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Abstract Palaemonetes australis is a euryhaline shrimp found in south-western Australian estuaries. To 12 

determine if P. australis is a suitable bioindicator species for monitoring the health of estuarine biota, they 13 

were exposed to measured concentrations of the polycyclic aromatic hydrocarbon, benzo[a]pyrene (B[a]P) at 14 

0.01, 0.1 or 1 ppm for 14 days under laboratory conditions. At the end of exposure the shrimp were sacrificed 15 

for biomarker [ethoxycoumarin O-deethylase (ECOD), 8-oxo-dG concentration, and sorbitol dehydrogenase 16 

(SDH) activity] analyses. Gender did not appear to influence biomarker responses of the shrimp in this study. 17 

ECOD activity was induced in the treatment groups in a linear fashion from 3 (0.01 ppm) times to 12 (1 ppm) 18 

times the negative controls. 8-oxo-dG concentration was reduced 3 times in treatment groups below the 19 

controls suggesting impaired DNA repair pathways. There was no increase in SDH, signifying 20 

hepatopancreatic cell damage had not occurred in any treatment group. The response of P australis to B[a]P 21 

exposure indicates that this crustacean is suitable bioindicator species for both laboratory studies and field 22 

monitoring. A combination of ECOD and SDH activities and 8-oxo-dG concentration represent a suitable 23 

suite of biomarkers for environmental monitoring of the sublethal effects of organic pollution to crustaceans 24 

from an estuarine environment. 25 

 26 
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Introduction 31 

 32 

Crustaceans are important inhabitants in aquatic ecosystems providing many ecological and economic 33 

benefits and occupying diverse niches. For example, grass shrimp (Palaemonetes pugio) function to 34 

repackage detritus into protein rich products that are used within different trophic levels in an ecosystem. 35 

Welsh (1975) has shown that P. pugio plays an active role in breaking down detritus, enabling accelerated 36 

growth rates of diatoms and bacteria on substrata in tidal march ecosystems. 37 

 38 

Recently endocrine disruption has been reported in several decapod species (crabs, shrimps, prawns, etc; 39 

(LeBlanc 2007). Many are dioecious with strong sexual dimorphism making decapods ideal field monitoring 40 

candidates for the presence of endocrine disrupting chemicals. Urban and agricultural use of land adjacent to 41 

estuaries and their tributaries have been shown to increase the potential for contaminant influx to the 42 

environment through non point-source runoff. Pesticide usage near estuarine systems, polycyclic aromatic 43 

hydrocarbons (PAHs) and heavy metals in stormwater inputs have been shown to impact on grass shrimp 44 

(Palaemonetes spp.) growth, size, reproductive capacity and survival (Oberdorster et al. 2000b; Leight et al. 45 

2005). 46 

 47 

The hepatopancreas is the main organ for digestion and xenobiotic detoxification in aquatic invertebrates. 48 

This organ is very responsive to environmental changes (Sousa and Petriella 2007; Snyder 2000). The PAH, 49 

pyrene, has been shown to significantly induce CYP1A-like protein activity in P. pugio as measured by 50 

ethoxycoumarin-O-deethylase (ECOD) in crude hepatopancreatic extracts. Studies by Lee et al. (2008; 2004) 51 

have shown a relationship between reproductive abnormalities and increased DNA strand breaks when P. 52 

pugio were exposed to estuarine sediments receiving highway runoff. 53 

 54 

There is the potential that similar factors are affecting the health of crustaceans in the Swan-Canning Estuary, 55 

south-west Western Australia. A three year program to study contaminant levels in both the Swan and 56 

Canning Rivers, and their catchment drains, by the Western Australian Department of Water has shown that 57 

organochlorine pesticides, PAHs, herbicides, and heavy metals are present in stormwater drains and 58 

tributaries that discharge to the estuary (Foulsham et al. 2009; Nice et al. 2009; Nice 2009). For example, 59 
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17% of sediment samples measured contained organochlorines, with chlordane and dieldrin most frequently 60 

reported, in the range of 0.005 to 0.05 mg/kg. 61 

 62 

The freshwater shrimp Palaemonetes australis is a euryhaline crustacean found in relative abundance 63 

throughout the estuary and its catchment drains and tributaries (Boulton and Knott 1984). This species has 64 

not previously been assessed for its potential use as a bioindicator species in environmental monitoring 65 

programs using biochemical markers of health. The objective of this study is to evaluate a selection of 66 

biochemical markers of health in P. australis [ethoxycoumarin-O-deethylase activity (ECOD); sorbitol 67 

dehydrogenase activity (SDH); and DNA nucleoside base concentration (8-hydroxy-2’-deoxyguanosine)] by 68 

exposing the shrimp to a known genotoxicant, benzo[a]pyrene, under laboratory conditions. The value of P. 69 

australis as a suitable bioindicator species to understand the impact of organic chemicals on crustaceans 70 

within estuarine environments such as the Swan-Canning Estuary will be assessed. 71 

