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Abstract: 7 

As an effective measurement indicator of bubble stability, bubble size structure is believed to 8 
be closely related to flotation performance in copper roughing flotation. Moreover, reagent dosage 9 
has a very important influence on the bubble size structure. In this paper, a novel reagent dosage 10 
predictive control method based on probability density function (PDF) of bubble size is proposed 11 
to implement the indices of roughing circuit. Firstly, the froth images captured in the copper 12 
roughing are segmented by using a two-pass watershed algorithm. In order to characterize bubble 13 
size structure with non-Gaussian feature, an entropy based B-spline estimator is hence 14 
investigated to depict the PDF of the bubble size. Since the weights of B-spline are interrelated 15 
and related to the reagent dosage, a multi-output least square support vector machine (MLS-SVM) 16 
is applied to establish a dynamical relationship between the weights and the reagent dosage. 17 
Finally, an entropy based optimization algorithm is proposed to determine reagent dosage in order 18 
to implement tracking control for the PDF of the output bubble size. Experimental results can 19 
show the effectiveness of the proposed method. 20 

 21 
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1 Introduction 25 

Froth flotation is the most important method to separate valuable minerals from ore by means 26 

of the physical and chemical properties of mineral surfaces. Generally, flotation reagents to27 

improve or decrease mineral’s flotability are added to make effective separation of valuable28 

minerals. In fact, the reagent dosage has a critical influence on successful flotation. On one hand,29 

less reagent dosage decreases valuable mineral’s flotability, and results in lower concentrate grade30 

and recovery of the plant. Excessive reagent dosage, on the other hand, is likely to lead to worse31 

grade (or recovery) and cause the product deficit. In addition, an increase of 1%~2% in recovery32 

or grade is economically remarkable in copper flotation plants. Therefore, the reagent dosage33 

control is a very important aspect of the flotation strategy in commercial plants.34 

In recent years, the reagent dosage control has attracted great interest of both academic and 35 

industrial researchers. In Hodouin et al. (2000) a feedforward and feedback prediction control36 

algorithm was developed to control the reagent dosage. The reagent addition is determined37 

according to ore amount and property by using a feedforward control strategy, and then the dosage38 

is moderately adjusted by feedback control. It also shows that optimization and control of mineral39 
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processing couldn't be performed without a minimum amount of information on the input 1 

disturbances, the process states, and the final product quality. In Naik et al. (2005) a regression2 

model is established to predict the grade and recovery of combustible material for different3 

reagent conditions by quantifying the effect of sodium meta silicate, collector and frother with4 

factorial experiment data. In Suichies et al. (2000) a generalized predictive control (GPC)5 

algorithm is presented and this algorithm has been applied to many sulfide flotation circuits in the6 

Brunswick mining concentrator. It has proved that the GPC controller performs well on the7 

flotation circuits. Although MPC seems to be the ideal solution for high quality control, Bergh and8 

Yianatos (2011) indicates that the benefits of MPC should not be lost without the actual plant9 

constraints.10 

In practice, the operators of flotation plant monitor and optimize reagent additions of the 11 
flotation process mainly by observing the froth appearance characteristics such as bubble size and 12 
color owing to the lack of testing equipments such as X-ray fluorescence analyzers. 13 
Conventionally, the reagent dosage control heavily depends on the frequent inspection of froth 14 
views and manipulation of experienced operators, which often causes serious delayed responses. 15 
In Kaartinen et al. (2006), the correlations between recovery and froth appearance characteristics 16 
is established and subsequently a rule-based feedback control strategy is designed. It is shown that 17 
the image-based reagent dosage control strategy is possible to achieve considerable financial 18 
benefits in terms of improved recovery. 19 

As one of the dominant visual features, bubble size structure has a great effect on the 20 
probability of collision between mineral particles and bubbles, as well as the adhesion of the 21 
particles to the bubbles (Aldrich and Feng, 2000). Flotation kinetics shows that the transfer 22 
processes of mineral particles take place in the pulp phase (from the pulp phase to the froth phase) 23 
and in the froth phase (from the froth phase to the concentrate launder) by particle–bubble 24 
attachment. All of these sub processes depend strongly on bubble size. If the bubble size is too 25 
large, the bubbles easily burst, and the valuable mineral particles attached the burst bubbles will 26 
fall into the tailings, resulting in the reduction of recovery. And vice versa. As an effective 27 
indicator of bubble stability, bubble size structure is believed to be closely related to flotation 28 
performance since the bubble size reflects the extent of bubble coalescence. Many researchers 29 
have investigated the relationship between the bubble size and water recovery, froth recovery, etc. 30 
For example, Neethling et al. (2003) shows that bubble size determines water recovery with an 31 
inverse squared relationship. 32 

It is noticed that the observable bubble size is really the film bubble size on the top of the 33 
34 froth. The bubble size in the collection zone named 3D bubble size is hardly measured in 

35 industrial flotation machine, but is capable to be observed and measured in laboratory flotation 

36 machine. Wang and Neethling (Wang and Neethling, 2009) explores the relationship between the 

37 film bubble size and the 3D bubble size and proved that the difference between film bubble size 

38 distribution and 3D bubble size distribution are not remarkable such that the mentioned bubble 

39 size distribution in the paper is really the film bubble size distribution. 

