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Abstract 

In order to investigate the influence of water vapor pressure in surrounding environment on mode I fracture 

toughness (KIC) of rocks, Semi-Circular Bend (SCB) tests under various water vapor pressures were conducted. The 

water vapor is the most effective agent which promotes stress corrosion of rocks. The range of the water vapor 

pressure used in this test was 10
-2
 to 10

3
 Pa. Two kinds of an anisotropic rock, African granodiorite and Korean 

granite were used. Measurement of elastic wave velocity and observation of thin sections of these rocks were 

performed to investigate the micro structures of the rocks. It was found that the distribution of inherent micro cracks 

and grains have a preferred orientation. Two types of specimens in different orientations, namely Type-1 and Type-3 

were prepared based on the anisotropy identified by the differences of the elastic wave velocity. KIC of both the rocks 

is dependent on the water vapor pressure in the surrounding environment and decreases with increasing the water 

vapor pressure. It was found that the degree of the dependence is influenced by the orientation and density of 

inherent micro cracks. The experimental results also show that KIC depends on the material anisotropy. A fracture 

process was discussed on the basis of the geometry of fractures within fractured specimens visualized by X-ray CT 

method. It was concluded that the dominant factor causing the anisotropy of KIC is the distribution of grains rather 

than inherent micro cracks in these rocks. 
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1. Introduction 

 

Fracture for brittle materials is resulted through crack initiation and propagation, namely the fracture process. 

Crack initiation takes place when stress intensity factor K at a micro crack tip reaches a critical value, so-called the 

fracture toughness KC. After the initiation, the fracture propagates and connects to other fractures, and finally the 

material reaches failure. The fracture toughness is one of the mechanical properties indicating resistance to crack 

initiation. It has been applied as (a) a parameter for classification of rock materials, (b) an index for rock 

fragmentation and (c) a material property in interpretation of geological features and in stability analysis of rock 

structures, as well as in modeling of fracturing of rocks (Whittaker et al. 1992). Estimation of the fracture toughness 

is important to understand brittle fracture behavior of rocks. 

The fracture toughness of rocks is known to be affected by the surrounding environment. Many experiments 

have been conducted under various surrounding conditions, such as temperature, humidity, confining pressure 

(Meredith and Atkinson 1985; Al-shayea et al. 2000; Al-shayea 2002; Funatsu et al. 2004; Obara et al. 2006; Obara 

et al. 2007; Kataoka et al. 2011; Kataoka et al. 2012). Among these conditions, Obara et al. (2006; 2007) have 

focused on the effect of water vapor on the fracture toughness of rocks determined using Semi-Circular Bend (SCB) 

tests (Chong and Kuruppu 1984; Kuruppu et al. 2014) under various water vapor pressures. It was found that the 

fracture toughness of andesite and basalt is dependent on the water vapor pressure and decreases with increasing the 

water vapor pressure. This tendency is also shown in uniaxial compressive strength and tensile strength of rocks. 

Jeong et al. (2007) and Kataoka et al. (2013) concluded that this phenomenon occurred due to stress corrosion of 

rocks promoted by the water vapor in the surrounding environment. The stress corrosion is a chemical reaction 

activated by stress concentration at a micro crack tip (Freiman 1984; Atkinson 1987). Therefore it can be considered 

that the stress corrosion of rocks is affected by micro structure characteristics of rocks, such as density and orientation 

of inherent micro cracks, and kinds, size and distribution of mineral grains. 

It is also considered that these micro structures induce anisotropy on physical properties of rocks. For example, 

crystalline rocks such as granite have anisotropic properties causing differences in elastic wave velocity, uniaxial 

compressive strength, tensile strength and fracture toughness in different directions (Lee et al. 2001; Nasseri 2008). 

The anisotropy can be attributed to the existence of preferred orientations of micro crack distribution (Schedl et al. 

1986). As the micro crack distribution that supports microscopic crack initiation is influenced by the micro structure 

of rock, the fracture toughness seems to be affected by the micro structures. Accordingly, the influence of the micro 

structures on the anisotropy of the fracture toughness should be investigated. 