 72 

Materials and methods 73 

 74 

Shrimp Collection and Maintenance 75 

 76 

Adult Palaemonetes australis were collected by dip nets in April 2009 from the Canning River, Western 77 

Australia (N = 100). The shrimp were carefully placed in 20 litre buckets with water from the collection site 78 

for transport to the laboratory. Gentle aeration was provided using battery operated aerators with airstones 79 

attached. The shrimp were randomly allocated to one of twenty, 3 L Pyrex beakers to give a final count of 5 80 

shrimp per beaker. The beakers had been filled with 2 litre of river water separately collected at the same 81 

time as the shrimp and aerated gently. The shrimp were acclimated to laboratory conditions for 10 days 82 

during which time up to 50% water changes were performed daily to remove wastes using Millipore filtered 83 

water adjusted to 3 ppt salinity. Ammonia levels were monitored daily and the shrimp were fed with frozen 84 

Artemia until sated. 85 

 86 

Exposure and Sample Collection 87 

 88 
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At the end of the acclimation period the beakers were allocated to one of 5 treatment groups using a 89 

randomised block design. Ten mg of benzo[a]pyrene (B[a]P) was dissolved in 10 mL of dimethyl sulphoxide 90 

(DMSO), then 2 mL of this solution was diluted in 198 mL 50% DMSO/H2O. Three subsets of 4 beakers 91 

were treated with the diluted solution to give concentrations of 0.01 ppm, 0.1 ppm and 1 ppm of B[a]P 92 

respectively. A 50% solution of DMSO/H2O was added to a fourth subset of 4 beakers to give a final 93 

concentration of 0.0005% (solvent control group). The final subset of 4 beakers was left untreated as the 94 

negative control group. The exposure concentrations of B[a]P used in this study were chosen to ensure a 95 

measurable response from the shrimp and do not reflect the level of this contaminant in the field.  96 

 97 

Shrimp were continuously exposed for a period of 14 days during which time the daily 50% water change 98 

regime was continued with chemical levels within each exposure group maintained by replacement. At the 99 

end of the exposure period the shrimp were anaesthetised in an ice and water slurry. The tail fan, legs and 100 

exoskeleton were removed from each shrimp before the abdomen was separated from the cephalothorax. The 101 

abdominal muscle was placed in a cryovial for sorbitol dehydrogenase determination and the cephalothorax 102 

was placed in a separate cryovial for ethoxycoumarin O-deethylase and 8-hydroxy-2’-deoxyguanosine 103 

assays. Each cryovial was immediately immersed in liquid nitrogen, then later transferred to a freezer and 104 

held at –80 oC until analysis. 105 

 106 

Supernatant Preparation 107 

 108 

A homogenisation buffer was prepared containing 0.1M Trizma (tris hydroxymethyl aminomethane) base, 109 

25mM phenylmethanesulphonyl fluoride (PMSF) and 1.3 mM ethylenediaminetetraacetic acid (EDTA) with 110 

pH adjusted to pH 7.4. Samples were thawed on ice and homogenised in the buffer (shrimp tail 1:2 w/v; 111 

cephalothorax 1:4 w/v) using a Heidolph DIAX 900 homogeniser. The homogenate was centrifuged (Jouan 112 

CR3i centrifuge) at 9000xg for 20 mins at 4oC and the supernatant collected for immediate use. Protein 113 

content of the cephalothorax supernatant was measured using the method of Lowry et al. (1951). 114 

 115 

Ethoxycoumarin-O-deethylase (ECOD) Assay 116 

 117 



 5

ECOD activity was assessed using the method of Webb et al. (2005), optimised for invertebrates. The 118 

reaction mixture containing 0.1M Tris buffer pH 7.4, KCl, MgCl2, NADPH (ß-nicotinamide adenine 119 

dinucleotide phosphate, reduced form) solution, and cephalothorax supernatant, was incubated for 2 minutes 120 

in a water bath at 35oC. The reaction was initiated by adding 2mM ethoxycoumarin, incubated for a further 121 

10 minutes at 35oC and then terminated by the addition of 5% ZnSO4 and saturated Ba(OH)2. Umbelliferone 122 

(C9H6O3; 7-hydroxycoumarin) standards (0.000 to 0.093 nM) and samples were centrifuged to precipitate 123 

proteins and 1 mL of the supernatant was transferred to a test tube. 500 L of 0.5 M glycine-NaOH buffer pH 124 

