrapped 

confidence intervals from the log-normal and normal densities are reasonably symmetric. In 

addition, the bootstrapped confidence intervals are subsets of the asymptotic confidence intervals. 

This demonstrates efficiency gain in the estimates from the bootstrapping method.  

 

However, in the cases of the Weibull and Exponential densities, the symmetric assumption does 

not hold in some cases, especially for the estimates of ω  and β , as shown in Tables 4b and 4c. 
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The presence of asymmetry leads to the bootstrapped confidence intervals being wider than the 

asymptotic confidence intervals. This suggests that the asymptotic confidence intervals may 

provide a poor approximation in finite samples when the Weibull and Exponential distributions 

are used to obtain the QMLE.  

 

7. Concluding Remarks  

 

The paper examined the finite sample properties of the Quasi Maximum Likelihood Estimator 

(QMLE) of the Logarithmic Autoregressive Conditional Duration (Log-ACD) model. The 

structural and statistical properties of the log-ACD model were examined by establishing the 

relationship between the Log-ACD model and the Autoregressive Moving Average (ARMA) 

time series model. The theoretical results developed in the paper were evaluated using Monte 

Carlo experiments for four different types of distributions, namely the Weibull, exponential, 

generalised gamma and log-normal, all of which produced the required positive standardised 

residuals.  

 

Two asymmetric Log-ACD models were developed to capture any asymmetric properties of the 

conditional duration. The objective was to capture any asymmetric or �leverage� type behaviour 

in the conditional expected duration. The results suggested that the conditional expected duration 

was not only persistent, but also reacted to information shocks in asset returns in the form of 

positive versus negative price movements. It is frequently argued that trading activity and asset 

return volatility are correlated with the intensity of market information flow, which means that 

trading becomes more intensive as the information flow intensifies. This also means that 

increases in information flows will tend to be associated with shorter durations.  

 

It has also been suggested that investors trading on information might try to hide the fact that they 

have information by trading in small parcels. The analysis of volume effects was generally 

consistent with such an empirical observation as bid and ask volumes appeared to be positively 

correlated with price durations. The empirical results are consistent with the argument that the 

intensity of information disclosure impacts on both price durations and trading volumes.  
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Appendix 

 

Proof of Proposition 1: From the second equation in (4): 
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where 1 ... 0,p qα α+ = = =  if q p>  and 1 ... 0q pβ β+ = = = , if q p< . Notice that logi i ixµ φ= − , so 

the last equation above can be rewritten as follows:  
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and hence , log ix can be expressed as 
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where j j jδ α β= +  and j jθ β= − . If ( ) 0,iE µ ≠  the last equation can be rewritten as  
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where ( ),i i iEξ µ µ= −  so that 2~ iid(0, )i ξξ σ  and 
1
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Proof of Proposition 2: It is sufficient to verify the following conditions of Theorem 4.1.2 in 
Amemiya (1985): 
 
A1. Λ  is an open subset of the Euclidean Space 1p qR + + , such that 0λ λ∈ .  
A2. ( )l λ  is a measurable function of ix  for all i  and for all λ ∈ Λ . Moreover, /l λ∂ ∂  exists and 
is continuous in an open neighbourhood of 0λ .  
A3. 1 ( )T l λ−  converges to a non-stochastic function in probability uniformly in λ  in a open 
neighbourhood of 0λ , and the non-stochastic function attains a strict local maximum at 0λ .  
 
A1 is satisfied automatically by Assumption 1. For A2, notice that   
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Therefore, under Assumptions (1) � (3), l
λ
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Now, consider the following maximisation problem: 
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where 
2 2
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0s s= . Moreover, 

2
2 ( , ) 0R sθ ≥  2, sθ∀ , so that the solution to the maximisation problem is θ  such that 

2
2 ( , ) 0R sθ = , which will occur if and only if 0( ) ( )i iφ θ φ θ=  for all i , which implies 0θ θ= . 

