
An Efficient Identity-based Group Signature
Scheme over Elliptic Curves

Song Han1,2, Jie Wang2, and Wanquan Liu1

1 Department of Computing, Curtin University of Technology
GPO Box U1987, Perth 6845, Western Australia, Australia

2 Department of Mathematics, Beijing University
Beijing, 100871, China

3

Abstract. Considering such a scenario: Several network policemen con-
sist of a group NP in a network; Every one of them can find out what
kind of documents are harmful and then sign them. Any user in this net-
work who receives the above documents would check whether a signature
exists on the documents and also it is validly signed by the group NP.
And then, this user can be convinced the document is really harmful.
How can we realize (or deploy) the network security of this scenario?
A group signature protocol may be a better choice. Group signatures
allows every authorized member of a group to sign on behalf of the un-
derlying group. Anyone except the group manager is not able to validate
who signs a signature for a document. A new group signature scheme is
proposed in this paper. It is an identity-based group signature scheme.
This scheme makes use of a bilinear function derived from Weil pairings
over elliptic curves. On the other hand, in the underlying composition of
group signatures there is no exponentiation computation modulo a large
RSA modulus. Thanks to these ingredients of the novel group signatures,
the proposed scheme is efficient with respect to signing computation. In
addition, this paper comes up with a security proof against adaptive
forgeability.

Keywords: Group Signatures, Anonymity, Network Security, Weil Pair-
ings, Security Protocol.

1 Introduction

Group signatures are one of the most important security protocols offered by
cryptography. A group signature scheme is a digital signature scheme such that
an individual member of a group can generate a signature (for a document),
which can be verified by anyone, without revealing her identity; that is to say,
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authorized group member is in possession of anonymity. At the same time, group
signatures are of the property that the signer can be identified later in case of
disputes by a designated group manager. Moreover, no one including the group
manager can misattribute a valid group signature. Therefore, in fact, the group
signatures were first proposed in order to solve the following similar practical
problem:

The corporation LTD has several computers, that are connected to the local
network center of LTD. Every department of LTD only has one printer that is
used only by the employees of this department. All these printers are also con-
nected to the local network of LTD. Therefore, before each printing, the printer
has to be confirmed that the employee belongs to the designated department. At
the same time, the printer cannot display the identity of the employee in order
to protect his or her privacy. However, if some printer was used frequently while
off duty everyday, the supervisor is able to find out who abused that printer and
then give him or her a fine bill.

The concept of group signatures was first introduced by Chaum and E.van
Heyst in [5] in 1991. Besides the above applicable example, group signatures are
also able to put on the applications: e-cash, bidding, voting, and so on. More
generally, group signatures can be used to conceal organizational structures, for
instance, when a company or a government agency issues a signed document.
Very recently in [2], Ateniese and B. de Medeiros presented a new application
concerning group signatures: anonymous E-prescriptions in medical situations.
Previous to [8], all the proposed group signature protocols, for instance [5, 7, 11]
have the following undesirable properties:

(1) the length of a group signature and (or) the length of group’s public key
depend linearly on the numbers of the underlying group.

(2) it is necessary to modify at least the public key, while new authorized
member joins the group.

While subsequent works on group signature schemes for instance [8, 19, 1, 16,
12] possess the desirable property: the length of a group signature and (or) the
size of the group public key are independent of the number of group members.

In traditional group signature signing algorithms the public keys of group
members are essentially random bit strings picked from a given set. This leads to
a problem of how the public keys are associated with the corresponding physical
entities that are meant to be performing the signing computations. The identity-
based group signature scheme assumes the existence of a trusted key generation
center whose purpose is to give each member a personalized smart card when
she first joins the network. The information embedded in this card enables each
member to sign the documents she sends and verifies the documents she receives
in a totally independent way, regardless of the identities of other members in
this group. Previously issued cards do not have to be updated when new group
member joins the network.