It is beyond doubt that bubble size is a key parameter in froth flotation. Bubble size closely 40 

relates to the operation parameters such as airflow rate, impeller speed, pulp level, reagent dosage41 

(Grau and Heiskanen, 2005). Little changes of the impeller speed and the airflow rate will have42 
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less effect on bubble size for Wemco's flotation cell with self-aspirating aeration mechanisms 1 

(Girgin et al., 2006). Among them, the reagent dosage has very important influence on bubble size.2 

It is commonly believed that the bubble size decreases with an increase in the froth concentration3 

owing to a decrease in the surface tension induced by the addition of surfactants, and at a4 

particular concentration, the bubble size levels off. In Cho and Laskowski (2002) the researchers5 

suggest that the frothers control bubble size by reducing bubble coalescence in the cell and that6 

coalescence be entirely prevented at concentrations exceeding the critical coalescence7 

concentration (CCC) in a dynamic system. In addition to the frother, the collectors also have an8 

influence upon coalescence and evaporation of bubbles by interacting with the frother.9 

Bubble size presents characteristics of random distribution in flotation process. And it is 10 

worth noticing that the PDF of bubble size has been found to be non-Gaussian distribution (Yang,11 

Xu, et al., 2009). Generally, researchers tend to focus on singular statistical features of bubble size12 

such as mean, standard deviation, kurtosis and skewness to characterize bubble size structure.13 

However, it is well known that the features are incapable to represent the entire profile of bubble14 

size distribution with non-Gaussian feature.15 

Except the well-developed minimum variance control, LQG and mean value control, some 16 
researchers explore other random variable distribution control algorithms in order to implement 17 
control and diagnosis of variables with non-Gaussian distribution. In Wang (2000) adopted 18 
B-spline expansions are developed to model PDF of variables with non-Gaussian and 19 
subsequently a BSD based control algorithm is constructed to track the given PDF. In Guo and 20 
Wang (2010) some further innovative and systematical work on modeling and system analysis is 21 
conducted including the structure controller design and fault detection and diagnosis for 22 
non-Gaussian distribution. In Forbes et al. (2004) Gram-Charlier based PDF parameterization 23 
method is proposed and regulatory control synthesis techniques for shaping the PDF of stochastic 24 
process is developed. Weight dynamic model built in Wang (2000), Guo and Wang (2010), Forbes 25 
et al. (2004) is limited to precise linear systems, so these methods are not suitable for the flotation 26 
process with highly nonlinear and complex mechanism. In Yang, Guo, and Wang (2009), a 27 
constrained proportional-integral (PI) tracking control for probability distribution of the output 28 
variable is proposed based on two step neural networks. Although dynamic relationship between 29 
the control input and the weights is built by using dynamic neural network in Yang, Guo, and 30 
Wang (2009), the method which is applied to a linear system is difficult to be directly used for the 31 
flotation process. In Xu, Gui et al. (2011) a flotation process fault detection system based on 32 
output PDF of bubble size distribution is designed, where the distribution is described by a kernel 33 
estimation method. Recently, in Liu, Gui et al. (2013) dynamic bubble size distribution is used to 34 
recognize operate state of reagent addition in copper flotation process.  35 

This work aims to develop bubble size PDF based reagent dosage control for roughing 36 

flotation of Copper flotation plants. Based on PDF modeling work using B-Spline estimator37 

(Wang, 2000; Guo and Wang, 2010; Yang, Guo, and Wang, 2009; Forbes et al., 2004), an entropy38 

based B-Spline estimation technique is investigated to depict the PDF model according to bubble39 

size extracted from froth images of copper flotation. Based on the analysis of the flotation process,40 

PDF of bubble size based reagent dosage predictive control method is firstly proposed to41 

implement the indices of the roughing flotation. The method abundantly takes advantage of the42 
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fact that bubble size structure closely relates to the indices and responds to changes in the reagent 1 

dosage. The novelty of this proposed approach is that the method is using PDF of bubble size2 

rather than a concentrate grade or recovery as a target variable. In addition, instead of by using3 

flotation mechanism, the proposed reagent dosage control method is built by integrating machine4 

vision, random distribution control and predictive control principle. As such, a MLS-SVM model5 

is firstly proposed to establish the relationship between the reagent dosage and bubble size. In6 

order to implement the tracking of the targeted PDF, an entropy based optimization algorithm is7 

then proposed to calculate the reagent dosage.8 

The rest of the paper is organized as follows: a copper flotation circuit of a copper flotation 9 

plant is described in Section 2; Section 3 proposes the bubble size PDF based reagent dosage10 

predictive control to implement PDF tracking of the output bubble size. Experimental results and11 

discussions are presented in Section 4. Section 5 illustrates the conclusion and directions for future12 

research.13 

2 Process description and modeling analysis  14 

2.1 Process description of copper flotation15 

A concise flow diagram of the copper flotation process can be shown in Fig.1. Raw ore is 16 

firstly conveyed to the ball milling. Next, the ball milling breaks the feeding ore into pulp slurry17 

with a suitable particle size (minerals size should be under 200 mesh, i.e., less than 0.074mm).18 

Eligible slurry from ball milling is then fed into an agitated tank, where the valuable mineral19 

particles are selectively coated with hydrophobic chemicals. After being fully agitated, the slurry20 

is fed into flotation cells with self-aspirating aeration mechanisms, where air together with21 

frothing reagents produces a large number of stable bubbles, which travel to the surface of the22 

froth due to buoyancy, carry the valuable mineral particles for their hydrophobicity, and form a23 

froth layer. The valuable mineral particles are skimmed from the froth layer by using natural24 

overflow typically called the concentrate flow. The remaining slurry in the flotation cell will be25 

discharged from the bottom of the flotation cell, resulting in the tailing flow.26 

The copper flotation process contains the roughing circuit, the scavenging circuit and the 27 

cleaning circuit. These circuits will ensure both high grade in the final product and high overall28 

recovery. In order to improve recovery efficiency, the concentrate of the scavenging and the29 

tailing of the cleaning need to be regrinded for re-flotation. Each circuit is used to separate the30 

specific mineral particles from other particles and has an individual 'role'. For example, the31 

roughing circuit carries out more easily floated valuable mineral particles from the gangue by32 

adding Z200. The scavenging circuit separates hard-flotation valuable mineral particles from the33 

gangue by adding butyl xanthates and BC. Therefore, the recovery is more important than the34 

grade in the two circuits. The cleaning circuit, on the other hand, produces the final product, and35 

therefore the grade of the concentrate becomes more important than the recovery. 36 
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1 

