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Abstract In this contribution we extend Kalman-filter theory by introducing a new
recursive linear Minimum Mean Squared Error (MMSE) filter for dynamic systems
with unknown state-vector means. The recursive filter enables the joint MMSE pre-
diction and estimation of the random state vectors and their unknown means, respec-
tively. We show how the new filter reduces to the Kalman-filter in case the state-vector
means are known and we discuss the fundamentally different roles played by the in-
titialization of the two filters.

Keywords Minimum mean squared error (MMSE), Best linear unbiased estimation
(BLUE), Best linear unbiased prediction (BLUP), Kalman filter, BLUE-BLUP
recursion

1 Introduction

The minimum mean squared error (MMSE) criterion is a popular criterion for de-
termining estimators and predictors. Depending on the class of functions considered,
different MMSE predictors exist. The conditional mean achieves the smallest MSE
and is therefore the best predictor (BP) of all. Within the class of linear functions
however, it is the best linear predictor (BLP) that achieves the smallest MSE.

The Kalman filter is a recursive MMSE filter, which has found a widespread
usage in various Earth science disciplines (Grafarend, 1976; Sanso, 1980; Bertino
et al, 2002; Marx and Potthast, 2012). It is used, for example, in deformation and
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earth-orientation studies (Gross et al, 1998; Ince and Sahin, 2000), in physical and
space geodesy (Grafarend and Rapp, 1984; Sanso, 1986; Herring et al, 1990), and in
hydrology and atmospheric studies (Ferraresi et al, 1996; Cao et al, 2006; Acharya
et al, 2011).

In the literature, the recursive Kalman-filter is derived as either a BP or a BLP,
see e.g., Kalman (1960); Gelb (1974); Kailath (1981); Candy (1986); Brammer and
Siffling (1989); Jazwinski (1991); Gibbs (2011). Both these predictors however, re-
quire the mean of the to-be-predicted random vector to be known. This is why in the
derivation of the Kalman filter the mean of the random initial state-vector is assumed
known, see e.g., Sorenson (1966, p. 222), Kailath (1974, p. 148), Maybeck (1979,
p. 204), Anderson and Moore (1979, p. 15), Stark and Woods (1986, p. 393), Bar-
Shalom and Li (1993, p. 209), Kailath et al (2000, p. 311), Christensen (2001, p.
261), Simon (2006, p. 125), Grewal and Andrews (2008, p. 138). Hence, the BP, the
BLP, nor the Kalman filter, are applicable in case the mean of the random state vector
is unknown.

As shown in Teunissen and Khodabandeh (2013), one can do away with this need
to have the means known. In this contribution we build on that fact and develop from
first principles the recursive linear MMSE filter for dynamic systems with unknown
state vector means. This filter generalizes standard Kalman filter theory and it en-
ables the joint recursive prediction and estimation of the random state vector and its
unknown mean, respectively. In the standard Kalman filter set-up, with known state-
vector means, this difference between estimation and prediction does not occur since
one is then only left with predicting the outcomes of the random state vectors. The
generalized filter links BLUE-BLUP with BLP and shows how the outcomes of the
BLUE-BLUP recursions can be directly used in tandem to obtain those of the stan-
dard Kalman filter as special case.

This contribution is organized as follows. In Sect. 2, we briefly review the neces-
sary ingredients of prediction and estimation for linear models. We use the misclosure
vector of the linear model as an ancillary statistic to give a useful joint representation
for the best linear unbiased estimator (BLUE) and the best linear unbiased predictor
(BLUP). This representation is used in Sect. 3 to derive our recursive linear MMSE
filter for dynamic models with unknown state vector means. In Sect. 4 we show how
this generalized filter specializes to that of the Kalman filter in case the state-vector
means are known. It demonstrates how the different recursions are related and inter-
acting, and in what way their quality descriptions differ. We discuss the role of system
noise and that of the error-covariance matrices in the generalized filter. Hereby we
also discuss the fundamentally different role played by the initialization of the two
filters.