Recently identity-based cryptographic technique has also been applied to
group signature schemes. The concept of identity-based cryptography is due to
A.Shamir [14]. Shamir’s original motivation was to simplify certificate manage-



ment in e-mail systems. When Alice sends mail to Bob at bob@hotmail.com, she
simply encrypts her message using the public key string ’ bob@hotmail.com ’.
There is no need for Alice to obtain Bob’s public key certificate. Therefore, an
identity-based cryptosystem is a system that allows a publicly known identifier
(for instance email address, IP address) to be used as the public parameter or
public key of a public/private key pair. In 1997, Park, Kim and Won presented
the first identity-based group signature scheme. In 1998, Tseng and Jan proposed
another identity-based group signature scheme. Thereafter, Popescu brought for-
ward a modification on [18]. In 2002, Popescu proposed a new identity-based
group signature scheme [12], that makes use of the pairings over elliptic curves.
However, the scheme in [12] made use of the RSA signatures in group signatures.
It is known that at the same security level ECC-521 can be expected to be on
average 400 times faster than 15,360-bit RSA [10].

In this paper, a novel identity-based group signature scheme is proposed. It
makes use of the bilinear pairings over elliptic curves. The size of the group public
key is independent of the size of the underlying group. Also, the length of a group
signature is independent of the number of the underlying group. Different from
[12], our signing computation does not encompass RSA signatures. Therefore,
by [10] the new scheme is expected to be more efficient than [12]. At the same
time, a security proof against adaptive forgeability is presented in this paper.

The new group signature scheme proposed in this paper has the following
desirable properties:

(1) Provably secure against adaptive forgeability. In [1, 6, 12] etc., there is no
formal security proof against adaptive forgeability.

(2) No exponentiation calculations during both the generation and the verifi-
cation of signatures. Previous to this new scheme, some group signature schemes
need to compute exponentiations modulo a large RSA modulus [12]. Therefore,
the new scheme is efficient in terms of computation cost.

The rest of this paper is organized as follows. The next section comes up the
model: identity-based group signatures. In section 3, the paper presents some pre-
liminaries including the bilinear pairings over elliptic curves. Section 4 brings for-
ward the descriptions of the details of our new id-based group signature scheme.
Subsequently, the security proofs and analyses are presented in section 5. The
performance of the novel scheme is discussed in section 6. Finally in section 7,
the paper is concluded.

2 The Model

In this section, the concept of an identity-based group signature scheme are
presented as follows. In the following concept, see [9] for the definition of an
identity-based digital signature scheme.

Definition 1. (Identity-based Group Signatures) An identity-based group
signature scheme is an identity-based digital signature scheme comprised of the
following five procedures:



(1) Setup: An algorithm, executed by the group manager, takes a random
security parameter l as input and generates from it system parameters and mas-
ter key. The system parameters are publicly known as the initial group public
key; while the master key is only known to the group manager.

(2) Extract: A protocol between the group manager and a user. We assume
the communications between the user and the group manager is private and au-
thenticate. At the end of the protocol, the user becomes an authorized member
of this group. The member’s output is a membership certificate and a mem-
bership secret. Here the member’s secret contains two parts: one is sent by the
group manager, the other is chosen by herself.

(3) Sign: A probabilistic algorithm that on input a group public key, a mem-
bership secret, and a message m outputs a group signature of m.

(4) Verify: An algorithm for establishing the validity of an alleged group sig-
nature of a message with respect to the group public key.

(5) Reveal: An algorithm that, given a message, a valid group signature on
it, a group public key and a group manager’s master key, determines the identity
of the actual signer.

A secure identity-based group signature scheme must satisfy as all or part of as
the properties of:

(1) Correctness: Group signatures produced by a group member using SIGN
algorithm must be accepted by VERIFY algorithm.

(2) Unforgeability: Only group members are able to sign messages on behalf
of the underlying group.

(3) Anonymity: Given a valid signature of some message, identifying the ac-
tual signer is computationally infeasible for everyone but the group manager.

(4) Unlinkability: Deciding whether two different valid signatures were com-
puted by the same group member is computationally hard.