Several tests were proposed to estimate mode I fracture toughness of rocks, namely Chevron Bend (CB) test 

(Ouchterlony 1980; ISRM Testing Commission 1988), Single Edge Cracked Round Bar in Bending test 

(Ouchterlony 1981), Short Rod (SR) test (Barker 1977; ISRM 1988), Central Straight Through Brazilian Disk test 

(Atkinson et al. 1982), Cracked Chevron Notched Brazilian Disk (CCNBD) test (Fowell and Chen 1990; ISRM 

1995), SCB test and Straight Notched Disk Bending test (Tutluoglu and Keles 2011). The International Society for 

Rock Mechanics (ISRM) (1988; 1995) suggested CB, SR and CCNBD tests for the determination of static fracture 

toughness of rocks. SCB test has been added to the suggested method in 2014 (Kuruppu et al. 2014). 

In this research, fracture toughness of two kinds of anisotropic rocks, African granodiorite (AG) (Kataoka et al. 

2011; Kataoka et al. 2012) and Korean granite (KG) (Kataoka et al. 2012), was determined under various water 

vapor pressures and its dependence on the water vapor pressure of the surrounding environment was investigated. 
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SCB test was chosen to estimate the fracture toughness of the rocks for its simplicity of specimen preparation, 

equipment and testing procedure. Detailed observation of fractures within fractured specimens was performed after 

the SCB tests. The fracture process was discussed and the influence of the micro structure of the rock on the 

anisotropy of the fracture toughness examined. 

 

 

2. Semi-Circular Bend (SCB) test 

 

2.1 Outline 

The geometry of SCB specimen is shown in Fig. 1. This test was developed by Chong and Kuruppu (1984). The 

specimen is a typical core-based and required very little machining. In particular, its compact shape required by 

cutting a core and duplicating a disc is suitable for investigation of the effect of various parameters such as strain rate, 

moisture content and temperature on the fracture toughness of rocks (Karfakis 1986). Mode I fracture toughness KIC 

is estimated using a following equation (Kuruppu et al. 2014), 

max
IC I

2

P a
K Y

rt


  ,      

 (1) 

where a, r and t are an artificial notch length, radius and thickness of the specimen, respectively. Pmax is a maximum 

load. The normalized stress intensity factor YI is dimensionless and given as a function of a dimensionless notch 

length a/r and a half of support span to radius ratio s/r (Kuruppu et al. 2014).  

 

2.2 Experimental method 

Setup of the specimen for the SCB test using a loading apparatus is shown in Fig. 2 (a). The specimen was 

placed on two lower support rollers with the support span width 2s shown in Fig. 1. The value of s/r is 0.8 in these 

tests. Load was applied through one upper and two lower rollers. A loading bar with a load cell can move up and 

down vertically aided by guide rods. 

Fig. 2 (b) shows a vacuum chamber used to control the surrounding environment of the specimen. The chamber, 

which is made of SUS304 steel, has upper and lower flanges, ports and a valve for injection of gases or vapors. One 

of the ports was used to lead output from the load cell. Another two ports were used to measure the water vapor 

pressure in the chamber by two types of pressure gauges and one port with a valve was connected to an evacuation 

system as described below. 

The specimen was placed inside the vacuum chamber as shown in Fig. 2 (b) and the chamber was placed at a 

MTS servo-controlled testing machine with a capacity of 100 kN as shown in the bottom right of Fig. 2. The 

chamber has flanges with a loading rod and the specimen was loaded by pressing down the upper flange using the 

testing machine. The load application was controlled by a constant displacement rate of 0.01 mm/min. The flanges of 

the chamber are supported by two steel columns with springs as shown in Fig. 2 (b). These springs prevent any load 

application on the specimen while the surrounding environment was controlled by a process mentioned below. The 

load was recorded using the load cell with a capacity of 10 kN equipped at the loading bar shown in Fig. 2 (a). The 

displacement at the upper loading point was measured using a transducer of the testing machine. 
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It is necessary that the air in the chamber was exhausted and that various quantities of water vapor were provided. 