10.4 was added to each tube and the fluorescence of the buffered supernatant was read on a Perkin-Elmer LS-125 

45 Luminescence Spectrometer at excitation/emission wavelengths of 380/452 nm . ECOD activity was 126 

expressed as femtomoles of 7-hydroxycoumarin produced, per mg of total protein, per minute (fmol H mg Pr-127 

1 min-1). 128 

 129 

Sorbitol Dehydrogenase (SDH) Assay 130 

 131 

The SDH assay was adapted for abdominal muscle supernatant from Webb and Gagnon (2007) methods. A 132 

50 µL aliquot of supernatant was placed in a cuvette with 450 µL of ß-NADH (ß-nicotinamide adenine 133 

dinucleotide, reduced form) - Tris Buffer, pH 7.5, solution. This was then incubated at room temperature for 134 

10 minutes to allow for the reaction of keto acids in the serum. Following incubation, 100 µL of D-Fructose 135 

solution was added to commence the reaction and the decrease in the rate of absorbance (A) over one 136 

minute was immediately read on a Pharmacia UV-Visible Spectrophotometer at 340 nm. The SDH activity 137 

was expressed as milli-International Units (mU) in the abdominal supernatant of the shrimp. 138 

 139 

8-hydroxy-2’-deoxyguanosine (8-oxo-dG) Quantification 140 

 141 

The 8-oxo-dG assay was performed on clarified cephalothorax supernatant using an enzyme immunoassay 142 

(EIA) kit (Trevigen® Cat. No. 4370-096-K; purchased from BioScientific Pty Ltd, NSW, Australia). Sample 143 

preparation was performed as recommended for saliva samples then diluted 1:10 v/v in sample diluent. 144 

Leaving the first two wells blank, 50 L of 8-oxo-dG Standard (0 to 60 ng/mL), and diluted samples were 145 

added to the appropriate wells of the immunoassay plate in duplicate. 50 L of anti-8-oxo-dG antibody was 146 

added to each well (except the blanks) then incubated at room temperature for 1 hour. The wells were 147 



 6

aspirated and washed 6 times using a Immunowash model 1575 (Bio-Rad Laboratories Pty Ltd, NSW, 148 

Australia), patted dry, then 100 L Anti-Mouse IdG:HSP conjugate antibody added to each well (blanks 149 

excluded) and incubated for 1 hour at room temperature. Following a further 6 washes, 100 L TMB 150 

Substrate (stabilised tetramethylbenzidine) was added to all wells, incubated in the dark for 15 minutes, then 151 

100 L Stop Solution added to each well. Absorbance of the wells was measured at 450 nm using a Bio-Rad 152 

iMark Microplate Reader (ISO 9001 registered). The average of the absorbance of the duplicate blank wells 153 

was deducted from the average of the standard and the sample wells. Plotting the standard curve with log 154 

concentrations on the x-axis and absorbance measurements for the respective standards on the y-axis gave a 155 

2nd order polynominal equation y = a + bx + cx2. The 8-oxo-dG concentration in the supernatant was 156 

expressed as nanograms of 8-hydroxy-2’-deoxyguanosine, per mg of total protein (ng 8-oxo-dG mg Pr-1). 157 

 158 

Statistical Analysis 159 

 160 

For each biomarker, the data were tested for normality and homoscedasticity and, where necessary, log10-161 

transformed to achieve normality. Statistical analysis was undertaken using the SPSS statistical package 162 

(Version 17; SPSS GmbH, Germany). Student t tests found no gender difference for each biomarker (p > 163 

0.05), so data for was pooled. A two-way analysis of variance (ANOVA) was run to investigate if the data 164 

was affected by beaker/replicate interactions. As no interactions were found in the data sets, main effects 165 

were analysed using one-way ANOVAs. Where significant differences between treatments were found (p < 166 

0.05), a Dunnett’s (2 sided) test was run to compare the treatment groups with the negative control group. 167 

Data are presented as mean ± standard error (SEM). 168 

 169 

Results 170 

 171 

Ethoxycoumarin-O-deethylase Activity 172 

 173 

Significant induction of ECOD activity occurred in all treatment groups (p ≤ 0.001). There was no significant 174 

difference between the negative control and solvent control groups (p = 0.22). ECOD activity in the 0.01ppm 175 

treatment group was 220% higher than the level of the negative control group while the 0.1 ppm and 1 ppm 176 
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treatment groups were induced 5 times (460%) and 12 times (1100%) respectively over the negative control 177 