(5) Exculpability: Neither a group member nor the group manager can sign
on behalf of other group members.

(6) Traceability: The group manager is always able to open a valid signature
and identify the actual signer in case of disputes.

3 Preliminaries

3.1 Notations

This subsection describes some notations used in this paper. Let q be a large
prime, and Z∗q be Zq\{0}. Let N be a positive integer. We write Z∗N for the
multiplicative group of integers modulo N . We denote ϕ(n) as the Euler phi
function. Let H and H1 be two cryptographic hash functions: H : {0, 1}∗ → G1,
and H1 : {0, 1}∗ ×G1 → G1.



3.2 Pairings over Elliptic Curves

Let p be a sufficiently large prime that satisfies: (a) p ≡ 2mod3; (b) p = 6q − 1,
where q is also a large prime. Consider respectively the elliptic curves E/Fp and
E/Fp2 defined by the equation:

y2 = x3 + 1.

Let G1 be an additive group of points of prime order q on an elliptic curve
E/Fp and let G2 be a multiplicative group of same order q of some finite field
Fp2 . We assume the existence of a bilinear map, the modified Weil pairing,

e : G1 ×G1 → G2

such that the Elliptic Curve Discrete Logarithm (ECDL) problems are difficult
in G1 and the Computational Diffi-Hellman (CDH) problems and the Inversion
of Weil pairing (IWP) problem are difficult in G2.

The modified Weil pairings e : G1 ×G1 → G2 has the following properties:
(1) Bilinearity: e(aP, bQ) = e(P, Q)ab for every pair P, Q ∈ G1 and for any

a, b ∈ Zp.
(2) Non-degenerate: there exists at least one point P ∈ G1 such that e(P, P ) 6=

1.
(3) Efficient Computable: there are efficient algorithms to compute the bilin-

ear pairings e.

3.3 Elliptic Curve Discrete Logarithms

Definition 2. (Elliptic Curve Discrete Logarithm Problem) Given G1

as above, choose P a generator from G1, given xP , where x is an unknown
random element of Z∗q , the Elliptic Curve Discrete Logarithm (ECDL) problem
is to find x.

(ECDLP Assumption) Given xP and a generator P in G1 with unknown
x ∈ Z∗q . There is no probabilistic polynomial algorithm to solve the Elliptic
Curve Discrete Logarithm problem with non-negligible advantage.

3.4 Inversion of Modified Weil Pairings

Definition 3. (Inversion of Modified Weil Pairings Problem) Given G1,
G2 and e(·, ·) as above, choose P a generator from G1, given e(P, ∗), where ∗ is
an unknown point of G1, the Inversion of Modified Weil Pairings (IWP) problem
is to find Q ∈ G1 such that

e(P, Q) = e(P, ∗).
(IWP Assumption) Given G1, G2 and e(·, ·) as above, choose P a gen-

erator from G1, given e(P, ∗), where ∗ is an unknown point of G1. There is
no probabilistic polynomial algorithm to solve the Inversion of Modified Weil
Pairings problem with non-negligible advantage.



4 New Identity-based Group Signature Scheme

In this section the detailing description of the new group signature scheme is
presented.

4.1 SETUP

This is a system generation algorithm. The group manager(GM) executes the
following procedures:

(1) Choose p, q, G1, G2 defined in subsection 3.2.
(2) Choose two cryptographic hash functions:

H : {0, 1}∗ 7→ G1,

H1 : {0, 1}∗ ×G1 7→ G1.

(3) Construct a bilinear function defined in subsection 3.2:

e : G1 ×G1 7−→ G2.

(4) Select a generator element P ∈ G1, therefore e(P, P ) is a generator ele-
ment of G2.

(5) Select an integer a from Z∗q as the secret key of GM; Set Ppub = aP as
the public key of this group.

(6) Let a string f ∈ {0, 1}∗ denoting an identifier (e.g. email address or IP
address) of any group member of this group. GM computes Qf = H(f) as the
public key of this member. It is easy to see we may not confirm the real identity
of some group member by her email address or IP address.