The chamber is linked to the evacuation system through a flexible tube as shown in Fig. 2 (c) during the test. It 

consists of two vacuum pumps: a rotary pump and a turbo molecular pump. The water vapor pressure in the 

chamber was measured using two pressure gauges as shown in Fig. 2 (b), namely Pirani pressure gauge with a 

measurement range of 10
-1
 to 10

5
 Pa and Penning pressure gauge with the range of 10

-6
 to 10

0
 Pa. Fig. 3 shows the 

change of the pressure in the chamber before and during the loading. At first, the air in the chamber was exhausted 

using two pumps until the pressure declined to lower than 10
-2
 Pa. Then the distilled water was injected through the 

injection valve to a pressure of about 10
3
 Pa. As a result, the pressure in the chamber became the saturated water 

vapor pressure at the room temperature and the chamber was filled with only water vapor. It is considered that the air 

in the chamber was fully changed to the new environment, namely the water vapor environment. Finally the water 

vapor in the chamber was exhausted again to a required pressure using the evacuation system. Having the required 

water vapor pressure maintained for about six hours, the SCB test was carried out. 

 

 

3. Specimen 

 

African granodiorite (AG) and Korean granite (KG) were used as test materials in this research. 

 

3.1 Preparation of specimens 

The rock blocks shown in Fig. 4 were measured for elastic wave velocity vp in three normal directions. Table 1 

shows the results of the measurement and three directions were defined as Axis-1, Axis-2 and Axis-3 in order of 

decreasing vp. Planes perpendicular to each axis were also defined as Plane-1, Plane-2 and Plane-3 as shown in Fig. 5. 

As the results, vp in the direction of Axis-1 is higher than that in the other two directions. The direction of higher vp 

has lower resistance to the elastic wave propagation. Therefore many of the inherent micro cracks may be oriented to 

Axis-1 and Axis-2 as shown in Fig. 5. 

A rock core with a diameter of 75 mm was drilled to the direction of Axis-2 of the blocks as shown in Fig. 6. 

Then the core was sliced into disks with a thickness of approximately 20 mm and each disk was cut into halves to 

form two semi-circular specimens. Finally an artificial notch was produced using a diamond blade with a thickness 

of 0.4 mm. The length of the notch is given by a/r = 0.5 where a and r are defined in Fig. 1. The corresponding value 

of YI in Eq. (1) is approximately 6.65. In this paper, two types of specimen were prepared, Type-1 and Type-3 as 

shown in Fig. 6. The number of the type name represents the direction of the artificial notch and the loading during 

the test. 

The water within specimens should be removed to investigate the influence of the water vapor pressure on the 

fracture toughness of the rocks. In order to achieve complete dry condition of the specimens, they were kept in an 

electric drying oven at 100 
o
C for more than 30 days before the tests. 

 

3.2 Investigation of micro structures 

In order to investigate the micro structures of rocks, observation of thin sections was performed using a 

polarization microscope. The thin sections were prepared from three planes: Plane-1, Plane-2 and Plane-3. Fig. 7 

shows micrographs of the thin sections of both rocks in Plane-2. Mineral grains of plagioclase, amphibole and biotite, 
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and quartz, alkali feldspar and biotite are observed in AG and KG, respectively. 

In order to measure the distribution of micro cracks in each plane, their density in a particular direction, namely 

the number per unit area, is drawn in a rose diagram sequentially at intervals of 20 degrees as shown in Fig. 8. Many 

micro cracks are oriented to the direction of Axis-1 and Axis-2 for AG as the micro crack density in these directions 

is higher. The tendency of the results is the same as that of the estimation by the elastic wave velocity measurement 

described in Section 3.1. The micro crack density in KG also varies in different principal directions, namely the 

density of micro cracks aligned in the direction of Axis-1 and Axis-2 is higher than that of Axis-3. In addition, the 

micro crack density in KG is lower than that in AG on the whole and almost the same as the density of micro cracks 

oriented to the direction of Axis-3 in AG (the direction of lower micro crack density). 

Intercept method (ASTM 2010) was used to estimate an average grain diameter d in three directions. This 

method consists of drawing a line on the micrographs and counting the number of grains intercepted by the line. The 

length of the line divided by the number of the intercepted grains gives the average grain diameter d. It was applied 

to each plane and each direction of axes. The results are shown in Table 2. Result for AG reveal that d in the direction 

of Axis-3 is larger than those in Plane-1 and Plane-2, and that d in Axis-1 and Axis-2 directions is almost the same in 

Plane-3. While KG has smaller differences of d in various directions than AG, d in the direction of Axis-3 tends to be 

larger. It shows that the long axes of grains are oriented to the direction of Axis-3. Therefore the geometry of grain 

boundaries in the direction of Axis-3 is straighter than that of Axis-1. In addition, d of AG is larger than that of KG. 