Throughout this contribution, the estimator and the predictor are distinguished by
the .̂-symbol and .̌-symbol, respectively, while the joint estimator-predictor is denoted
by using the .̃-symbol. Random variates are indicated by an underscore. Thus x is
random, while x is not. E(.), C(., .) and D(.) denote the expectation, covariance and
dispersion operators, respectively. Thus E([x−E(x)][x−E(x)]T ) = C(x,x) = D(x).
The norm of a vector is denoted as ||.||. Thus ||.||2 = (.)T (.).
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2 Estimation and Prediction in linear models

2.1 Linear unbiased statistics

Consider the linear model [
y
z

]
=

[
A
Az

]
x+
[

e
ez

]
(1)

with known matrices A ∈ Rm×n, Az ∈ Rk×n, zero-mean E([eT eT
z ]

T ) = 0, and known
dispersion

D(

[
y
z

]
) =

[
Qyy Qyz
Qzy Qzz

]
(2)

It is assumed that rankA= n, Qyy is positive definite and the nonrandom vector x∈Rn

is unknown.
It is our aim to use a linear unbiased statistic of y to estimate the unknown mean

z̄ = Azx and to predict the outcome of z = z̄+ ez. In order to perform the estimation
and prediction jointly, we define the target vector Z = [z̄T ,zT ]T .

Let G (y) = Fy+ f and GJ(y) = FJy+ fJ be two arbitrary linear unbiased statistics
for Z . Then it follows from the condition of unbiasedness that the expectation of their
difference satisfies E(GJ(y)−G (y)) = (FJ−F)Ax+( fJ− f ) = 0 for all x. Hence,

FJ = F + JBT , and fJ = f (3)

for some matrix J ∈R2k×(m−n), where B is an m×(m−n) basis matrix of the orthogo-
nal complement of the range space of A, BT A = 0, or equivalently, B is a basis matrix
of the null space of AT . Using the above representation, we arrive at the following
lemma.

Lemma 1 Let the misclosure of y be given as v = BT y, with B a basis matrix of the
null space of AT . Then any two linear unbiased statistics GJ(y) and G (y) for Z , are
related as

GJ(y) = G (y)+ Jv, for some J ∈ R2k×(m−n) (4)

This lemma shows that any two linear unbiased statistics differ only by a linear func-
tion of the random misclosure vector v.

2.2 MMSE-Estimator and Predictor

We now use representation (4) to establish the connection between any arbitrary
linear unbiased statistic and the one achieving the minimum mean squared error
(MMSE). The error vector εJ =Z −GJ(y), of which the squared norm is to be mini-
mized, consists of the estimation error as well as the prediction error. One may then,
through the choice of matrix J ∈R2k×r, minimize the mean squared norm of the error
vector εJ to obtain the joint MMSE estimator/predictor Z̃ = [ẑT , žT ]T . Recall that
its two components, ẑ and ž, respectively, are referred to as the best linear unbiased
estimator (BLUE) and the best linear unbiased predictor (BLUP), see e.g.,Goldberger
(1962); Anderson and Moore (1979); Stark and Woods (1986); Simon (2006); Teu-
nissen (2007). The idea is finalized in the following theorem.
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Theorem 1 Let G (y) be an arbitrary linear unbiased statistic for Z . Then the joint
BLUE-BLUP of Z can be computed as

Z̃ = G (y)+QεvQ−1
vv v (5)

with ε = Z −G (y).

Proof Since GJ(y) = G (y)+Jv for some J ∈R2k×(m−n), then E||εJ ||2 = E||ε−Jv||2.
This can be further decomposed as

E||ε− Jv||2 = E||ε−QεvQ−1
vv v− (J−QεvQ−1

vv )v||2
= E||ε−QεvQ−1

vv v||2 +E||(J−QεvQ−1
vv )v||2

since ε−QεvQ−1
vv v is uncorrelated with v. By setting J−QεvQ−1

vv = 0, E||εJ ||2 attains
its minimum, which proves the claim. ut

Theorem 1 implies that the joint BLUE-BLUP error vector ε̃ = Z − Z̃ is uncorre-
lated with the misclosure vector v, i.e. C(ε̃,v) = 0.

3 BLUE-BLUP recursion

In this section the recursive formulation of Theorem 1 is presented. It is based on the
measurement- and dynamic model that forms the basis of the Kalman-filter. How-
ever, instead of the standard assumption of known state-vector means, we assume the
means to be unknown.