Fig.1. Flow diagram of copper flotation process2 

2.2 Modeling analysis of reagent dosage control3 

As the experienced operators point out, the reagent dosage control of the roughing circuit 4 

directly affecting product indices of subsequent flotation circuit such as scavenging circuit and5 

clearing circuit plays a vital role for the overall control strategy. If the reagent dosage is6 

unsuccessfully tuned in roughing circuit, the product indices of subsequent circuits are hardly7 

implemented no matter how their operation parameters are adjusted. Therefore, the first cell of8 

copper roughing circuit in which most reagent dosages are added is usually taken as a control9 

object.10 

In addition, it is noticing that the feed parameters (such as feed grade, feed flow rate, solid 11 

percent, particle size of solid and pH, etc.) modify the flotation performance. Firstly, the criterion12 

of bubble size is closely related to the ore grade. If the ore grade fluctuates markedly, the13 

corresponding reagent dosage need to be regulated and the criterion of the optimal PDF of the14 

bubble size also varies under the same handling capacity of the raw ore. So the ore property is a15 

prerequisite for reagent dosage control. Secondly, feed flow rate, pulp concentration and particle16 

size of solid from grinding should be necessary condition for successful flotation. The parameters17 

vary at all times. If the parameters are properly controlled in the grinding circuit, they will keeps18 

relatively stable and good running of the flotation also keeps relatively stable. Otherwise, the19 

operation variables of flotation need to be regulated to meet production indices of flotation. So the20 

parameters are considered to be disturbance variables.21 

Although developments in the mineral process industry have been made in hardware as well 22 
as in software, It has proved that the development of flotation mechanism model based robust 23 
reagent dosage control system for flotation circuits is quite difficult. Reasons for this include the 24 
inherent complexity, dynamics and nonlinearity of flotation, the lack of testing equipments such as 25 
X-ray fluorescence analyzers and unpredictability of the response of most flotation circuits to 26 
upset conditions. Hodouin et al. (2001) emphasized that mineral processing optimization and 27 
control could not be performed without a minimum amount of information on the input 28 
disturbances, the process states, and the final product quality.  29 

Bubble size structure reflects important process characteristics and responds to changes in the 30 
reagent dosage. Therefore, by employing bubble size as process outputs, it is possible to build a 31 
causal process model that can predict bubble size from the given values of the reagent dosage and 32 
the historical data of bubble size. With this model, the new values of the reagent dosage for 33 
achieving specified bubble size distribution can be obtained via optimization. The novelty of this 34 
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approach consisted that instead of using a concentrate grade or recovery as a target variable, the 1 
method used PDF of bubble size. Since this model was obtained from reagent dosage and bubble 2 
size, no grade measurements are needed.    3 

3 PDF based reagent dosage predictive control  4 

As mentioned above, bubble size of the first cell of roughing circuit is taken as a controlled 5 

object and the reagent dosage is taken as a manipulated variable. The ore property may be a6 

prerequisite for reagent dosage control. The other feed parameters such as feed flow rate, pulp7 

concentration and particle size of solid, etc. are taken as disturbances. In addition, the given PDF8 

of bubble size is determined by process tests and expert knowledge in the same condition as ore9 

property. In practice, the experienced and expert workers monitor flotation running by observing10 

bubble size structure. When bubble size is capable to reflect very good grade according to the11 

workers' experience and expert knowledge during good flotation running, the froth image is12 

captured and processed to be a PDF of bubble size, and the corresponding froth is simultaneously13 

collected and then assayed. As such, a group of data including PDF of bubble size and the14 

corresponding froth grade are obtained. Through a lot of process tests, a great number of groups15 

are obtained. The probability density functions (PDFs) of bubble size are selected and then16 

analyzed to determine the desire PDF of the bubble size by the regression technology if the17 

corresponding froth grade is relatively high.18 

3.1 Model structure19 

The proposed reagent dosage predictive control model structure shown in Fig. 2 mainly 20 

consists of a measurement unit, a multi-output least square support vector machine (MLS-SVM)21 

unit, a feedback correction unit and a reagent dosage optimization control unit. The froth image22 

captured by an industrial camera is segmented into bubble size set by the proposed segment23 

algorithm in the measurement unit. And then the output PDF of bubble size can be estimated by a24 

minimum entropy based B-spline method and be formulated by25 

1 2 1 2
1

( , ) ( ) [ ( ), ( ), , ( )][ , , , ] ( )
n

T
i i n n

i

r y w w B y B y B y B y w w w C y V


      (1)

26 

where ( , )r y w  represents the PDF of bubble size. ( )iB y  is the base function with give order of 27 

the B-spline. iw  represents the corresponding weights. n  is the number of B-spline functions. 28 

1 2( ) [ ( ), ( ), , ( )]nC y B y B y B y   and 1 2[ , , , ]T
nV w w w  . Since the B-spline consists of the base 29 

functions and the corresponding weights, the PDF can be characterized by the weight vector of30 

B-spline if the base functions of B-spline are all fixed. So, the output weight vector of the31 

measurement unit at time k  can be represented as 1 2( ) [ ( ), ( ), , ( )]T
o o o onV k w k w k w k  . 