 

 

4. Results 

 

The SCB test results and the conditions under which they were performed for both rocks are summarized in 

Tables 3 and 4. A series of tests was performed using 11 and 14 specimens for Type-1 and Type-3 of African 

granodiorite (AG), and 17 and 15 specimens for Type-1 and Type-3 of Korean granite (KG), respectively. The range 

of the water vapor pressure p in these tests was from 1.0 × 10
-2
 to 7.7 × 10

2
 Pa. The fracture toughness KIC is 

estimated from the maximum load Pmax using Eq. (1) described in Section 2. 

Fig. 9 shows examples of load-displacement curves. In these figures, the curves of both types are in the same 

graph and that of Type-3 is translated 0.1 mm in positive directions of horizontal axis. These curves are downward 

convex at a low load level and linear until a specimen fractured at Pmax. 

In order to investigate the initiation of the fracture, a SCB test was performed at atmospheric condition with 

Acoustic Emission (AE) monitoring. A specimen of AG Type-3 was used for this test. An AE sensor was attached to 

a side surface of the specimen. The AE signals were amplified by 40 dB and recorded by a computer with 

appropriate software (AEwin manufactured by Physical Acoustics Corporation). A threshold of 45 dB was selected 

and a band pass filter with a range of 100 kHz to 2 MHz was used. The load and AE event rate during the test are 

shown in Fig. 10 (a) and (b). In Fig. 10 (b), the load and displacement are normalized by the maximum load Pmax and 

a displacement at Pmax, respectively and drawn on a magnified scale, showing grey areas in Fig. 10 (a). The AE 

events are rarely recorded until the load at 97.5 % of Pmax and the AE rate rises rapidly after the load leaches Pmax. 

This result shows that the fracture initiates near Pmax and propagates rapidly just after the initiation. Therefore Pmax 

indicates the loading condition at the fracture initiation and can be used for the estimation of KIC as the critical value 

of stress intensity factor KI in the SCB test. 
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The relation between the fracture toughness KIC and the water vapor pressure p is shown in Fig. 11 (refer to 

Tables 3 and 4). KIC of both the rocks and of the two types investigated in each was plotted against the water vapor 

pressure p on the logarithmic graph and shown to decrease with increasing p. Lines drawn using least square 

approximation are also shown in this figure. The equation of the line is represented as: 

IC

mK p  ,        (2) 

where  is a constant and indicates KIC at p = 1 Pa on this line. m is a slope of the line on the logarithmic graph and 

indicates the degree of the dependence of p on KIC. These values are summarized in Table 5. The m value of AG 

Type-1 is higher than the others. Therefore the influence of p on KIC for AG Type-1 is the strongest. 

Results further show that the two rocks exhibit anisotropy of KIC in varying degrees. While many micro cracks 

are oriented in the direction of Axis-1, KIC of Type-1 is higher than that of Type-3 at the same pressure for the both 

rocks. It is well known that preferentially oriented micro cracks result in lower mechanical strength in that direction 

for rocks. The lower KIC direction expected based on this knowledge (Axis-1) does not agree with the results that 

gives lower value for Type-3 where many micro cracks are aligned with Axis-1. 

 

 

5. Discussion 

 

5.1 Dependence of fracture toughness on water vapor pressure 

The fracture toughness KIC is dependent on the water vapor pressure p and decreases with increasing p for both 

rocks. This tendency is the same as KIC of two kinds of volcanic rock, Kumamoto andesite and Kunnum basalt 

(Obara et al. 2006; Obara et al. 2007). The decrease of KIC is due to stress corrosion promoted by water vapor in the 

surrounding environment. It is concluded that KIC of rocks is influenced by the stress corrosion. 

The m value, the degree of the dependence of p on KIC, of African granodiorite (AG) Type-1 is higher than the 

others as shown in Table 5. As given in Section 3 and shown in Fig. 8 (AG), the micro crack density in the direction 

of Axis-1 is higher than that of Axis-3 for AG. Micro cracks aligned in a preferential direction give rise to planes of 

weakness in rocks. The effect of stress corrosion cracking on such planes can be more severe and the resistance to 

the fracture initiation decreases gradually with increasing the water vapor pressure p. Therefore the m value of 

Type-1 is higher than that of Type-3 for AG. On the other hand, the m values of Type-1 and Type-3 are almost the 

same for Korean granite (KG). This rock has lower micro crack density than AG as shown in Fig. 8 and smaller 

differences in directions. In addition, the micro crack density of KG is almost the same as that of AG in the direction 

of Axis-3. Therefore the m values of KG Type-1 and Type-3, and AG Type-3 are similar to each other. It is found that 

the m value is dependent on the orientation and the density of micro cracks and that the degree of stress corrosion has 

sensitivity to the micro crack distribution. 