Therefore, the likelihood function converges to a non-stochastic function which attains a strict 
local maximum at 0λ . These imply Conditions A1 to A3 are satisfied under Assumptions (1)-(4), 

and hence 0
�

p

λ λ→ . This completes the proof. ■ 
 
 
Proof of Proposition 3: Given the result in Proposition 2, it is sufficient to verify the following 
conditions of Theorem 4.1.3 in Amemiya (1985): 
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First, consider the following first and second order partial derivatives 1,...,i T∀ = : 
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Under Assumption 1, B1 is satisfied by examining the derivatives above directly. For B2, it is 
sufficient to verify that  
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Now, under Assumption 4, it follows that 
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and, under Assumptions 2 and 4, it follows that  
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Furthermore, under Assumptions 2, 3 and 4, we have  
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Hence, B2 is satisfied. For B3, let 
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by the given assumptions. Using the Central Limit Theorem of Stout (1974),  
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Theorem 4.1.3 in Amemiya (1985) have been established. This completes the proof. ■ 
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Table 1. Summary Statistics for Eight Companies on the Australian Stock Exchange 

 

Statistics ANZ CBA BHP WPL CML WOW TLS QAN 
Mean 80.1535 57.55475 100.3229 133.8996 287.579 136.1386 461.3966 463.057 

Median 36 27 32 52 109 53 123 152 
Maximum 18485 18316 18560 18191 18229 18220 18302 15798 
Minimum 1 1 1 1 1 1 1 1 
Std. Dev. 232.1636 168.9323 312.1668 367.0297 604.7731 407.2284 973.3416 915.73 
Skewness 51.39532 78.25914 33.61695 29.96407 11.50926 26.17681 6.607736 6.082173
Kurtosis 3739.022 8343.062 1721.953 1363.638 261.3184 990.3336 78.29639 64.82925

Observations 16384 16384 14854 11130 5104 11105 3172 3122 
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Table 2a. True Distribution is Lognormal, Sample Size 500, Replications 3000 

 
 �α  Lognormal Weibull G. Gamma Exponential Normal 
 Mean 0.214 0.205 0.181 0.198 0.214 
 Median 0.214 0.204 0.191 0.196 0.214 
 Maximum 0.347 0.353 0.393 0.379 0.347 
 Minimum 0.060 0.035 -0.028 0.011 0.060 
 Std. Dev. 0.035 0.039 0.067 0.047 0.035 
 Skewness 0.025 0.104 -0.788 0.176 0.025 
 Kurtosis 3.179 3.127 3.688 3.221 3.179 
 
 

�( )t α  Lognormal Weibull G. Gamma Exponential Normal 
 Mean 0.369 0.066 -7.656 -0.142 0.185 
 Median 0.408 0.121 -0.084 -0.079 0.232 
 Maximum 3.739 3.412 3.242 6.725 3.517 
 Minimum -4.598 -5.903 -1.620E+04 -15.993 -4.578 
 Std. Dev. 1.027 1.107 299.533 1.253 1.060 
 Skewness -0.196 -0.290 -52.959 -1.079 -0.208 
 Kurtosis 3.374 3.443 2857.967 13.049 3.278 
 Jarque-Bera 36.600 66.504 1.018E+09 1.317E+04 31.216 
 Probability 0.000 0.000 0.000 0.000 0.000 
 
 
 �β  Lognormal Weibull G. Gamma Exponential Normal 
 Mean 0.646 0.669 0.482 0.681 0.646 
 Median 0.654 0.676 0.675 0.692 0.654 
 Maximum 0.868 0.882 0.940 0.961 0.868 
 Minimum 0.084 0.154 -1.026 -0.076 0.084 
 Std. Dev. 0.071 0.076 0.544 0.099 0.071 
 Skewness -0.868 -0.738 -2.241 -1.991 -0.868 
 Kurtosis 5.620 4.617 6.223 13.953 5.620 
 
 