32 
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Fig.2. Proposed reagent dosage predictive control structure  2 

In Fig.2, the inputs of MLS-SVM model are the reagent dosage ( )u k  and the output weight 3 
vector ( )oV k . The predictive weight vector of MLS-SVM model at time k  can be formulated as 4 

    ( 1) ( ( ), ( ))m oV k f u k V k     (2) 5 

where 1 2( 1) [ ( 1), ( 1), , ( 1)]T
m m m mnV k w k w k w k     , ( )f   represents a nonlinear function. 6 

According to Eq.(1) and Eq.(2), the predictive PDF of MLS-SVM model at time k  can be7 

formulated as8 

( 1) ( ) ( 1) ( ) ( ( ), ( ))m m or k C y V k C y f u k V k        (3) 9 

It is obvious that ( 1)mr k   only relates to the reagent dosage ( )u k  and the output weight 10 

vector ( )oV k  at time k  if the vector ( )C y  is fixed. 11 

In order to inhibit the accumulated error of the output weight vector and improve predictive 12 

accuracy, the feedback correction unit is designed. The output of the unit is formulated as13 

  ( 1) ( 1) ( ) ( 1) ( ) ( )p m v m m oV k V k E k V k V k V k       
14 

(4)
 15 

where 1 2( 1) [ ( 1), ( 1), , ( 1)]T
p p p pnV k w k w k w k     , ( )vE k  represents the error between the 16 

predictive weight vector of the MLS-SVM and the weight vector of the output PDF of bubble size17 

at time k .18 

By using B-spline formula, ( 1)pr k   can be written as 19 

  ( 1) ( ) ( 1)p pr k C y V k        (5) 

20 

It is obvious that ( 1)pr k   only relates to history reagent dosages and output weight vectors 21 

if the vector ( )C y  is fixed. ( 1)pe k   will be 22 

  ( 1) ( 1)p g pe k r r k       (6) 23 

where gr  is the given PDF. 24 

3.2  PDF of bubble size based on B-spline25 

3.2.1 Froth image segment26 

The froth image captured by the camera needs to be segmented. Recently, a great number of 27 

methods have been reported to segment the froth images including valley-edge detection and28 

tracing techniques (Wang, Bergholm and Yang 2003), white spots detection (Wang and Li 2005),29 
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watershed transformation (Bartolacci et al. 2001) and wavelet approach (Liu, Macgregor et al. 1 

2005). However, these methods cannot effectively deal with the copper froth image with large and2 

tiny bubbles. In Runge et al. (2007), it is pointed out that the watershed algorithm in VisioFroth is3 

unable to successfully delineate the bubbles when both large and tiny bubbles were present in a4 

froth image. Botha (1999) shows that the marker of bubble area ratio can be used to determine5 

areas of tiny bubbles. And the texture measure of small number emphasis could be used to6 

determine areas of tiny bubbles. However, this method was deemed unfeasible for our froth image7 

segment due to excessive computation time and the sensitivity to various parameters.8 

  In Forbes (2007), a two-pass watershed algorithm is explored to localize areas of the froth 9 
image with both large and tiny bubbles such that the areas with large and tiny bubbles are 10 
processed with different parameters of watershed algorithm. The bubbles in Fig. 3(c) which are all 11 
more or less of the same size are easy to be segmented. And the bubbles in Fig. 3(a) and 3(b) 12 
containing both big and tiny bubbles are accurately segmented by the proposed method. Overall, 13 
Fig. 3 can show that the algorithm can achieve good segmentation under such conditions. 14 

15 

      (a) (b)     (c) 16 

Fig.3 Froth image is segmented by the proposed method.(a) big and small bubbles (b) large and 17 

tiny bubbles (c) medium and small bubbles 18 

3.2.2 Entropy based B-spline estimation for bubble size19 

The distribution of some random variables can be well approximated by Gaussian, 20 

Exponential, Weibull distribution and etc. However, the distribution of many other random21 

variables such as flotation BSD and paper flocculation size distribution cannot be approximated22 

by those simple distribution forms. Instead of using basic distributions, some authors have23 

developed nonparametric estimation techniques such as histogram, frequency polygon, shift24 

average histogram, kernel method, wavelet method and B-spline model.25 

Among them, the B-spline based estimation method can be used to identify an appropriate 26 

PDF of a random variable from a given sample of data. For a dynamic stochastic system,27 

( ) [ , ]t a b   as the stochastic output and the probability of output ( )r y  lying inside [ , ]a   can28 

be described as29 

( ( ) ) ( )
a

P a t r y dy


        (7) 30 

where ( )r y  is output PDF of the stochastic variable ( )t .31 

 The PDF ( , )r y w of a continuous random variable Y can be formulated as 32 

1

( , ) ( )
n

i i
i

r y w w B y


    (8) 

33 

where iw  represent the weights, n  is the number of B-spline functions used to approximate the 34 
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PDF. ( )iB y  is the base function with give order of the B-spline. The second order B-spline 1 

function is in the form of2 
23

0

( ) ( )
( ) ( ) ( )

( )
s t s t

j j s s
t s s t

y y H y y
B y y y H y y

w y
 

 

 
  

   (9)

3 

3

0

( ) ( )s s u
u

w y y y 


    (10)

4 

where ( )H y  is Heaviside function and 3s j   (Zong and Lam, 1998) . The distribution range5 

of Y is [ , ]c d . Divide the range [ , ]c d  into n  equal divisions. The division points are called the6 

nodes of B-spline functions and denoted by iy , which satisfy 7 

0 1 2 nc y y y y d     
8 

For convenience of calculation, assume that there are two extended nodes 2y , 1y  and 1ny  , 9

2ny   exist at each end, Let 1 2 0y y y    and 1 2n n ny y y   . The PDF in (8) should satisfy two 10 

conditions. The first condition is that the weight iw  should be greater than zero
 
so that the PDF 11 

is always positive in the distribution range. The second condition is that the integral of ( , )r y w12 

over ( , )   should be one, i.e.,13 

3

3

1 1

( , ) ( ) 1
3

j

j

N Ny j j
j j jy

j j

y y
r y w dx w B y dx w



 


 


       (11) 14 

 Thus, in order to find the best model from a set of candidate statistical models, the 15 
asymptotically unbiased estimate of PDF will be 16 

3
( | ) log ( | )