3.1 Model assumptions

First we state the assumptions concerning the measurement- and dynamic model.
Accordingly, the observational vector y is generalized to a time series of vectorial
observables, y1, . . . ,yt . Here the role of the to-be-predicted vector z is taken by the
state-vector xt . Hence, it is our aim to estimate the unknown state vector mean xt =
E(xt) and to predict the outcome of the random state-vector xt . It will be shown how
such joint estimation/prediction can be performed recursively.
The dynamic model: The linear dynamic model, describing the time-evolution of the
random state-vector xi, is given as

xi = Φi,i−1xi−1 +di, i = 1,2, . . . , t (6)

with
E(x0) = x0 (unknown), D(x0) = Qx0x0 (7)

and
E(di) = 0, C(di,d j) = Siδi, j, C(di,x0) = 0 (8)

for i, j = 1,2, . . . , t, with δi, j being the Kronecker delta, and where the n×n nonsingu-
lar matrix Φi,i−1 denotes the transition matrix and the random vector di is the system
noise. The system noise di is thus assumed to have a zero mean, to be uncorrelated in
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time and to be uncorrelated with the initial state-vector x0. The transition matrix from
epoch j to i is denoted as Φi, j. Thus Φ

−1
i, j = Φ j,i and Φi,i = In, the identity matrix of

size n.
The measurement model: The link between the random vector of observables yi ∈R

mi

and the random state-vector xi ∈ Rn is assumed given as

yi = Aixi +ni, i = 1,2, . . . , t, (9)

with
E(ni) = 0, C(ni,n j) = Riδi, j (10)

and
C(ni,x0) = 0, C(ni,d j) = 0 (11)

for i, j = 1,2, . . . , t. Thus the zero-mean measurement noise ni is assumed to be uncor-
related in time and to be uncorrelated with the initial state-vector x0 and the system
noise di. Matrix A1 of (9) is assumed to be of full column rank.

3.2 The three-step recursion

In the following, to show on which set of observables estimation/prediction are based,
we use the notation x̃t|[τ] = [x̂T

t|[τ], x̌T
t|[τ]]

T when based on y
[τ]

= [yT
1 , . . . ,y

T
τ
]T . The

variance matrix of the joint estimation-prediction error

ε̃ t|[τ] = [(xt − x̂t|[τ])
T , (xt − x̌t|[τ])

T ]T ,

will be denoted by P̃t|[τ].
Before forming the recursive counterpart of Theorem 1, an appropriate represen-

tation of the random misclosure vector v, defined in lemma 1, must be formulated.

Lemma 2 Let the linear model E(y
[t]) = A[t],τ xτ , t = 1,2, . . ., be structured by those

given in (6) and (9). That is, y
[t] = [yT

[t−1], yT
t ]

T , A[t],τ = [AT
[t−1],τ , AT

t,τ ]
T with Ai,τ =

AiΦi,τ . Then there exists a representation of v[t] = BT
[t]y[t] as

v[t] =
[

v[t−1]
vt

]
=

[
BT
[t−1]y[t−1]

yt −At x̌t|[t−1]

]
(12)

with B[t−1] and B[t] being basis matrices of the null spaces of AT
[t−1],t and AT

[t],t , re-
spectively.

Proof Matrix BT
[t] can be represented as

BT
[t] =

[
BT
[t−1] 0

−AtA−[t−1],t I

]
, t = 2,3, . . . (13)
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where A−
[t−1],t denotes an arbitrary left-inverse of A[t−1],t , i.e. A−

[t−1],tA[t−1],t = In.
Hence,

BT
[t]y[t] =

[
[BT

[t−1]y[t−1]]
T , [yt −AtA−[t−1],ty[t−1]]

T
]T

(14)

The lemma is proven if A−
[t−1],t can be chosen such that A−

[t−1],ty[t−1] is the BLUP of

xt based on y
[t−1]. Let A−

[t−1],t therefore be of the form

A−[t−1],t = A+
[t−1],t +HBT

[t−1] (15)

for some H and where A+
[t−1],t is another left-inverse of A[t−1],t . Then, since A+

[t−1],ty[t−1]
is a linear unbiased statistic for xt based on y

[t−1], it follows from Theorem 1 that ma-

trix H can always be chosen such that A−
[t−1],ty[t−1] = x̌t|[t−1]. ut

We are now in a position to present the three-step procedure of the BLUE-BLUP
recursion. In each step, use is made of Theorem 1, i.e. the MMSE-estimator/predictor
is obtained from the sum of an unbiased linear statistic G and a linear function of v[t]
in (12).