�( )t β  Lognormal Weibull G. Gamma Exponential Normal 
 Mean -0.686 -0.296 -134.088 -1.482 -0.478 
 Median -0.730 -0.374 -0.215 -0.089 -0.530 
 Maximum 4.133 5.433 14.251 9.021 4.223 
 Minimum -3.784 -3.815 -1.131E+05 -3.973E+03 -3.691 
 Std. Dev. 0.956 1.083 3.316E+03 72.677 1.018 
 Skewness 0.323 0.384 -29.428 -54.546 0.279 
 Kurtosis 3.764 3.582 906.741 2.981E+03 3.517 
 Jarque-Bera 124.676 115.953 1.023E+08 1.108E+09 72.233 
 Probability 0.000 0.000 0.000 0.000 0.000 
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Table 2b. True Distribution is Lognormal, Sample Size 1000, Replications 3000  
 
 �α  Lognormal Weibull G. Gamma Exponential Normal 
 Mean 0.207 0.202 0.190 0.199 0.207 
 Median 0.207 0.203 0.196 0.198 0.207 
 Maximum 0.302 0.305 0.351 0.317 0.302 
 Minimum 0.123 0.119 -0.022 0.100 0.123 
 Std. Dev. 0.025 0.028 0.051 0.033 0.025 
 Skewness 0.108 0.082 -1.694 0.127 0.108 
 Kurtosis 3.173 2.981 7.362 3.046 3.173 
 
 

�( )t α  Lognormal Weibull G. Gamma Exponential Normal 
 Mean 0.275 0.035 -9.491 -0.152 0.128 
 Median 0.302 0.101 -0.101 -0.065 0.158 
 Maximum 3.816 3.297 3.785 3.489 3.609 
 Minimum -4.003 -4.052 -2.484E+04 -103.182 -4.363 
 Std. Dev. 1.023 1.081 453.635 2.215 1.056 
 Skewness -0.130 -0.241 -54.683 -33.697 -0.150 
 Kurtosis 3.241 3.149 2.993E+03 1.564E+03 3.196 
 Jarque-Bera 15.799 31.736 1.120E+09 3.050E+08 16.067 
 Probability 0.000 0.000 0.000 0.000 0.000 
 
 
 �β  Lognormal Weibull G. Gamma Exponential Normal 
 Mean 0.675 0.686 0.601 0.693 0.675 
 Median 0.677 0.689 0.692 0.697 0.677 
 Maximum 0.819 0.828 0.879 0.868 0.819 
 Minimum 0.496 0.465 -1.010 0.370 0.496 
 Std. Dev. 0.045 0.050 0.383 0.059 0.045 
 Skewness -0.311 -0.397 -3.792 -0.559 -0.311 
 Kurtosis 3.312 3.453 15.789 4.044 3.312 
 
 

�( )t β  Lognormal Weibull G. Gamma Exponential Normal 
 Mean -0.493 -0.181 -85.761 0.013 -0.324 
 Median -0.539 -0.258 -0.120 -0.026 -0.383 
 Maximum 4.437 5.454 5.834 5.251 4.825 
 Minimum -3.571 -3.381 -1.862E+05 -4.328E+00 -3.478 
 Std. Dev. 0.989 1.073 3.471E+03 1.162 1.042 
 Skewness 0.324 0.403 -51.878 0.317 0.324 
 Kurtosis 3.755 3.633 2.765E+03 3.735E+00 3.635 
 Jarque-Bera 123.900 131.321 9.550E+08 117.927 102.968 
 Probability 0.000 0.000 0.000 0.000 0.000 
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Table 2c. True Distribution is Lognormal, Sample Size 3000, Replications 3000  
 
 �α  Lognormal Weibull G. Gamma Exponential Normal 
 Mean 0.203 0.201 0.189 0.200 0.203 
 Median 0.203 0.201 0.198 0.199 0.203 
 Maximum 0.260 0.262 0.279 0.269 0.260 
 Minimum 0.158 0.145 -0.005 0.132 0.158 
 Std. Dev. 0.014 0.016 0.048 0.019 0.014 
 Skewness 0.058 0.070 -2.971 0.085 0.058 
 Kurtosis 2.973 3.073 11.900 3.197 2.973 
 