(7) Let {0, 1}∗ (a set of strings of any length) be the message space.
Therefore, the group public key of this group is: PK = {P, Ppub, e(·, ·),H,H1}
The master key of GM is SK = a.

4.2 Extract

Suppose a new member Ui wants to be an authorized member of this group. GM
will communicate with Ui through a secure channel(e.g. secure against tamper-
ing, intruding, intercepting):

(1) Ui sends her identifier fi to GM;
(2) GM computes ski = aQfi

, and then sends them to Ui.
(3) Ui regards respectively private value b(secretly chosen by herself) and

her identifier fi as her personal secret key and personal public key. Suppose
bfi ≡ 1modϕ(n), where n is a product of two lager prime numbers.

(4) Ui and GM simultaneously execute a Schnorr identification protocol (see
[15]). Thereafter, Ui obtains a credential ti which is used to identify the mem-
bership of Ui.

(5) GM has a transcriptor: trans = {< fi, ti > | for every authorized group member Ufi
}.



This transcriptor is held only by GM.
(6) At the end of the communication, Ui becomes an authorized group mem-

ber of this group. Her credential is ti; her personal secret key is {b, ski}; and her
personal public key is fi. All these information are stored in a smart card held
privately by Ui.

4.3 SIGN

This is a generation algorithm of group signatures. Suppose Ufi is an authorized
member of this group. Given a message m ∈ M , she performs the following al-
gorithm:

(1) chooses randomly and uniformly x from Z∗q , and sets A = xP .
(2) computes B = x−1ski +H1(m,A)b, where x−1 is the inversion of x in Z∗q .

Therefore, the group signature on message m is {A,B, fi}.

4.4 VERI

This is an algorithm of verification on alleged group signatures. Given a message
m and its alleged group signature {A,B, fi}, any verifier who holds public key
can validate the validity of the group signature by carrying out the followings:

(1) computes α = e(fiPpub, Qfi
);

(2) computes β = e(A, fiB);
(3) computes γ = e(A,H(m,A)).
At the end of it, the verifier checks the equation:

β =? αγ (1)

If the equality holds, then the verifier accepts: {A,B, fi} is a valid group signa-
ture on message m; otherwise, rejects it. On the one hand, by the group public
key the verifier knows the signature coming from this group; On the other hand,
by the personal public key the verifier knows this signature was generated by an
authorized member Ufi

not by group manager.

4.5 REVEAL

This algorithm is only executed by the group manager GM. Given a message
m and its corresponding valid group signature {A,B, fi}, the group manager
looks up the tanscriptor for the corresponding membership credential ti. By the
Schnorr identification protocol [15] and this group membership credential, the
group manager can confirm the real identity of the group member.

5 Security Proofs and Analyses

This section we will come up with the security proofs and analyses of the new
id-based group signature scheme. Specially we shall prove that the new id-based
is secure against adaptive chosen message attack. On the other hand, some prop-
erties in the definition of group signatures will also be analyzed here.



5.1 Correctness

Theorem 1. Given any message m ∈ M , if an authorized group member hon-
estly computes the corresponding group signature {A,B, fi} on m by SIGN al-
gorithm, then the VERI algorithm always accept it:

V ERI(m, {A,B, fi}) ≡ 1. (2)

Proof. Suppose {A,B, fi} is a group signature on message m honestly computed
by an authorized member through SIGN algorithm, we shall prove it is valid.
Therefore, it will always be accepted by VERI algorithm. In fact, {A,B, fi} has
the following formula:

{A = xPB = x−1ski + H1(m,A)b. (3)

Therefore, β = e(A, fiB)
= e(A, fix

−1ski + fi)bH1(m,A)
= e(xP, fix

−1ski)e(xP, H1(m,A))
= e(P, aQfi)

xfix
−1

e(xP, H1(m,A))
= e(fiaP, Qfi)e(xP, H1(m,A))
= e(fiPpub, Qfi

)e(A,H1(m,A))
= αγ. Hence, VERI algorithm always accepts the group signature.