2
f

s

n
ME r y a r y a dy

n
                           (12) 17 

where sn is the number of sample points, fn is the number of free parameters in the model and 18 

equals to N-1 in light of the equality constraint in Eq. (11), and a  is the maximum likelihood 19 

estimate of a . 20 
According to (12) by minimizing measured entropy, the weights will be obtained in the form 21 

of22 

1

( )1

( , )

sn
j j l

j
ls j

w B y
w

n c r y u

      (13)

23 

where 3( ) / 3j j jc y y   , sn presents the amount of given sample, and ( )j lB y  denotes the base 24 

function.25 

Bubble size of every segmented region represents the amount of pixels in the region in term 26 
of a froth image. Before estimation, bubble size is normalized in order to implement PDF 27 
estimation of bubble size. The PDF of bubble size approximated by B-spline function and kernel 28 
is shown in Fig. 4(a). Blue lines represent the base functions of B-spline. Blue dotted lines 29 
represent intermediate functions, which are determined by means of multiplying base functions by 30 
corresponding weight values. Red line represents the PDF of bubble size obtained by summation 31 
of intermediate functions. Green line represents the kernel estimation based PDF of bubble size. It 32 
is shown that all the typical froth size distributions in rough cells tend to have a long tail with 33 
skewness to the left. 34 

As for post segmentation analysis, the number of base functions is essential to depict 35 
accurately PDF of bubble size. The influence of the B-spline number is shown in Fig. 4(b). When 36 
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the numbers of base functions are five and seven, the accuracy will be low and the estimated PDF 1 
can only roughly exhibit the distribution. When the numbers are fifteen and twenty, the estimated 2 
PDF has several peaks, which should be excluded. When the numbers are nine, the estimated PDF 3 
has the best accuracy. A large number of flotation froth images are applied to PDF estimation of 4 
bubble size, and then the results show that the optimal number of base functions is nine. It is seen 5 
from the measured entropy analysis proposed in the above sections that the estimation has the best 6 
accuracy and is very close to the given one when the number is nine. 7 

8 

 (a)  9 

10 

(b) 11 

Fig.4 PDF estimation by entropy based B-spline technology. (a) PDF estimation by B-Spline and kernel (b) PDF 12 

estimation by entropy based B-spline technology, where N presents the B-spline number 13 

3.3  Multi-output LS-SVM based nonlinear model14 

The nonlinear prediction unit in Fig.2 is capable to use principle component analysis (PCA), 15 
partial least squares (PLS), independent component analysis (ICA), fisher discriminant analysis 16 
(FDA), subspace aided approach (SAP) , LS-SVM and neural networks, etc. One basic 17 
assumption for successful application of PCA, PLS and FDA related approaches in the steady 18 
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state is that the process data follow multivariate Gaussian distribution and SAP has relatively high 1 
computation cost (Yin, Ding, et al., 2012). Compared with the methods, LS-SVM has a simple 2 
topological structure and good generalization capacity and replaces convex quadratic 3 
programming problem with convex linear system solving problem, thus largely speeding up 4 
training.  5 

LS-SVM has been successfully applied to the identification and control of dynamic systems. 6 
Despite its potential usefulness, the standard formulation of the LS-SVM could not cope with the 7 
multi-output case. The traditional approach in the multi-output case is that the different outputs are 8 
formulated by LS-SVM formula. The method disregards the underlying (potentially nonlinear) 9 
cross relatedness among different outputs. To overcome the disadvantage, some multi-output 10 
LS-SVM methods have been proposed in Xu, An, et al., 2013; Han, Liu, et al., 2012. When 11 
different outputs have their relationship, these methods can be advantageous to learn all outputs 12 
simultaneously.  13 
3.3.1 Multi-output LS-SVM model14 

When the weights of the PDF always interact on each other, we can add a combined fitting 15 

error to the regression model to measure the effect between these multiple outputs. Giving a16 

training sample set denoted as { ( ), ( 1)}S X k Y k  , where the input vector17 

1 2( ) [ ( ), ( ), , ( )]pX k x k x k x k  , p
ix R represents the reagent dosage and nine weights of the 18 

output PDF of bubble size at time k , and p  is set as 10. The output vector19 

1 2( 1) [ ( 1), ( 1), , ( 1)]ynY k y k y k y k     , ynjy R  represents the predictive weight at time k20 

with dimensionality 9yn  . The multi-output LS-SVM (Han, Liu, etc., 2012) can be formulated 21 

as follows：22 

    1 ( )TY k x k  W      (14) 23 

Where   [ ( ), ( ), ( )]T
i i i ix x x x    , where the nonlinear mapping ( )ix  converts the input 24 

data into a high-dimension space. iW  is a diagonal matrix denoted as 1 2( , , , )yn
i i idiag w w w , 25 

where j
iw  represents the weight.  is bias vector denoted as 1 2[ , , , ]yn Tb b b  , where jb26 

represents the bias. Compared to the single-output model, all of the variables in this model are in27 

the form of matrix.28 

Enlightened by the computation of single-output LS-SVM, we can consider an optimization 29 

problem with constrains of the multi-output one, where the errors come from not only each single30 

output, but also the combined fitting error. The optimization problem can be described as31 

       2 0

1 1 1 1

1 1
min , , ,

2 2

y yn n n nTj j j j j j j
i i

j j i i

J w b e E w w e 
   

        (15) 32 

   s.t. 1,2, ,
Tj j j j

yy w x b e j n    
(16) 33 

  2
1,2, ,T

i i ix i n  W     
(17) 34 
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where j
iw  and jb are the weight and bias, respectively. je  and ( 1, , )j

yj n   is the single 1 

fitting error and the corresponding penalty coefficient, respectively. i  and 0  represents the 2 

combined fitting errors and the penalty coefficient. n  represents total number of samples. i  is 3 

the output vector.4 

To solve the optimization problem, the following Lagrangian function can be constructed, 5 

     

    