 

�( )t α  Lognormal Weibull G. Gamma Exponential Normal 
 Mean 0.189 0.029 -96.143 -0.062 0.092 
 Median 0.178 0.063 -0.058 -0.014 0.094 
 Maximum 3.546 3.288 3.780 3.875 3.338 
 Minimum -3.234 -4.130 -2.562E+05 -11.657 -3.551 
 Std. Dev. 1.010 1.057 4.691E+03 1.133 1.008 
 Skewness -0.014 -0.139 -54.278 -0.415 -0.078 
 Kurtosis 2.953 3.131 2.962E+03 6.687 2.974 
 Jarque-Bera 0.381 11.858 1.100E+09 1.785E+03 3.135 
 Probability 0.826 0.003 0.000 0.000 0.209 
 
 
 �β  Lognormal Weibull G. Gamma Exponential Normal 
 Mean 0.691 0.695 0.603 0.697 0.691 
 Median 0.691 0.696 0.696 0.698 0.691 
 Maximum 0.770 0.792 0.807 0.811 0.770 
 Minimum 0.587 0.567 -1.004 0.550 0.587 
 Std. Dev. 0.025 0.027 0.390 0.032 0.025 
 Skewness -0.150 -0.160 -3.834 -0.212 -0.150 
 Kurtosis 3.134 3.238 15.818 3.365 3.134 
 
 

�( )t β  Lognormal Weibull G. Gamma Exponential Normal 
 Mean -0.331 -0.129 -114.526 -0.025 -0.207 
 Median -0.367 -0.171 -0.080 -0.018 -0.256 
 Maximum 3.565 4.636 4.425 6.207 3.954 
 Minimum -3.992 -4.136 -1.073E+05 -34.982 -3.795 
 Std. Dev. 1.004 1.051 2.461E+03 1.297 1.004 
 Skewness 0.108 0.274 -35.410 -6.329 0.198 
 Kurtosis 3.043 3.381 1.395E+03 178.028 3.161 
 Jarque-Bera 6.067 55.757 2.430E+08 3.849E+06 22.945 
 Probability 0.048 0.000 0.000 0.000 0.000 
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Table 3a. Estimates of the Log-ACD Model for ANZ 
 

ANZ  (ACD) Log-Normal Weibull Exponential Normal 
ω  -0.156 -0.627 0.265 -0.156 
 [-8.344] [-9.315] [0.817] [-8.118] 

α  0.0800 0.066 0.049 0.08 
 [12.052] [10.742] [7.038] [12.016] 

β  0.695 0.648 0.588 0.695 
 [22.716] [18.016] [14.112] [22.271] 

 
Table 3b. Estimates of the ALACDX Model for ANZ 

 
ANZ (Price) Log-Normal Weibull Exponential Normal 

ω  -0.153 -0.626 0.273 -0.153 
 [-7.752] [-9.336] [0.812] [-7.448] 

α  0.080 0.067 0.049 0.080 
 [11.721] [11.161] [7.157] [11.640] 

β  0.693 0.645 0.584 0.693 
 [21.731] [17.714] [9.697] [20.961] 

δ  -0.007 -0.010 -0.008 -0.007 
 [-0.438] [-0.625] [-0.515] [-0.431] 

 
Table 3c. Estimates of the ALACD Model for ANZ 

 
ANZ  (AACD) Log-Normal Weibull Exponential Normal 

ω  -0.156 -0.628 0.265 -0.156 
 [-8.357] [-9.372] [0.850] [-7.856] 

α  0.081 0.065 0.049 0.081 
 [9.967] [8.327] [6.123] [9.485] 

β  0.695 0.647 0.588 0.695 
 [22.774] [18.088] [12.388] [21.385] 

γ  -0.004 0.002 0.003 -0.004 
 [-0.341] [0.207] [0.016] [-0.327] 