5.2 Security against Adaptive Forgeability

Generally speaking, adaptive unforgeability (resp. adaptive forgeability)in group
signatures satisfies that: Even if an adversary has oracle (ideal random algo-
rithm) access to the group signing algorithm which provides valid group signa-
tures on messages of the adversary’s choice, the adversary cannot (resp. can)create
a valid group signature on a message not previously queried.

Theorem 2. Under the assumption of Elliptic curve Discrete Logarithm and
the assumption of Inversion of Weil Pairings, the new id-based group signature
scheme is secure against adaptive forgeability.

Proof. We shall prove that the new id-based group signature scheme is secure
against adaptive chosen message attacks.

Suppose Adv is a probabilistic polynomial time adversary that will forge
valid group signatures to our new id-based group signature scheme.

First it is noted that Adv is not able to obtain the personal secret key of
any authorized group member by observing the corresponding personal public
key Qfi and the group public key PK. In fact,

(1) Due to the difficulty of Elliptic Curve Discrete Logarithm problems, Adv
is not able to obtain a by solving Ppub = aP . Therefore, it is not able to work
out ski = aQfi

.
(2) Due to the unknown factors of n, Adv is not able to figure out b by the

relation of fib ≡ 1modn.



On the other hand, even though it is adaptive, Adv is not able return a valid
group signature. In this case, we first assume that Adv is able to bring forward
valid group signatures, then there will be a contradiction.

Adv would interact with GM, SIGN simulator, and hash oracle. The detailed
descriptions of these interactions are as follows:
GM:

(1) Adv would choose freely a personal public key fj of any authorized group
member and interact with GM;

(2) GM randomly and uniformly selects a
′

from Z∗q and sets Qfj = a
′
P ,

skfj
= a

′
Ppub, and then sets H(fj) = Qfj

.
SIGN simulator:

(1) Given any message m chosen by Adv, SIGN simulator will return a group
signature with respect to fj ;

(2) By use of the results returned by Adv interacting with GM, SIGN sim-
ulator computes

{A = xP, B = x−1skfj
+ f−1

j H1(m,A)},
where x is chosen by SIGN simulator from Z∗q .
HASH ORACLE:

For any message m chosen by Adv and the element A returned by SIGN
simulator, HASH ORACLE defines H1(m,A) = gP , where g ∈ Z∗q . (It is known
that P is a generator of G1.)

In fact, we may regard Adv, GM, SIGN simulator and HASH ORACLE
respectively as some probabilistic polynomial time algorithms. In the course of
interacting with GM, SIGN simulator and HASH ORACLE, Adv would freely
choose some messages and some personal public keys of authorized members.
However, there is a limitation on the behavior of Adv; that is, as it forges a
valid group signature (the corresponding message m0) , the message m0 has to
be not queried in the course of interactions by Adv to obtain its corresponding
valid group signature.

By the descriptions of the above three probabilistic polynomial time algo-
rithms, for a new message m (not queried by Adv), due to the Theorem 1 in
[13], we may with respect to public key fi make use of the random transcripts
of GM and SIGN simulator respectively

σ and ψ

as the auxiliary inputs, and then run the probabilistic polynomial time algo-
rithm Adv twice. At the same time, we use the different values of hash function
H1(m, ·): h1 and h2. Therefore, due to the assumption on Adv(that is, it is
able to output valid group signatures.), we can obtain two different valid group
signatures on message m with respect to public key fi:

A1, B1, fi (4)

and
A1, B2, fi (5)



Since we used the different hash values, it is easy to see

B1 6= B2.

Therefore, due to the verification algorithm V ERI, by the equation (5.3) we
have:

e(A1, fiB1) = e(fiPpub, Qfi)γ1; (6)

By the equation (5.4) we have:

e(A1, fiB2) = e(fiPpub, Qfi
)γ2. (7)

where
γ1 = e(A1, h1);

γ2 = e(A1, h2).