(Fig. 1). 178 

 179 

Sorbitol Dehydrogenase Activity 180 

 181 

No significant differences were detected in SDH activity in P. australis between any treatment group (p = 182 

0.29; Fig. 2).  183 

 184 

8-hydroxy-2’-deoxyguanosine Concentration 185 

 186 

The concentration of 8-oxo-dG measured in the freshwater shrimp was significantly different between 187 

treatment groups (p = 0.003). There was no significant difference between the negative control and solvent 188 

control groups (p = 0.80). The three treatment groups each had 66% lower concentration of 8-oxo-dG than 189 

the negative control treatment groups and 54% lower than the solvent control group (Fig.3). 190 

 191 

Discussion 192 

 193 

Shrimps, such as P. australis, are key links in the estuarine detritus food web. The Swan and Canning Rivers 194 

and their catchment drains are known to receive anthropogenic contaminants (Foulsham et al. 2009; Nice 195 

2009; Nice et al. 2009) that may adversely affect this ecologically important animal. Although the life cycle 196 

of P. australis has been poorly studied in estuaries of south-west Western Australia, this study found it to be 197 

easily maintained in the laboratory, making it an ideal candidate for the study of the impact of contaminant 198 

exposure on the health of this estuarine decapod species. 199 

 200 

PAHs have been shown to significantly induce CYP1A-like protein (P450) activity in grass shrimp (P. 201 

pugio) as measured by ECOD in hepatopancreatic extracts (Oberdorster et al. 2000a). Investigations 202 

elsewhere have indicated that blue crabs (Callinectes sapidus) were unable to metabolise and eliminate PAHs 203 

the closer they were to moulting, resulting in a higher body burden (Mothershead and Hale 1992). PAHs 204 

have also been shown to delay moulting by P. pugio males (Oberdorster et al. 2000a), and the blue crab 205 

(Mothershead and Hale 1992). This is believed to be due to competition for substrates by cytochrome P450s 206 
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needed to metabolise ecdysone for the moult (Mothershead and Hale 1992; Oberdorster et al. 2000a). In our 207 

study, P. australis exposed to 0.01, 0.1 and 1 ppm B[a]P, had a significantly elevated ECOD activity which 208 

increased with each concentration of B[a]P. This clearly demonstrated that moulting was not a confounding 209 

factor in the interpretation of the response of cytochrome P450 detoxification in the shrimp to B[a]P exposure 210 

in this study. The shrimp clearly demonstrated increasing ECOD activity induction with increasing exposure 211 

concentrations. 212 

 213 

Gender differences have been found to occur in the uptake and elimination of contaminants in a range of 214 

invertebrate species due to competition between moulting, reproduction, vitellin levels and P450 activity 215 

(McClellan-Green et al. 2007). Gender specific induction of ECOD was detected by Oberdorster et al. 216 

(2000a) in P. pugio when exposed to pyrene at 63 ppb. In that study, pyrene induced ECOD activity in males 217 

only. It was hypothesised that the lack of induction of ECOD in the female shrimp was due to the maternal 218 

transfer of the pyrene, bound to egg yolk proteins, to oocytes (Oberdorster et al. 2000a). Gender differences 219 

in ECOD activity induction was not evident in P. australis exposed to B[a]P in this study, however this 220 

confounding factor needs to be considered when measuring ECOD activity in field captured P. australis by 221 

ensuring sufficient numbers of each sex are collected for analysis and taking into account their stage in the 222 

reproductive cycle.  223 

 224 

Elevated sorbitol dehydrogenase (SDH) activity in abdominal muscle homogenate is an indicator that the 225 

cellular integrity of the hepatopancreas has been compromised (Battison 2006). Sousa and Petriella (2007) 226 

found important alterations in the hepatopancreas of P. argentinus exposed to high levels of organochlorine 227 

pesticides including necrotic desquamation, lesions in the tubules, nuclear retraction, and lysis of the 228 

chromatin and cytoplasm. A hepatopancreas with cellular injuries is less capable of detoxifying and 229 

eliminating contaminants than a non-injured hepatopancreas and represents a further confounding factor 230 

when interpreting ECOD activity supporting the parallel use of this marker of hepatopancreatic damage. 231 

Furthermore, SDH activity precedes the detection of histological damage in the hepatopancreas and as such 232 

monitoring changes in SDH activity can be a sensitive indicator of damage. The lack of inter-treatment 233 

differences in SDH activity in this study indicates there is no bias in the ECOD activity measured related to 234 

hepatopancreatic tissue damage. From the results of the laboratory exposure to B[a] P in the negative control 235 
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shrimp, a baseline level of 50 mU mL-1 SDH in the abdominal muscle homogenate of P. australis is 236 

established which can be used in field studies to determine whether hepatopancreatic damage has occurred. 237 