 

5.2 Anisotropy of fracture toughness 

The rocks used in these tests exhibit anisotropy of the fracture toughness KIC. The KIC of Type-1 is higher than 

that of Type-3 at the same water vapor pressure p. The fracture initiates at the maximum load Pmax and propagates 

after reaching Pmax as described in Section 4. It means that KIC corresponds to the point of fracture initiation 

occurring at the artificial notch tip. Therefore the fracture geometry observed near the artificial notch tip may be 
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considered and related to the fracture initiation of rock. 

Following the SCB test, fractured specimens of AG Type-1 and Type-3 were scanned to visualize fractures 

within the specimens by micro-focus X-ray CT (Mukunoki 2013). The gray-level CT images of both types of 

specimens are shown in Fig. 12. The CT images were obtained as cross sections located at (a) 1.0 mm, (b) 0.5 mm 

and (c) 0.1 mm distance from the artificial notch tip and parallel to the notch front as shown at the bottom of Fig. 12. 

The images of Type-1 and Type-3 correspond to those taken in Plane-1 and Plane-3, respectively. In CT images, the 

dark region shows the area of low density, while the region of relatively light color shows that of high density. The 

black lines in these images show the gaps, namely the fractures. Traces of the fractures are also shown in this figure. 

Grain distributions are also observed in the CT images identified by the difference of density of each mineral. It is 

found that some parts of the fractures within Type-1 avoid going across grains with higher density and therefore the 

fractures are winding. On the other hand, the geometry of the fractures within Type-3 is straighter than that within 

Type-1. 

As described in Section 3, the average grain diameter d in the direction of Axis-3 is larger. It means that the 

geometry of grain boundaries in the direction of Axis-3 is straighter than the others for AG. In the CT images of 

Type-1 as shown in the left of Fig. 12 (Plane-1), the fractures are oriented in the direction of Axis-2, namely 

perpendicular to straighter grain boundaries (Axis-3). These fractures are more winding than those within Type-3 

shown in the right of this figure (Plane-3). From this observation of the fracture geometry, it can be found that the 

fracture tends to initiate along grain boundaries and avoid going through higher density grains, that is, the resistance 

to the fracture initiation across higher density grains is higher than if the fractures were to propagate along grain 

boundaries. Therefore the fracture toughness KIC has anisotropic properties and KIC of Type-1 is higher than that of 

Type-3 for AG. It is concluded that KIC is remarkably dependent on the distribution and orientation of grains rather 

than that of micro cracks in this rock. 

The fracture geometry observed on side surfaces of all fractured specimens was also considered. Figs. 13 and 14 

show traces of the fractures. They were obtained by tracing the fractures on the photographs of the specimens. The 

fracture traces of both side surfaces are superposed in these figures. Dashed lines which are aligned with the 

directions of artificial notches are also shown. Angles of the fractures from 0 mm to 5 mm distance from the notch 

tips that make with the lines were measured. Table 6 shows the results of the measurement. The average fracture 

angle and the standard deviation of Type-1 are larger than those of Type-3 for both rocks. 

The fractures can be expected to propagate in the direction of the artificial notch. According to the results, smaller 

fracture angle of Type-3 shows that many of the fractures propagate roughly in the expected direction, namely along 

the dashed line. On the other hand, the fracture angle of Type-1 is larger as the fractures propagate away from the 

dashed line more than that in Type-3. This fracture geometry may be conducive to the existence of greater resistance 

to fracture propagation in the direction of the artificial notch (Axis-1). As described in Section 3, the average grain 

size in the direction of Axis-3 is larger than that of Axis-1 and the fractures hardly propagate across grains resulting 

in increase of fracture resistance. In the case of Type-3, the fracture propagation is along the lengthwise direction of 

the grains (Axis-3) and experiences lower resistance than in Type-1. Therefore KIC of Type-1 is higher than that of 

Type-3 because the Type-1 fracture needs more energy to initiate and propagate. This also supports the conclusion 

that KIC is dependent on the grain orientation in the rocks used in these tests. 