Therefore, we can by use of equation (5.5) and (5.6) respectively arrive at:

e(A1, fiB1)
e(A1, fiB2)

=
e(fiPpub, Qfi)γ1

e(fiPpub, Qfi
)γ2

;

Hence,
e(A1, fi(B1 −B2)) = γ1γ

−1
2 ;

By the computations of γ1 and γ2, and the randomness of h1 and h2, we may
understand:

γ1γ
−1
2

is a random element of the finite group G2.
Therefore, given a point A1 in the finite group G1, for any element g in G2,

we may use a probabilistic polynomial time algorithm to find:

F = fi(B1 −B2)

such that:
e(A1, F ) = g.

where g = γ1γ
−1
2 . Evidently, that contradicts the assumption of assumption of

Inversion of Weil Pairings. Therefore, the theorem concludes.

5.3 Anonymity

In identity-based group signatures, the anonymity means that any user outside
of the signing group cannot identify the membership of the original signer even
though the user can check the validity of the group signature.

In this subsection, we discuss the anonymity property of the new identity-
based group signature scheme. Given a valid group signature

{A,B, fi},
since the group membership credential ti is privately held by Ufi

, any user is
not able to identify the real identification of Ufi

. On the other hand, because of
the difficulty of elliptic curve discrete logarithm problem, any user is not able to
work out ti by use of the group public key.



5.4 Exculpability

Neither a group member nor the group manager can sign on behalf of other group
members. In fact, due to the secure channel between authorized members and the
group manager, ski = aQfi

and certi are secretly communicated. Additionally,
the value b is privately held only by Ufi . Therefore, for any authorized member
Ufj , she does not know the personal secret key {ski, b} of the authorized member
Ufi

. Hence, Ufj
cannot on behalf of Ufi

output a group signature A,B, fi such
that

e(A, fiB) = e(fiPpub, Qfi
)e(A,H1(m,A)) (8)

At the same time, the group manager GM cannot represent or personate Ufi to
output valid group signatures. In fact, b is secretly chosen by Ufi

. Therefore, due
to the difficulty of integer factor problem, GM is not able to work out b from
bfi ≡ 1modϕ(n).

5.5 Traceability

The group manager is always able to open a valid signature and identify the
actual signer in case of disputes. Given a valid group signature {A,B, fi}. By the
group membership credential tfi

( related to fi) and the committed property of
the Schnorr identification protocol, GM can then identify the real identification
of the corresponding authorized group member.

6 Performance

When the new identity-based group signature scheme is put into practice for
application, the performance is dominated by the signing algorithm and the
verification algorithm. As to the verification algorithm, there are two point mul-
tiplications, one modulus multiplication, one hash function evaluation, and two
bilinear pairing computations. Moreover, the verification makes use of the bilin-
earity of the pairings over elliptic curves. As to the signing algorithm, there are
three point multiplications and one hash function evaluation. There is no pairing
evaluation in the signature generation.

We note that there is no exponentiation (specially RSA exponentiation) cal-
culations during the generation of signatures. Additionally, there is no exponen-
tiation calculations during the verification of signatures. Previous to this new
scheme, some group signature schemes need to compute exponentiations mod-
ulo a large RSA modulus. Therefore, the new scheme is efficient in terms of
computation cost.

The group public key and group signatures are independent of the number of
the authorized group members. Therefore, our scheme is suited to large groups.
Especially, the new group signatures may be applied in mobile communications
while the new scheme is in the setting of elliptic curves.

In order for application, some papers, for instance [4, 17], provide useful tools
to deal with pairing evaluation, point multiplication or scalar multiplication, and
hash function evaluation in the elliptic curve settings.



7 Conclusion

A novel identity-based group signature scheme is presented. It makes use of
the bilinear pairings over elliptic curves. The size of the group public key is
independent of the size of the underlying group. Also, the length of a group
signature is independent of the number of the underlying group. In addition, the
signing computation does not encompass RSA signatures. Therefore, the new
scheme is claimed to be efficient. At the same time, the proof of security against
adaptive forgeability is presented in this paper.
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