Initialization (t = 1): We start with y1 = A1x1 + n1. Since the random vector v1 =

BT
1 y1 = BT

1 n1 is uncorrelated with the state-vector x1, we choose the following linear
unbiased statistic

G (y1) 7→U(AT
1 R−1

1 A1)
−1AT

1 R−1
1 y1 (16)

with U = [In, In]
T .

Using the identity BT
1 A1 = 0, the zero-covariance property C(AT

1 R−1
1 y1,v1) = 0

follows as well. Thus the joint estimation-prediction error [xT
1 ,x

T
1 ]

T −G (y1) is uncor-
related with v1, meaning that the proposed statistic G (y1) itself is the joint BLUE-
BLUP x̃1|1 = [x̂T

1|1, x̌
T
1|1]

T . The error variance matrix P̃1|1 also follows by an application
of the variance propagation law to

ε̃1|1 =U(x1− x̂1|1)+ [In,0]T (x1− x1)

This, together with Qx1x1 = Φ1,0Qx0x0ΦT
1,0 +S1, results in

P̃1|1 =U(AT
1 R−1

1 A1)
−1UT +blockdiag(Qx1x1 ,0), (17)

since D(x1− x̂1|1) = (AT
1 R−1

1 A1)
−1 and C(x1,x1− x̂1|1) = 0

Time update: In case of the time update step, we set G as

G (y
[t−1]) 7→ Φ̃t,t−1x̃t−1|[t−1] (18)

with Φ̃t,t−1 = blockdiag(Φt,t−1,Φt,t−1). The corresponding joint estimation-prediction
error can be expressed as

[xT
t ,x

T
t ]

T −G (y
[t−1]) = Φ̃t,t−1ε̃ t−1|[t−1]+[0, In]

T dt (19)
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The estimation-prediction error ε̃ t−1|[t−1] is uncorrelated with v[t−1] of (12) (cf. The-
orem 1). Given the assumptions (8), (10) and (11), the system noise dt is also un-
correlated with the previous observables, thus with any linear functions thereof, i.e.
C(dt ,v[t−1]) = 0. This confirms the zero-covariance property between the estimation-
prediction error (19) and v[t−1]. The BLUE-BLUP time-update is thus nothing else
but the statistic given in (18).

With C(ε̃ t−1|[t−1],dt)= 0, the error variance matrix P̃t|[t−1] is obtained by applying
the variance propagation law to the representation of ε̃ t|[t−1] given in (19). This yields

P̃t|[t−1] = Φ̃t,t−1P̃t−1|[t−1]Φ̃
T
t,t−1 +blockdiag(0,St) (20)

Measurement update: For the measurement-update, the BLUE-BLUP based on the
data vector y

[t−1] is taken as the linear unbiased statistic of the data vector y
[t], that is

G (y
[t]) 7→ x̃t|[t−1] (21)

Now we make use of the representation of (12) by which vt can also be re-written as

vt = Ãt ε̃ t|[t−1]+nt , with Ãt = At [0, In] (22)

Given the assumptions (8), (10) and (11), the measurement noise nt is uncorrelated
with the previous observables and the state-vectors. This, together with (22), yields
C(ε̃ t|[t−1],vt) = P̃t|[t−1]ÃT

t . Combining the results with C(ε̃ t|[t−1],v[t−1]) = 0, an appli-
cation of Theorem 1 gives finally

x̃t|[t] = G (y
[t])+ P̃t|[t−1]Ã

T
t Q−1

vt vt vt (23)

With C(ε̃ t|[t−1],nt) = 0, an application of the variance propagation law to (22) pro-
vides the following expression of the variance matrix Qvt vt

Qvt vt = Rt + Ãt P̃t|[t−1]Ã
T
t (24)

Using the identity ε̃ t|[t] = ε̃ t|[t−1]− P̃t|[t−1]ÃT
t Q−1

vt vt vt , the error variance matrix P̃t|[t]
reads

P̃t|[t] = P̃t|[t−1]− P̃t|[t−1]Ã
T
t Q−1

vt vt Ãt P̃t|[t−1] (25)

since C(ε̃ t|[t−1],vt) = P̃t|[t−1]ÃT
t .