 
Table 3d. Estimates of the ALACDX Model with Bid and Ask Volumes for ANZ 

 
ANZ (Price) Log-Normal Weibull Exponential Normal 

ω  -0.617 -1.902 3.367 -0.617 
 [-1.446] [-3.600] [2.261] [-1.404] 

α  0.094 0.076 0.051 0.094 
 [8.293] [8.774] [5.985] [8.347] 

β  0.514 0.263 0.13 0.514 
 [2.310] [1.449] [1.493] [2.192] 

δ  -0.021 -0.033 -0.028 -0.021 
 [-0.844] [-1.646] [-1.618] [-0.787] 

 λ1  0.015 0.026 0.029 0.015 

 [1.014] [2.316] [4.502] [1.012] 

 λ2  0.026 0.041 0.047 0.026 

 [1.358] [3.263] [6.769] [1.304] 
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Table 4a. Confidence Intervals of QMLE with Log-Normal Density 
 

ANZ Estimates CI -
Lower 

CI - 
Upper 

BCI - 
Lower 

BCI - 
Upper 

CI 
Width 

BCI 
Width Asymmetry

ω  -0.156 -0.193 -0.120 -0.181 -0.121 0.073 0.061 0.011 
α  0.080 0.067 0.093 0.068 0.089 0.026 0.021 -0.003 
β  0.695 0.635 0.754 0.652 0.753 0.120 0.102 0.016 

 

CBA Estimates CI -
Lower 

CI - 
Upper 

BCI - 
Lower 

BCI - 
Upper 

CI 
Width 

BCI 
Width Asymmetry

ω  -0.161 -0.208 -0.113 -0.192 -0.133 0.095 0.060 -0.004 
α  0.091 0.076 0.106 0.081 0.103 0.031 0.022 0.001 
β  0.671 0.591 0.751 0.620 0.721 0.160 0.102 -0.001 

 

BHP Estimates CI -
Lower 

CI - 
Upper 

BCI - 
Lower 

BCI - 
Upper 

CI 
Width 

BCI 
Width Asymmetry

ω  -0.164 -0.219 -0.110 -0.204 -0.132 0.110 0.073 -0.007 
α  0.077 0.062 0.091 0.067 0.087 0.029 0.020 -0.000 
β  0.754 0.687 0.821 0.709 0.793 0.134 0.084 -0.006 

 

WPL Estimates CI -
Lower 

CI - 
Upper 

BCI - 
Lower 

BCI - 
Upper 

CI 
Width 

BCI 
Width Asymmetry

ω  -0.331 -0.472 -0.190 -0.414 -0.264 0.282 0.150 -0.017 
α  0.095 0.074 0.117 0.082 0.109 0.043 0.027 0.001 
β  0.546 0.379 0.714 0.453 0.632 0.334 0.179 -0.007 

 

CML Estimates CI -
Lower 

CI - 
Upper 

BCI - 
Lower 

BCI - 
Upper 

CI 
Width 

BCI 
Width Asymmetry

ω  -0.374 -0.498 -0.250 -0.495 -0.284 0.248 0.212 -0.030 
α  0.105 0.077 0.132 0.085 0.128 0.055 0.043 0.003 
β  0.471 0.320 0.622 0.317 0.597 0.302 0.280 -0.028 

 

WOW Estimates CI -
Lower 

CI - 
Upper 

BCI - 
Lower 

BCI - 
Upper 

CI 
Width 

BCI 
Width Asymmetry

ω  -0.247 -0.315 -0.179 -0.294 -0.198 0.136 0.096 0.002 
α  0.119 0.100 0.138 0.105 0.133 0.038 0.028 -0.000 
β  0.600 0.511 0.689 0.539 0.664 0.178 0.126 0.003 

 

TLS Estimates CI -
Lower 

CI - 
Upper 

BCI - 
Lower 

BCI - 
Upper 

CI 
Width 

BCI 
Width Asymmetry

ω  -0.352 -0.507 -0.197 -0.483 -0.250 0.311 0.233 -0.029 
α  0.129 0.096 0.163 0.104 0.158 0.067 0.054 0.003 
β  0.602 0.464 0.740 0.485 0.698 0.276 0.213 -0.020 