In order to confirm the discussion described above, KIC in micro scale should be estimated. It is useful to develop 

a new laboratory test which can estimate KIC of mineral grains and grain boundaries, namely microscopic KIC 
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(Kataoka et al. 2014). In addition, numerical simulations of the fracture process are also needed along with the 

estimated microscopic KIC in order to investigate the influence of micro structures on the macroscopic KIC of rocks. 

 

 

6. Conclusions 

 

The fracture toughness of the crystalline rocks and the environment sensitivity to water vapor were investigated. 

Firstly the measurement of elastic wave velocity and the observation of thin sections were performed in the two 

kinds of anisotropic rocks, African granodiorite and Korean granite. Then a series of SCB tests were performed 

under various water vapor pressures to investigate the influence of the water vapor pressure on the fracture toughness 

of them. Furthermore, the fracture within the fractured specimen was observed using X-ray CT method following 

the SCB test. Finally the influence of micro structures on the anisotropy of the fracture toughness was discussed on 

the basis of the geometry of the observed fractures. The results are summarized as follows: 

1)  The preferred orientation of the inherent micro crack and grain distributions can be estimated by the 

measurement of elastic wave velocity and the observation of the thin sections of the rocks. 

2)  The fracture toughness KIC of both the rocks is dependent on the water vapor pressure p and decreases with 

increasing p. The relation between KIC and p is represented as: 

IC

mK p  , 

where m indicates the degree of the dependence of p on KIC. 

3)  The decrease of KIC occurred due to stress corrosion promoted by water vapor in the surrounding environment. 

4)  The m value is dependent on the orientation and density of inherent micro cracks. 

5)  The rock properties of elastic wave velocity and fracture toughness displayed anisotropy. 

6)  On the basis of the fracture geometry visualized by X-ray CT method, it was suggested that KIC is dependent on 

the micro structure of each material. The grain distribution induces anisotropy of KIC in the rocks tested. 
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Fig. 1 Semi-Circular Bend (SCB) specimen and loading configuration 
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Fig. 2 Testing system: a Setup of specimen with loading apparatus placed inside the vacuum chamber, b Vacuum 

chamber used to control surrounding environment of specimen, and c Evacuation system consisting of rotary pump 

and turbo molecular pump (Kataoka and Obara 2013) 

  

    

Turbo molecular pump 

Rotary pump 

Vacuum chamber 

Loading rod 

Flange 
Spring 

Steel column Specimen 

  

Servo-controlled testing 

machine 

  

    

Roller 
Guide rod 

Load cell Loading bar 

Specimen 

Roller 

Pirani gauge 

Penning gauge 

(c) Evacuation System 

(b) Vacuum Chamber 

(a) Setup of Specimen 



4 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Change of pressure in the chamber before and during the loading (Kataoka and Obara 2013) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4 Blocks of: AG African granodiorite and KG Korean granite 
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Fig. 5 Definition of axes and planes of rock block and schematic of inherent micro crack distribution 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Schematic of preparation process for obtaining two types of specimens 
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Fig. 7 Micrographs of thin sections (crossed niclos) in Plane-2 for: AG African granodiorite and KG Korean granite 

(Kataoka and Obara 2013) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8 Micro crack density in Rose diagram for: AG African granodiorite and KG Korean granite 
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Fig. 9 Load-displacement curves of: AG African granodiorite and KG Korean granite 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10 SCB test results of African granodiorite with AE monitoring: a Load and AE event rate vs. displacement, and 

b AE event rate and normalized load vs. normalized displacement. The load and the displacement shown in dark and 

light grey areas in Fig. 10 a are given in Fig. 10 b using normalized scales along with the AE event rate 
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Fig. 11 Relation between fracture toughness and water vapor pressure 

 

  

0.7

0.8

0.9
1

2

3

4

10
-2

10
-1

10
0

10
1

10
2

10
3

F
ra

ct
u

re
 t

o
u

g
h

n
es

s 
K

IC
, 

M
N

/m
3
/2

Water vapor pressure p, Pa

African granodiorite 

Korean granite 

Type-1 

Type-1 

Type-3 

Type-3 



9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12 CT scanned images of fractured specimens of African granodiorite obtained at: a 1.0 mm, b 0.5 mm, and c 