The structure of the above recursive procedure has been summarized in Theorem 2.

Theorem 2 (Recursive BLUE-BLUP) The three steps of the BLUE-BLUP recur-
sion are given as follows.

Initialization:
x̃1|1 =Ux̂1|1,

P̃1|1 =UP1|1UT + Q̃x1x1

(26)

with U = [In, In]
T , x̂1|1 = (AT

1 R−1
1 A1)

−1AT
1 R−1

1 y1, P1|1 = (AT
1 R−1

1 A1)
−1, and Q̃x1x1 =

blockdiag(Qx1x1 ,0).
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Gain matrix
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t
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(BLUE)

(BLUP)
Time update

Measurement update

(a)

(BLUE)

(BLUP)

_
t

M (BLP)+
Gain matrix

(b)

Fig. 1 (a) BLUE-BLUP recursion: measurement- and time-update, with gain matrices Gt =Ct|[t−1]AT
t Q−1

vt vt

and Kt = Pt|[t−1]AT
t Q−1

vt vt ; (b) BLP from the BLUE and BLUP, with gain matrix Mt =Ct|[t]Q
−1
t|[t].

Time-update:

x̃t|[t−1] = Φ̃t,t−1x̃t−1|[t−1],

P̃t|[t−1] = Φ̃t,t−1P̃t−1|[t−1]Φ̃
T
t,t−1 + S̃t

(27)

with transition matrix Φ̃t,t−1 = blockdiag(Φt,t−1,Φt,t−1) and system noise variance
matrix S̃t = blockdiag(0,St).

Measurement-update:

x̃t|[t] = x̃t|[t−1]+ K̃tvt ,

P̃t|[t] = (I2n− K̃t Ãt)P̃t|[t−1]
(28)

with vt = yt− Ãt x̃t|[t−1], Ãt = At [0, In], Qvt vt = Rt +AtPt|[t−1]AT
t , and gain matrix K̃t =

P̃t|[t−1]ÃT
t Q−1

vt vt . ♦

With the use of the partitioning x̃t|[t] = (x̂T
t|[t], x̌

T
t|[t])

T and K̃t = (GT
t ,K

T
t )

T , the mech-
anism of the BLUE-BLUP recursion is illustrated with the block diagram given
in Fig. 1 (a). It shows that, in contrast to the BLUP recursion, the BLUE-part of
the BLUE-BLUP recursion cannot stand on its own. It requires vt = yt −At x̌t|[t−1],
and therefore the BLUP x̌t|[t−1].

3.3 Role of the system noise

As the expressions of (26) and (27) show, the BLUE and BLUP both have the same
initialization (x̂1|1 = x̌1|1) and the same time-update structure (Φ̃t,t−1 = blockdiag(Φt,t−1,Φt,t−1)).
They differ however in their error variance matrices, which in turn makes their measur-
ement-updates different. As the structure of P̃t|[t−1] in (27) shows, the difference be-
tween the BLUE and the BLUP is only driven by the system noise. This difference
starts to be felt in the measurement-update of the time instance t = 2, where the cor-
responding BLUE/BLUP components of the partitioned gain matrix K̃t = [GT

t , KT
t ]

T

start deviating from each other (i.e. Gt 6= Kt ). Would the system noises be absent
(i.e. St = 0 ∀t), then Gt = Kt , ∀t, thus making the outcomes of the recursive BLUE
identical to that of the recursive BLUP.
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Fig. 2 Left-panel: Estimation gain values (in red) versus their prediction counterparts (in green) for two
different values of α = 0.50 (triangles) and α = 0.05 (circles) over time. Right-panel: The difference in
the gain values (i.e. Kt −Gt ) for different values of α over time.