 

QAN Estimates CI -
Lower 

CI - 
Upper 

BCI - 
Lower 

BCI - 
Upper 

CI 
Width 

BCI 
Width Asymmetry

ω  -0.544 -0.695 -0.394 -0.791 -0.374 0.301 0.417 -0.076 
α  0.111 0.079 0.142 0.083 0.137 0.063 0.054 -0.002 
β  0.335 0.181 0.489 0.112 0.531 0.308 0.419 -0.027 
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Table 4b. Confidence Intervals of QMLE with Weibull Density 
 

ANZ Estimates CI -
Lower 

CI - 
Upper 

BCI - 
Lower 

BCI - 
Upper 

CI 
Width 

BCI 
Width Asymmetry

ω  -0.627 -0.759 -0.495 -0.244 -0.145 0.264 0.099 0.864 
α  0.066 0.054 0.079 0.058 0.083 0.024 0.026 0.008 
β  0.648 0.577 0.718 0.570 0.727 0.141 0.157 0.002 

 

CBA Estimates CI -
Lower 

CI - 
Upper 

BCI - 
Lower 

BCI - 
Upper 

CI 
Width 

BCI 
Width Asymmetry

ω  -0.607 -0.764 -0.449 -0.223 -0.150 0.315 0.073 0.841 
α  0.082 0.069 0.096 0.071 0.097 0.026 0.026 0.004 
β  0.643 0.557 0.729 0.576 0.700 0.172 0.124 -0.009 

 

BHP Estimates CI -
Lower 

CI - 
Upper 

BCI - 
Lower 

BCI - 
Upper 

CI 
Width 

BCI 
Width Asymmetry

ω  -0.821 -1.016 -0.626 -0.283 -0.189 0.390 0.094 1.169 
α  0.081 0.067 0.094 0.071 0.128 0.027 0.058 0.038 
β  0.675 0.602 0.748 0.613 0.730 0.145 0.117 -0.007 

 

WPL Estimates CI -
Lower 

CI - 
Upper 

BCI - 
Lower 

BCI - 
Upper 

CI 
Width 

BCI 
Width Asymmetry

ω  -1.242 -1.596 -0.888 -0.469 -0.293 0.708 0.176 1.721 
α  0.094 0.077 0.112 0.078 0.110 0.035 0.032 -0.000 
β  0.493 0.356 0.631 0.387 0.605 0.274 0.218 0.005 

 

CML Estimates CI -
Lower 

CI - 
Upper 

BCI - 
Lower 

BCI - 
Upper 

CI 
Width 

BCI 
Width Asymmetry

ω  -1.342 -1.706 -0.978 -0.596 -0.255 0.728 0.342 1.833 
α  0.082 0.058 0.107 0.059 0.107 0.049 0.048 0.001 
β  0.431 0.285 0.577 0.241 0.653 0.292 0.412 0.032 

 

WOW Estimates CI -
Lower 

CI - 
Upper 

BCI - 
Lower 

BCI - 
Upper 

CI 
Width 

BCI 
Width Asymmetry

ω  -0.935 -1.140 -0.731 -0.322 -0.223 0.409 0.100 1.326 
α  0.114 0.097 0.132 0.100 0.140 0.035 0.040 0.011 
β  0.574 0.488 0.660 0.505 0.641 0.172 0.136 -0.002 

 

TLS Estimates CI -
Lower 

CI - 
Upper 

BCI - 
Lower 

BCI - 
Upper 

CI 
Width 

BCI 
Width Asymmetry

ω  -1.569 -1.949 -1.188 -0.494 -0.296 0.761 0.197 2.347 
α  0.144 0.114 0.173 0.118 0.397 0.058 0.279 0.228 
β  0.547 0.440 0.655 0.321 0.637 0.216 0.315 -0.137 

 