0

1 1

2 2

1 1 1

1
, , , , ,

2

1

2

y

y

n nTj j j j j j
i i i i

j i

n n n
j j

i i i i i i
j i i

L w b e E w w

e x

  

 

 

  

 

    

 

  W



   

6 

    
1 1

yn n Tj j j j j
i i i i i

j i

w x b e y 
 

     (18) 7 

where j
i represents the Lagrangian multiplier. 8 

According to the Karush-Kuhn-Tucker condition, the partial derivatives of the variables are 9 

calculated as follows:10 

 

0

2

0 2 1 0

0 2 1 1 0

0 0

0 1 1 0

0 ( )

0

j T j j T j T j
j

T j j T j j
j

i
i

j j j
j

T
i i

i

j j j j
yj

L
w y w b

w
L

y w b
b
L

E

L
e

e
L

x k

L
n b

 



 







         
          
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
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 
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
 

    


D

W

y w e



 

 

 

  





    

  

     (19) 11 

where the row vector 1[1 1 1] n


 , the column vector 1 2[ , , , ]T
n      and the diagonal 12 

matrix 1 2( , , , )nD diag     . Considering the undetermined expression of the nonlinear 13 

mapping, jw is transformed into a mapping combination on high- dimension space, i.e.14 

 
1

n
j j T j

i i
i

w x 


     (20) 15 

and the kernel function with dimensionality n n , selected as a Gaussian radial basis function, is16 

given by17 

         2

|| ||
, exp( )

2
Tj i k

i k i k

x x
x x x x




     (21) 18 

Thus, combining (19)–(21), a full-ranked equation set is obtained to solve  , b and   19 
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  1T

T

2 2 2

2 2 2

j j

j j T j

j j

yn

 


   

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

  



   
   

 

     (22) 1 

Since (22) can be in the form of AX B and A is an invertible matrix, one can solve (22) as2 
1X A B . The regression function prediction based on the multi-output LS-SVM can be3 

formulated as4 

 
1

( ) , 1,2, ,
n

j j j j
i i y

i

f x y x x b j n


     (23) 5 

where j is the number of outputs.6 

Since the weights of the output PDF of bubble size at time k  are known when the model is 7 

used for prediction, the reagent dosage ( )u k  is the only unknown variable. Eq. (23) can be8 

written as:9 

( ( )) ( ( )) 1,2, ,j j j
yy f X k f u k j n    (24) 10 

Eq.(24) shows that the output weight of multi output LS-SVM is only related to the reagent11 

dosage ( )u k .12 

3.3.2 Parameter optimization13 

As for the MLS-SVM model, parameters j , jb , j can be solved by Eq. (22). Other 14 

parameters of the proposed model include the widths ( 1,2, , )j
yj n    of the Gaussian kernel 15 

and the penalty coefficients ( 0,1, , )j
yj n    of the errors. Parameters optimization methods 16 

such as cross validation with grid-search, Bayesian network optimization, gradient descent17 

algorithm, and particle swarm optimization (PSO) can be applied to obtain these parameters.18 

Among them, the PSO has been successfully applied to function optimization, artificial network19 

training and fuzzy system control, etc. Since the PSO algorithm is robust and fast in solving20 

non-linear, non-differentiable and multi-modal problems, the PSO algorithm is proposed to select21 

the hyper-parameters of the model.22 

 Let ,1 , ,( , , , , )i i i d i Dx x x x
    be the ith  particle in a D-dimensional space. The best 23 

previous position of the ith  particle is recorded and represented as ,1 , ,( , , , , )i i i d i Dp p p p
   ,24 

which gives the best fitness value and is also called pbest . The index of the best pbest  among25 

all the particles is represented by the symbol g . The location gP  is called gbest . The velocity 26 

for the ith  particle is represented as ,1 , ,( , , , , )i i i d i Dv v v v
   . The PSO algorithm can change the27 

velocity and location of each particle towards its pbest  and gbest  locations according to Eq.28 

(25) and (26) at each time step (Guo, Yang, et al. 2008),29 

, , 1 1 , , 2 2 , ,( 1) ( ) ( ( )) ( ( ))i d i d i d i d g d i dv t wv t c r P x t c r P x t        (25) 30 

, , ,( 1) ( ) ( 1)i d i d i dx t x t v t         (26) 31 

where w  is the inertia coefficient which is a constant in the interval [0, 1] and can be adjusted in32 

the direction of linear decrease; 1c  and 2c  are the non-negative learning rate; 1r  and 2r  are 33 

generated randomly in the interval [0, 1]; max max[ , ]idv v v   and maxv is a designated maximum 34 
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velocity. The termination criterion for iterations is determined according to whether the maximum 1 

generation or a designated value of the fitness has been reached.2 

Two key factors for determining the optimized parameters should be considered. First, to 3 

implement a more stable optimization, the optimized hyper-parameters for MLS-SVM is encoded4 

as 1 2 0 1( , , , ,log ,log , ,log )y yn nx         . Second, the fitness of a particle is evaluated by the 5 

following formulation: 5i testf Ave  , where if  is the fitness of particle i , 5testAve  is the average 6

correct rate when the five-fold cross validations with data in the training set for each particle is7 

performed.8 

3.4 Entropy based reagent dosage optimization model9 

Suppose there is a dynamic stochastic system with input ( ) mu t R  and output [( ]) ,y at b , 10 

the probability of output ( )y t  lying in [ , )a   is defined as11 

( ( ) , ( )) ( , ( ))
a

P a y t u t r y u t dy


         (27) 12 

where ( )u t  represents control input such as the reagent dosage, ( , ( ))r y u t  represents the output13 

PDF of the stochastic variable ( )y t  and is also related to ( )u t . The ( , ( ))r y u t  can be14 

approximated by B-spline function,15 

 0
1

( , | ) ( ) ( ) ( , ( ))
n

i i
i

r y u w u B y e y u t


          (28) 16 

where ( )iB y and ( )iw u  are the base functions and the corresponding weights of B-spline, 17 

respectively.   presents conditions of PDF (i.e. ore grade). 0 ( , ( ))e y u t  is the approximation 18 

error satisfying 0 0( , ( ))e y u t  , where 0  is a known small constant. It is noted that weight 19 