Example As illustration of the stated system noise role, we consider as example
an observed time-series of random-walk noise with unknown trend. The underlying
model follows from (9) and (6) by setting (n = 1)

At = 1, Φt,t−1 = 1, ∀ t (29)

We further assume the variance of the system noise to be related by that of the mea-
surement noise, say σ2, via the nonnegative scalar α as

Rt = σ
2, St = α σ

2, ∀ t (30)

Employing the BLUE-BLUP recursion, the estimation and prediction gain values can
be shown to read

Gt =
1

∑
t
i=1 wi

, Kt =
wt

∑
t
i=1 wi

(31)

where the nonnegative weights wt , t = 1,2, . . ., as polynomials of α , are computed as

w1 = 1+α, wt = wt−1 +α

t−1

∑
i=1

wi, t = 2,3, . . . (32)

Fig. 2 shows the gain values (and their difference) for different values of α . As shown,
the difference between the two gain values is insignificant for small values of α , while
the gain values deviate from each other by increasing α (right-panel).

The identities in (31) show that the estimation gain values, in this example, get
smaller faster than their prediction counterparts, that is Gt ≤ Kt (see also Fig. 2, left-
panel).This can be explained as follows. As stated, the estimation target vector is the
unknown mean xt which, in this example, does not change over time (i.e. Φt,t−1 = 1).
Therefore, as the information content in the data vectors yt is accumulated, the gain
in improving the estimator due to the upcoming data gets less. In case of prediction
however, the target vector is an outcome of the state-vector xt . Thus the gain in im-
proving the predictor does generally rely on the observables in time. In the extreme
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case when the time instance tends to infinity, the steady-state gain values follow,
namely

lim
t→∞

Gt = 0, lim
t→∞

Kt =
1
2
(
√

α2 +4α−α) (33)

According to (33), as the filter converges to its steady-state form, the BLUE x̂t|[t] does
not improve any more by accumulating further data. In case of prediction however,
the constant gain values are generally different from zero meaning that the BLUP
x̌t|[t] still benefits from the further data. The steady-state error variance matrix of the
joint BLUE-BLUP reads similarly

lim
t→∞

P̃t|[t] =

[
σ2

x1
0

0 0

]
+

1
2
(
√

α2 +4α−α)

[
σ2 0
0 σ2

]
(34)

with σ2
x1
= σ2

x0
+ασ2 being the variance of the state-vector x1.

3.4 Role of the estimation-error variance matrix

To appreciate the contribution to the BLUE-BLUP recursion of the entries of the joint
estimation-prediction error variance matrices, we partition P̃t|[t] as

P̃t|[t] =

[
Qt|[t] Ct|[t]
CT

t|[t] Pt|[t]

]
, t = 1,2, . . . (35)

with Qt|[t] =D(xt− x̂t|[t]) and Pt|[t] =D(xt− x̌t|[t]), the error-variance matrices of esti-
mation and prediction, and Ct|[t] = C(xt− x̂t|[t],xt− x̌t|[t]) their error cross-covariance.
A similar partitioning is used for P̃t|[t−1]. From Theorem 2 follows then:
Initialization:

P1|1 = (AT
1 R−1

1 A1)
−1,

CT
1|1 = P1|1,

Q1|1 = P1|1 +Qx1x1

(36)

Time-update:
Pt|[t−1] = Φt,t−1Pt−1|[t−1]Φ

T
t,t−1 +St ,

CT
t|[t−1] = Φt,t−1CT

t−1|[t−1]Φ
T
t,t−1,

Qt|[t−1] = Φt,t−1Qt−1|[t−1]Φ
T
t,t−1

(37)

Measurement-update:
Pt|[t] = (In−KtAt)Pt|[t−1],
CT

t|[t] = (In−KtAt)CT
t|[t−1],

Qt|[t] = Qt|[t−1]−GtAtCT
t|[t−1]

(38)

with the gain matrices Gt =Ct|[t−1]AT
t Q−1

vt vt and Kt = Pt|[t−1]AT
t Q−1

vt vt . This shows that
the P- and C-matrices are not impacted by the error-estimation variance matrices
Q. In particular note, that neither the estimation gain matrix Gt , nor the prediction
gain matrix Kt , depend on the initial uncertainty D(x1) = Qx1x1 . This implies that the
numerical sampling outcome of the BLUE-BLUP recursion is invariant for changes
in Qx1x1 . This variance matrix, and therefore also Qx0x0 and S1, are thus not needed
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for computing the BLUE-BLUP outcomes x̂t|[t] and x̌t|[t]. The only role played by
Qx1x1 lies in describing how the uncertainty of x1 contributes to the uncertainty of the
estimators at various time instances.