QAN Estimates CI -
Lower 

CI - 
Upper 

BCI - 
Lower 

BCI - 
Upper 

CI 
Width 

BCI 
Width Asymmetry

ω  -1.777 -2.175 -1.379 -0.786 -0.301 0.795 0.485 2.468 
α  0.090 0.062 0.118 0.061 0.132 0.056 0.071 0.013 
β  0.340 0.203 0.477 0.093 0.628 0.274 0.536 0.041 
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Table 4c. Confidence Intervals of QMLE with Exponential Density 
 

ANZ Estimates CI -
Lower 

CI - 
Upper 

BCI - 
Lower 

BCI - 
Upper 

CI 
Width 

BCI 
Width Asymmetry

ω  0.265 -0.370 0.900 -0.337 -0.172 1.271 0.165 -1.039 
α  0.049 0.036 0.063 0.037 0.062 0.027 0.025 0.001 
β  0.588 0.506 0.669 0.450 0.708 0.163 0.258 -0.017 

 

CBA Estimates CI -
Lower 

CI - 
Upper 

BCI - 
Lower 

BCI - 
Upper 

CI 
Width 

BCI 
Width Asymmetry

ω  0.710 -0.555 1.974 -0.312 -0.189 2.529 0.123 -1.921 
α  0.068 0.057 0.079 0.058 0.079 0.022 0.021 0.001 
β  0.578 0.425 0.730 0.466 0.659 0.305 0.194 -0.031 

 

BHP Estimates CI -
Lower 

CI - 
Upper 

BCI - 
Lower 

BCI - 
Upper 

CI 
Width 

BCI 
Width Asymmetry

ω  1.422 0.551 2.294 -0.508 -0.302 1.743 0.206 -3.655 
α  0.073 0.060 0.086 0.061 0.087 0.026 0.026 0.002 
β  0.530 0.420 0.640 0.400 0.626 0.220 0.226 -0.034 

 

WPL Estimates CI -
Lower 

CI - 
Upper 

BCI - 
Lower 

BCI - 
Upper 

CI 
Width 

BCI 
Width Asymmetry

ω  -2.105 -4.236 0.026 -0.603 -0.357 4.262 0.246 3.249 
α  0.077 0.058 0.095 0.062 0.111 0.037 0.049 0.020 
β  0.383 0.219 0.548 0.270 0.551 0.329 0.281 0.054 

 

CML Estimates CI -
Lower 

CI - 
Upper 

BCI - 
Lower 

BCI - 
Upper 

CI 
Width 

BCI 
Width Asymmetry

ω  0.361 -0.308 1.031 -1.038 -0.198 1.340 0.839 -1.959 
α  0.050 0.027 0.074 0.029 0.071 0.047 0.041 -0.000 
β  0.348 0.198 0.498 -0.204 0.726 0.301 0.930 -0.174 

 

WOW Estimates CI -
Lower 

CI - 
Upper 

BCI - 
Lower 

BCI - 
Upper 

CI 
Width 

BCI 
Width Asymmetry

ω  -1.115 -27.188 24.958 -0.473 -0.306 52.1460 0.167 1.452 
α  0.100 -2.270 2.469 0.082 0.118 4.739 0.036 0.001 
β  0.451 -15.709 16.611 0.359 0.559 32.320 0.200 0.015 

 

TLS Estimates CI -
Lower 

CI - 
Upper 

BCI - 
Lower 

BCI - 
Upper 

CI 
Width 

BCI 
Width Asymmetry

ω  1.680 0.974 2.387 -0.601 -0.319 1.413 0.282 -4.281 
α  0.129 0.102 0.155 0.105 0.170 0.054 0.065 0.018 
β  0.553 0.441 0.666 0.406 0.638 0.226 0.231 -0.063 

 

QAN Estimates CI -
Lower 

CI - 
Upper 

BCI - 
Lower 

BCI - 
Upper 

CI 
Width 

BCI 
Width Asymmetry

ω  -0.674 -1.788 0.440 -1.078 -0.215 2.229 0.863 0.054 
α  0.057 0.033 0.080 0.023 0.094 0.047 0.071 0.004 
β  0.368 0.205 0.530 -0.153 0.738 0.325 0.892 -0.150 
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Table 4d. Confidence Intervals of QMLE with Normal Density 
 