( )iw u  is related to the reagent dosage ( )u t . Since ( , ( ))r y u t  presents PDF, the equality20 

( , ( )) 1
a

r y u t dy


 should hold for any ( )u t  so that only n-1 weights are independent. So, (28) can 21 

be rewritten as22 

 0( , ( )) ( ) ( ) ( , ( ))r y u t C y V t e y u t    (29) 23 

where 1 2( ) [ ( ), ( ), , ( )]nC y B y B y B y   and 1 2[ , , , ]T
nV w w w  .To guarantee ( , ( )) 1

a
r y u t dy


 , 24 

the error 0 ( , ( ))e y u t  should be equal to zero. 25 

 According to (2), ( 1)piw k   can be expressed by 26 

   ( 1) ( 1) ( ) ( ) ( ( )) ( ) ( )i
pi mi mi i mi oiw k w k w k w k f u k w k w k           (30) 27 

So, according to Eq.(3), the predictive PDF ( , )pr y u  can be rewritten as 28 

1 1

( 1) ( ) ( 1) ( 1) ( ) [ ( ( )) ( ) ( )] ( )
n n

i
p p pi i mi oi i

i i

r k C y V k w k B y f u k w k w k B y
 

             (31) 29 

As discussed above, it is obvious that ( 1)pr k   is only relative to reagent dosage ( )u k  and 30 

random variable of bubble size y .31 

Corresponding to Eq.(29), a given desired PDF ( )gr y  can be expressed by 32 

  
1

( ) ( ) ( ) ( )
n

g gi i g
i

r y w u B y C y V


   (32)33 
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where gV  is the desired weight vector corresponding to the same basic function ( )iB y1 

( 1,2, , 1,i n n  ).2 

The purpose of the controller design is that the reagent dosage ( )u k  is regulated to make 3 

( , ( ))r y u k  follow ( )gr y . So the error between ( , ( ))r y u k  and ( )gr y  can be formulated as 4 

  
1 1

( 1) ( ) ( 1) ( ) [ ( ( )) ( ) ( )] ( )
n n

i
p g p gi i mi oi i

i i

e k r y r k w B y f u k w k w k B y
 

            5 

1

[ ( ( )) ( ) ( )] ( )
n

i
gi mi oi i

i

w f u k w k w k B y


       (33) 6 

Recently, the entropy concept has been widely used in stochastic systems (Wang, 2002; Guo and 7 
Wang, 2006). Since the entropy is the measure of randomness for a given random variable, entropy 8 
based controller can thus reduce the uncertainty of the closed-loop system. To minimize model 9 
uncertainties of the non-Gaussian stochastic systems, the performance function (Wang 2002) is 10 
selected as     11 

2

2

1 1

min ( ( )) ( 1)ln ( 1) ( )

{ [ ( ( )) ( ) ( )] ( )}ln{ [ ( ( )) ( ) ( )] ( )} ( )

b

p pa

n nb i i
gi mi oi i gi mi oi ia

i i

J u k e k e k dy u k

w f u k w k w k B y w f u k w k w k B y dy u k




 

   

       



 
12 

                                                             
    (34)13 

It can be seen that the first term in (34) is the entropy at sample time k , while the second term is a 14 
natural quadratic constraint for the control input as reagent dosage.   is a prespecified number and 15 

0  . The following gradient descent based approach can also be used to calculate reagent dosage 16 

    ( 1)( ) ( 1) |u u k

J
u k u k

u
  


  


  (35) 17 

where   is a prespecified learning rate and 0  .18 

4 Experimental results and discussion 19 

4.1 Hardware and network20 

A series of industrial experiments are carried out to implement tracking for the given PDF by 21 

the proposed method in a Chinese copper flotation plant. An image measurement device is22 

mounted on the first cell of the roughing flotation to capture froth images. The measurement23 

set-up is shown in Fig.5 (a). It consists of a RGB camera, a light source, a box hood, an optic fiber,24 

an optical terminal, an image-transform card and an industry computer, etc. The RGB camera with25 

30mm lens and frame rate of 15 frames/s is installed 160cm above the surface of flotation froth26 

layer.27 

It is noticed that the camera installation position is crucial to obtain high-quality images. The 28 

flotation machine with volume of 130 m3 and with highness of 8500ml in the plant are used to29 

simplify flotation circuits and to improve their control capability. The cell includes internal30 

launder and external launder to improve discharge capacity. Some researchers chose a position31 

near the cell lip for focusing on the measurement of velocity. In this paper, a position between the32 

cell lip and the cell center, which is slightly nearer the cell lip, seems to be better choice for the33 

following two reasons. First, the position is chosen far from the cell center which has a great34 

influence on bubble size structure when the impeller agitates slurry. Second, bubble size structure35 

was easily distorted when concentrate overflow enters into the concentrate launder near the cell36 
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tip.1 

The purpose of the box hood made by aluminum alloy is to act as a supporting structure for 2 

the measurement set-up as well as a protective element against dust coming from the flotation3 

slurry, water which is used to clear flotation cell, corrosion coming from chemical reagents and4 

the ambient light coming from the flotation hall. This is important since some image analysis5 

algorithms need the total reflectance point on top of each bubble as a basis for further calculation.6 