 238 

The concentration of 8-oxo-dG indicates DNA damage by hydroxyl radicals and has been shown to be 239 

induced by a range of environmental contaminants (Evans et al. 2004; Valavanidis et al. 2009). Oxidative 240 

damage has been reported in both humans and fish species in response to heavy metals, peroxides, 241 

antibiotics, PAHs, asbestos fibres, and tobacco smoke (Valavanidis et al. 2009; Livingstone 2001). Exposure 242 

to B[a]P resulted in a significant decrease in 8-oxo-dG concentrations in P. australis which appears to 243 

contradict other studies in rat, hamster and human cancers (Kasai 1997), and aquatic organisms exposed to 244 

heavy metals (Cd, Cu, Fe), paraquat, peroxides and PAHs (Livingstone 2001). However a similar decrease 245 

has been found in barramundi exposed to B[a]P injections in our laboratory (Rawson in preparation). There 246 

is some evidence to suggest there are two pathways for the removal of 8-oxo-dG adducts. Bases suffering 247 

oxidative damage are preferentially repaired by enzymes of the BER (base excision repair) pathway (Loft et 248 

al. 2008). If the BER pathway is compromised a NER (nucleotide excision repair) pathway exists for the 249 

removal of the 8-oxo-dG adduct resulting in an observed reduction the amount of free 8-oxo-dG in the 250 

haemolymph. A study undertaken by Hook and Lee (2004) found that exposure of P. pugio embryos to B[a]P 251 

produced complex lesions. The DNA strand breaks persisted and their level increased as these lesions were 252 

repaired by the NER pathway, whereas repairs by the BER pathway resulted in reduction of strand breaks 253 

when the embryos were exposed to cadmium. This suggests that B[a]P causes persistent lesions with the 254 

potential to increase transcriptional errors, mutagenesis and cell death (Mitchelmore and Chipman 1998). 255 

From the results of the laboratory exposures a baseline level of 5 ng 8-oxo-dG mg Pr-1 is determined, which 256 

can be used to evaluate field results. 257 

 258 

DMSO is commonly used as a polar solvent of low toxicity and to preserve cells in tissue culture, however it 259 

has been shown to produce adverse changes in rat hepatocytes (Shilkin et al. 1966), and to potentiate the 260 

lethal effects of aromatic hydrocarbons such as benzene (Kocsis et al. 1975). DMSO has also been shown to 261 

produce apoptotic degeneration in the developing CNS of mice (Hanslick et al. 2009). No change was 262 

identified in SDH activity when compared to the negative controls suggesting that exposure to the low 263 

concentration of DMSO (0.0005%) used in this study has not damaged the hepatopancreas of the shrimp. The 264 

shrimp appear to have had a slight response to DMSO, with ECOD activity induction marginally higher in 265 
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the solvent control group compared to the negative control group and 8-oxo-dG concentration was lower. 266 

However, this apparent reaction to DMSO is not sufficient to influence interpretation of biomarker responses 267 

of the shrimp to the PAH, B[a]P. 268 

 269 

P. australis has been shown to be responsive to organic contaminants and is a suitable bioindicator species 270 

for laboratory studies and/or field monitoring to aid our understanding of the health of biota in the Swan-271 

Canning Estuary. Further investigation is required to assess the suitability of other biomarkers of health (e.g. 272 

DNA strand breakage, ecdysteroid production, embryo survival and development, incidence of intersex and 273 

others) in this crustacean. 274 

 275 
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Fig. 1 Ethoxycoumarin-O-deethylase activity induction in fmol H mg Pr-1 min-1 (mean ± SE) in the 364 

freshwater shrimp (Palaemonetes australis) following exposure to benzo[a]pyrene. Treatment groups 365 

significantly different from the negative control (p < 0.05) are denoted by an asterisk (*) 366 

 367 

Fig. 2 SDH activity (mU mL-1; mean ± SEM) in the abdominal muscle supernatant of the freshwater shrimp 368 

(Palaemonetes australis) following exposure to benzo[a]pyrene. Treatment groups significantly different 369 

from the negative control (p < 0.05) are denoted by * 370 

 371 

Fig. 3 8-hydroxy-2’-deoxyguanosine concentration in ng 8-oxo-dG mg Pr-1 (mean ± SE) in the freshwater 372 

shrimp (Palaemonetes australis) following exposure to benzo[a]pyrene. Treatment groups significantly 373 

different from the negative control (p < 0.05) are denoted by * 374 

375 
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