4 Relation to the Kalman filter

In this section we show how the BLUE-BLUP recursion specializes to that of the
Kalman-filter in case the state-vector means are known.

4.1 From BLUE-BLUP to the BLP recursion

Let the mean E(x0) = x0 (cf. (7)) be known. Then E(xt) = xt is known for all times,
since xi = Φi,i−1xi−1, i = 1,2, . . . , t. With all state-vector means known, the need
for estimation disappears and the mean squared error of prediction can be improved.
Hence, the BLP can now take over from the BLUE-BLUP. The BLP of xt , when based
on y1, . . . ,yτ

, is denoted as x̌K
t|[τ] and its error variance matrix is denoted as PK

t|[τ].

Lemma 3 (BLUE-BLUP and BLP) In the presence of data, the BLP x̌K
t|[τ] and its

error variance matrix PK
t|[τ] can be expressed in the BLUE x̂t|τ and BLUP x̌t|τ , and

their error variance matrices Pt|τ and Qt|τ , as

(i) x̌K
t|[τ] = x̌t|[τ]+CT

t|[τ]Q
−1
t|[τ](xt − x̂t|[τ])

(ii) PK
t|[τ] = Pt|[τ]−CT

t|[τ]Q
−1
t|[τ]Ct|[τ]

(39)

In the absence of data, the BLP of xt is given as x̌K
t|[0] = xt , with error variance matrix

PK
t|[0] = Qxt xt .

Proof We first prove (i). With the mean E(xt) = xt known, the misclosure vector v[τ]
extends to v′[τ] = [vT

[τ],(xt − x̂t|[τ])
T ]T . Note, since C(v[τ], x̂t|[τ]) = 0, that the variance

matrix of v′[τ] is blockdiagional. To determine the MMSE-predictor x̌K
t|[τ], we apply

Theorem 1. Accordingly, using G (y
[τ]
) 7→ x̌t|[τ] as the linear unbiased statistic, we get

x̌K
t|[τ] = x̌t|[τ]+C(xt − x̌t|[τ],v

′
[τ])Q

−1
v′
[τ]

v′
[τ]

v′[τ]
= x̌t|[τ]+C(xt − x̌t|[τ],xt − x̂t|[τ])Q

−1
t|[τ](xt − x̂t|[τ])

(40)

since Qv′
[τ]

v′
[τ]

is blockdiagonal and C(xt − x̌t|[τ],v[τ]) = 0. The result (i) now follows,

since Ct|[τ] = C(xt − x̂t|[τ],xt − x̌t|[τ]) by definition.
To prove (ii), recall that the MMSE prediction error is uncorrelated with the mis-

closure vector (cf. Theorem 1). Hence, the prediction error of x̌K
t|[τ] is uncorrelated

with v′[τ] and thus also with xt − x̂t|[τ]. With C(xt − x̌K
t|[τ],xt − x̂t|[τ]) = 0 and (i), the

variance matrix of xt − x̌K
t|[τ] follows as given in (ii). ut
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This lemma shows how the BLP can be obtained from the BLUE, the BLUP and
the known state-vector mean xt . This is illustrated in the block diagram given in
Fig. 1 (b). As the BLP makes use of the known mean xt , it is a better predictor
than the BLUP, i.e. PK

t|[τ] ≤ Pt|[τ] (cf. (39)). Also note that the BLP prediction error
is uncorrelated with the BLUE estimation error, i.e. C(xt − x̌K

t|[τ],xt − x̂t|[τ]) = 0.
We now use the above lemma to determine the recursive form of the BLP x̌K

t|[τ],
thus giving the Kalman filter. This will also show how the Kalman gain matrix KK

t is
formed from the gain matrices Kt , Gt and Mt (cf. Fig. 1).

Lemma 4 (The Kalman Filter) The three steps of the BLP recursion are given as
follows.