0.1 mm distance from the artificial notch tip. Note that the width of each image is equal to the thickness of the 

specimen 
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Fig. 13 Traces of fractures observed on specimen surfaces of African granodiorite: a Type-1 and b Type-3 
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Fig. 14 Traces of fractures observed on specimen surfaces of Korean granite: a Type-1 and b Type-3 
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Table 1 Elastic wave velocity in the directions of defined axes 

 
Elastic wave velocity vp (m/s) 

 Axis-1 Axis-2 Axis-3 

African granodiorite 6760 6580 6540 

Korean granite 3990 3850 3640 

 

 

 

Table 2 Average grain diameters of: AG African granodiorite and KG Korean granite (Kataoka and Obara 2013) 

(AG) African granodiorite 

Plane Direction Average grain diameter Aspect ratio 

    d (mm)   

Plane-1 
Axis-2 0.57 

1.5 
Axis-3 0.84 

Plane-2 
Axis-1 0.62 

1.3 
Axis-3 0.80 

Plane-3 
Axis-1 0.79 

1.1 
Axis-2 0.88 

(KG) Korean granite 

Plane Direction Average grain diameter Aspect ratio 

    d (mm)   

Plane-1 
Axis-2 0.66 

1.2 
Axis-3 0.76 

Plane-2 
Axis-1 0.69 

1.0 
Axis-3 0.68 

Plane-3 
Axis-1 0.73 

1.2 
Axis-2 0.63 
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Table 3 Results of SCB tests for African granodiorite: a Type-1 and b Type-3 (Kataoka and Obara 2013) 

(a) Type-1 

No. p (Pa) r (mm) t (mm) a (mm) YI Pmax (kN) KIC (MN/m3/2) 

1 4.2 x 10-1 36.7 20.3 17.9 6.63 2.31 2.44 

2 7.2 x 10-1 35.2 21.6 16.3 6.60 2.52 2.48 

3 8.5 x 10-1 36.6 20.2 18.1 6.75 2.22 2.42 

4 5.4 x 100 37.1 20.2 18.5 6.71 2.23 2.42 

5 8.7 x 100 36.3 17.8 17.5 6.65 1.96 2.37 

6 1.6 x 101 36.4 19.9 17.9 6.71 1.80 1.97 

7 3.3 x 101 36.3 21.5 17.6 6.65 2.32 2.32 

8 6.9 x 101 36.4 20.3 17.8 6.68 1.98 2.11 

9 8.7 x 101 35.2 19.0 16.4 6.65 1.97 2.23 

10 2.0 x 102 35.4 20.1 16.9 6.73 1.89 2.06 

11 3.8 x 102 36.3 19.0 17.6 6.66 1.73 1.97 

(b) Type-3 

No. p (Pa) r (mm) t (mm) a (mm) YI Pmax (N) KIC (MN/m3/2) 

1 8.4 x 10-2 36.2 20.1 17.5 6.68 1.79 1.93 

2 2.4 x 10-1 35.6 17.2 17.2 6.76 1.52 1.95 

3 5.2 x 10-1 36.3 20.1 17.6 6.68 1.62 1.75 

4 8.6 x 10-1 36.7 18.9 18.3 6.75 1.59 1.85 

5 1.1 x 100 36.4 19.6 17.9 6.71 1.82 2.03 

6 2.5 x 100 36.1 19.7 17.3 6.63 1.71 1.86 

7 4.7 x 100 35.7 18.7 16.6 6.55 1.71 1.92 

8 1.5 x 101 36.1 21.2 17.6 6.73 1.75 1.81 

9 3.5 x 101 35.8 17.1 17.1 6.65 1.28 1.62 

10 4.8 x 101 36.4 19.6 17.6 6.65 1.76 1.94 

11 9.3 x 101 35.8 19.9 17.0 6.63 1.66 1.79 

12 1.4 x 102 36.1 19.9 17.6 6.73 1.51 1.66 

13 4.2 x 102 36.8 18.9 17.7 6.53 1.67 1.85 

14 7.7 x 102 35.7 19.0 16.8 6.61 1.61 1.81 

p Water vapor pressure, r Radius of specimen, t Thickness of specimen, a Artificial notch length of specimen, YI 