ANZ Estimates CI -
Lower 

CI - 
Upper 

BCI - 
Lower 

BCI - 
Upper 

CI 
Width 

BCI 
Width Asymmetry

ω  -0.156 -0.194 -0.119 -0.192 -0.125 0.075 0.067 -0.004 
α  0.080 0.067 0.093 0.070 0.092 0.026 0.022 0.003 
β  0.695 0.633 0.756 0.638 0.745 0.122 0.107 -0.005 

 

CBA Estimates CI -
Lower 

CI - 
Upper 

BCI - 
Lower 

BCI - 
Upper 

CI 
Width 

BCI 
Width Asymmetry

ω  -0.161 -0.208 -0.113 -0.190 -0.129 0.094 0.061 0.003 
α  0.091 0.076 0.106 0.080 0.104 0.030 0.024 0.002 
β  0.671 0.592 0.750 0.624 0.727 0.158 0.103 0.010 

 

BHP Estimates CI -
Lower 

CI - 
Upper 

BCI - 
Lower 

BCI - 
Upper 

CI 
Width 

BCI 
Width Asymmetry

ω  -0.164 -0.216 -0.113 -0.203 -0.130 0.103 0.073 -0.004 
α  0.077 0.062 0.091 0.065 0.088 0.029 0.022 -0.000 
β  0.754 0.691 0.818 0.710 0.797 0.128 0.087 -0.002 

 

WPL Estimates CI -
Lower 

CI - 
Upper 

BCI - 
Lower 

BCI - 
Upper 

CI 
Width 

BCI 
Width Asymmetry

ω  -0.331 -0.471 -0.190 -0.404 -0.256 0.281 0.148 0.002 
α  0.095 0.074 0.116 0.081 0.111 0.042 0.030 0.002 
β  0.546 0.380 0.712 0.459 0.633 0.332 0.174 -0.000 

 

CML Estimates CI -
Lower 

CI - 
Upper 

BCI - 
Lower 

BCI - 
Upper 

CI 
Width 

BCI 
Width Asymmetry

ω  -0.374 -0.500 -0.249 -0.495 -0.273 0.251 0.221 -0.019 
α  0.105 0.077 0.132 0.085 0.127 0.055 0.043 0.003 
β  0.471 0.321 0.622 0.326 0.593 0.301 0.267 -0.024 

 

WOW Estimates CI -
Lower 

CI - 
Upper 

BCI - 
Lower 

BCI - 
Upper 

CI 
Width 

BCI 
Width Asymmetry

ω  -0.247 -0.314 -0.179 -0.295 -0.201 0.135 0.095 -0.003 
α  0.119 0.101 0.138 0.106 0.133 0.037 0.027 -0.000 
β  0.600 0.512 0.688 0.541 0.661 0.175 0.120 0.002 

 

TLS Estimates CI -
Lower 

CI - 
Upper 

BCI - 
Lower 

BCI - 
Upper 

CI 
Width 

BCI 
Width Asymmetry

ω  -0.352 -0.507 -0.197 -0.488 -0.236 0.310 0.252 -0.020 
α  0.129 0.095 0.164 0.100 0.157 0.068 0.057 -0.002 
β  0.602 0.463 0.741 0.497 0.700 0.278 0.203 -0.007 

 

QAN Estimates CI -
Lower 

CI - 
Upper 

BCI - 
Lower 

BCI - 
Upper 

CI 
Width 

BCI 
Width Asymmetry

ω  -0.544 -0.702 -0.387 -0.784 -0.318 0.316 0.466 -0.013 
α  0.111 0.077 0.144 0.082 0.137 0.067 0.055 -0.002 
β  0.335 0.173 0.496 0.081 0.561 0.323 0.479 -0.027 
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