Initialization:
x̌K

0|0 = E(x0) = x0,

PK
0|0 = D(x0− x̌K

0|0) = Qx0x0
(41)

Time-update:
x̌K

t|[t−1] = Φt,t−1x̌K
t−1|[t−1]

PK
t|[t−1] = Φt,t−1PK

t−1|[t−1]Φ
T
t,t−1 +St

(42)

Measurement-update:
x̌K

t|[t] = x̌K
t|[t−1]+KK

t vK
t

PK
t|[t] = (In−KK

t At)PK
t|[t−1]

(43)

with vK
t = yt −At x̌K

t|[t−1], QvK
t vK

t
= Rt +AtPK

t|[t−1]A
T
t , and Kalman gain matrix

KK
t = Kt −MtGt

= PK
t|[t−1]A

T
t Q−1

vK
t vK

t

(44)

Proof As the mean x0 is known, the best predictor of x0 in the absence of data is the
mean. Hence, the initialization is given as in (41). To prove the time-update (42), first
note that

x̌t|[t−1] = Φt,t−1x̌t−1|[t−1]
(xt − x̂t|[t−1]) = Φt,t−1(xt−1− x̂t−1|[t−1])

CT
t|[t−1]Q

−1
t|[t−1] = Φt,t−1(CT

t−1|[t−1]Q
−1
t−1|[t−1])Φ

−1
t,t−1

(45)

where the last equation follows from (37). Substitution of (45) into the expression
of (39) for τ = t − 1, gives x̌K

t,|[t−1] = Φt,t−1[x̌t−1|[t−1] +CT
t−1|[t−1]Q

−1
t−1|[t−1](xt−1 −

x̂t−1|[t−1])] = Φt,t−1x̌K
t−1|[t−1], and thus the time-update (42). To prove (43), we first

substitute x̌t|[t] = x̌t|[t−1]+Ktvt , x̂t|[t] = x̂t|[t−1]+Gtvt , and Mt =CT
t|[t]Q

−1
t|[t] into x̌K

t|[t] =

x̌t|[t]+CT
t|[t]Q

−1
t|[t](xt − x̂t|[t]) (cf. (39) for τ = t). This gives

x̌K
t|[t] = x̌t|[t−1]+(Kt −MtGt)vt +CT

t|[t]Q
−1
t|[t](xt − x̂t|[t−1]) (46)

From the last two expressions of (38) follows

CT
t|[t]Q

−1
t|[t] = [In− (Kt −MtGt)At ]CT

t|[t−1]Q
−1
t|[t−1] (47)
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Substitution into (46) gives, with (39) for τ = t−1,

x̌K
t|[t] = x̌K

t|[t−1]+(Kt −MtGt)[vt −At(x̌K
t|[t−1]− x̌t|[t−1])] (48)

from which the measurement update (43), with gain matrix (44), follows. ut

Apart from the initialization, the recursive structure of the Kalman filter is the same
as that of the BLUE-BLUP recursion. The initialization is different as the Kalman fil-
ter assumes the state-vector means known. The estimation of the mean E(xt) = xt is
therefore not needed and the initialization can start with the known mean E(x0) = x0.
As a consequence, the initial uncertainty needs to be specified through Qx0x0 (cf.
(41)), which takes the role of the error variance matrix PK

0|0. The BLUE-BLUP initial-
ization however, does not require this variance matrix. As shown earlier, the BLUE-
BLUP outcomes, x̂t|[t] and x̌t|[t], do not depend on Qx0x0 . Hence, with the BLUE-
BLUP recursion, the same results are obtained, irrespective of the choice made for
this variance matrix. This is in marked contrast to the Kalman filter where the results
are affected by PK

0|0 = Qx0x0 .

5 Conclusion

In this contribution we introduced a new recursive filter that does away with the need
to have the state vector means of a dynamic system known. The recursive filter en-
ables the joint linear MMSE prediction and estimation of the random state vectors and
their unknown means, respectively (cf. Fig. 1). We discussed the role of the system
noise and of the estimation-error variance matrix in the joint prediction and estima-
tion of the filter. We showed how the filter specialize to the Kalman-filter in case the
state-vector means are known and determined the relation between their respective
error variance matrices and gain matrices. We also discussed the fundamentally dif-
ferent roles played by the intitialization of the two filters. In particular, it was shown
that for the new filter the initial variance-matrix Qx0x0 need not be known, this in
contrast to the Kalman-filter.
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