Normalized stress intensity factor, Pmax Maximum load, KIC Fracture toughness 
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Table 4 Results of SCB tests for Korean granite: a Type-1 and b Type-3 (Kataoka and Obara 2013) 

(a) Type-1 

No. p (Pa) r (mm) t (mm) a (mm) YI Pmax (N) KIC (MN/m3/2) 

1 1.0 x 10-2 37.5 19.6 18.6 6.58 1.18 1.28 

2 2.1 x 10-2 37.5 20.2 18.7 6.63 1.26 1.33 

3 3.3 x 10-2 37.5 20.7 18.9 6.69 1.33 1.40 

4 4.5 x 10-2 37.5 20.6 18.7 6.64 1.26 1.31 

5 1.8 x 10-1 37.5 21.4 18.8 6.66 1.36 1.37 

6 4.5 x 10-1 37.5 21.3 18.7 6.61 1.36 1.36 

7 1.1 x 100 37.5 19.6 18.6 6.60 1.26 1.36 

8 3.2 x 100 37.5 20.4 18.8 6.66 1.23 1.30 

9 4.8 x 100 37.5 20.8 19.0 6.72 1.25 1.31 

10 1.2 x 101 37.5 18.8 18.8 6.65 1.26 1.44 

11 1.4 x 101 37.5 20.7 18.9 6.70 1.30 1.37 

12 2.0 x 101 37.5 20.1 18.8 6.66 1.24 1.34 

13 8.7 x 101 37.5 20.7 18.7 6.63 1.27 1.32 

14 1.3 x 102 37.5 21.3 18.4 6.54 1.11 1.09 

15 2.6 x 102 37.5 20.0 19.0 6.71 1.06 1.16 

16 4.1 x 102 37.5 20.7 18.9 6.69 1.24 1.31 

17 5.8 x 102 37.5 18.8 18.9 6.69 0.92 1.06 

(b) Type-3 

No. p (Pa) r (mm) t (mm) a (mm) YI Pmax (N) KIC (MN/m3/2) 

1 1.1 x 10-2 37.5 21.3 18.3 6.51 1.22 1.20 

2 3.2 x 10-2 37.5 21.3 18.0 6.41 1.18 1.13 

3 8.5 x 10-2 37.5 19.8 18.8 6.66 1.03 1.13 

4 1.9 x 10-1 37.5 21.2 18.8 6.67 1.17 1.19 

5 4.6 x 10-1 37.5 19.9 18.7 6.61 1.13 1.21 

6 1.0 x 100 37.5 19.8 18.9 6.69 1.09 1.19 

7 3.5 x 100 37.5 19.1 18.7 6.62 0.91 1.02 

8 5.8 x 100 37.5 21.3 19.2 6.78 1.07 1.11 

9 1.9 x 101 37.5 20.2 18.9 6.70 0.98 1.06 

10 4.4 x 101 37.5 21.4 18.8 6.65 0.98 0.98 

11 8.1 x 101 37.5 19.3 18.7 6.63 1.05 1.16 

12 9.9 x 101 37.5 19.4 18.7 6.63 1.00 1.11 

13 1.7 x 102 37.5 21.3 18.5 6.56 1.15 1.14 

14 4.9 x 102 37.5 21.6 18.6 6.60 1.00 0.98 

15 6.3 x 102 37.5 21.3 18.8 6.65 1.10 1.11 



5 

 

p Water vapor pressure, r Radius of specimen, t Thickness of specimen, a Artificial notch length of specimen, YI 

Normalized stress intensity factor, Pmax Maximum load, KIC Fracture toughness 

 

 

 

Table 5 Parameters of lines shown in Fig 11 (refer to Eq. 2) 

 
Type  m 

African 

granodiorite 

1 2.43 0.0301 

3 1.88 0.0102 

Korean 

granite 

1 1.32 0.0119 

3 1.13 0.0098 

 

 

 

Table 6 Fracture angles: Angle of fracture making with dashed line as shown in Figs. 13 and 14 

  
  Average + Standard deviation 

Type (degrees) 

African 

granodiorite 

1 9.7 + 6.3 

3 6.4 + 4.7 

Korean granite 
1 11.7 + 5.0 

3 7.7 + 4.3 

 

 

 