The installed camera inside the hood is vertical to foam surface so that image geometry is 7 

perpendicular. And the high frequency electrodeless fluorescent lamp with illumination intensity8 

of 1500 lux, color temperature of 4500k and frequency of 2.65M Hz is as parallel and closely near9 

the camera as possible. This guarantees that single bubbles have only one total reflectance point,10 

which is a very useful property for segmentation algorithms since they can use this bright spot as a11 

starting point for bubble segmentation.12 

13 

 (a)   (b)  14 

Fig.5 Measurement set-up and the industrial network diagram. (a) hardware configuration of 15 

image acquisition.(b) The industrial network diagram 16 

The hard system network diagram is shown in Fig.5 (b).The camera is connected with the 17 

industrial computer through optic fiber. The industrial computer is connected with reagent system18 

by OLE for process control (OPC). In the test runs, froth images are captured by the camera under19 

the same condition in terms of resolution, angle, light condition, position, view scale, etc., and20 

then transmitted to the industrial computer through optical fiber. Subsequently, the froth images21 

are segmented into a large number of blobs namely blob set by the proposed watershed algorithm.22 

The PDF of bubble size is then accurately depicted according to the blob set by entropy based23 

B-spline technology. Finally, the industrial computer calculates the reagent dosage by the24 

proposed method and then modifies chemical addition of reagent system by OPC.25 

In practice, the reagent is fed by electromagnetic valve of feeding bump in the reagent system. 26 
since the reagent flow rate and the dosing time are fixed, the chemical addition is capable to be 27 
altered only by altering dosing frequency. The reagent system calculates dosing frequency and 28 
then controls electromagnetic valve by PLC when the reagent dosage varies.  29 
4.2 Flotation experiment30 

The ratio of reagents such as collector and frother has been determined by many practical 31 
flotation process experiments in the plant. The reagents are mixed to become a new reagent 32 
namely Z200 according to the ratio in reagent room. As mentioned above, the criterion of bubble 33 
size is closely related to the ore grade. So, in term of simplicity, it's necessary to remain less 34 
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fluctuation in ore property (i.e. [0.95% 1.01%]oreGrade  ) during the experiment. 1 

The parameters of the models including MLS-SVM model, reagent dosage optimization 2 

model and B-spline model is determined before the proposed control method is applied to the3 

flotation experiment. Before the modeling phase of MLS-SVM, the systematic collection of4 

statistical data of copper flotation production was carried out. 500 groups of data were collected,5 

of which 420 groups were used to establish the MLS-SVM model, and the remaining 80 groups6 

for model validation. All these data were collected on ore grades of [0.95% 1%]  and normal7 

production conditions. The parameters of MLS-SVM model include the widths ( 1,2, , )j
yj n    8 

of Gaussian kernel and the penalty coefficient ( 0,1,2, , )j
yj n   , where 9yn  . The selected 9 

parameters are optimized by the PSO. For accelerating the search, we experimentally narrow the10 

boundaries of the parameters, where the penalty coefficients are initially set as an integer in [1,500]11 

due to the fact that integer is sensible enough to the predicted result. The widths of kernel are12 

initially set as a decimal ranged in [0.10–1.50]. Finally, the optimization value of the parameters is13 

obtained as follow: [1.08 0.96 0.831.131.01 0.94 0.891.11 0.79]  ,14 

[201138148153 259 211197161 98121]  .15 

In order to assess prediction performance, the root mean square error (RMSE) 16 

2
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i i
i
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 



 
are adopted as the 17 

evaluation indexes of accuracy of MLS-SVM, where iy  and ˆiy  are actual and predicted 18 

outputs, respectively, and iy  and ˆiy  are averages of actual and predicted outputs, respectively, 19 

n  is the amount of predicted points. In the experiments, the RMSE and the correlation coefficient20 

of weights are respectively calculated as RMSE=[0.0605 0.0550 0.0416 0.0734 0.0361 0.094521 

0.0378 0.0643 0.0888] and R=[0.9557 0.9458 0.9470 0.9610 0.9582 0.9816 0.9883 0.940722 

0.9810]. It is obvious that they are capable to meet predictive requires of MLS-SVM.23 

As discussed in section 3.2, the number of base function determined by minimizing entropy 24 

is nine in B-spline model unit. In reagent dosage optimization unit, the coefficient   of the25 

gradient descent is obtained as 0.7  .26 

Through analysis for a large amounts of process data and expert knowledge, the given weight 27 

vector, which is likely optimal PDF of industry flotation foam in the same condition as ore28 

property, is set to be: [2.2287 2.8708 2.41071.3445 0.3397 0.1240 0.1338 0.039 0]gV  . 29 

Suppose that the initial weight vector values of flotation bubble PDF is 30 

0 [2.1912 2.58211.5448 0.7055 0.4878 0.4643 0.4562 0.5362 0.4740]V 31 

Suppose that the weight vector of the PDF of bubble size of is 0V  when some disturbance 32 

occurs in roughing flotation at 9:00 on September 20. At the same time the reagent flow rate is33 

180ml/min and the pulp level is -200mm. In order to implement tracking for gV , the PDF of the 34 

output bubble size need to be measured and the reagent dosage is then calculated by the proposed35 

method every 5 minutes. The output of the reagent dosage predictive control model is shown in36 
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Fig.6. In Fig.6 (a)-(i), the blue lines represents weight value of the PDF of the output bubble size 1 

and the red lines represents the predictive weight value of MLS-SVM at time k . The black lines2 

represents the given weight value. In Fig.6 (j), the blue line represents the predictive value of the3 

reagent dosage optimization model and the red line represents the corresponding value of pulp4 

level at time k . It is concluded in Fig.6 that the proposed method is capable to implement5 

tracking for the targeted PDF.6 

7 

   (a)      (b) 8 

9 

    (c)    (d) 10 

11 

 （e)    (f) 12 

13 
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  (g)    (h) 1 

2 

  (i)   (j) 3 

Fig.6 Weighs tracking and predictive reagent dosage 4 

At the same time, the evolution of the froth images in the first cell of roughing flotation is 5 

shown in Fig. 7. Fig. 7 (a) and (b) represents the 2-D and 3-D plot of weights tracking evolution,6 

respectively.7 

8 

 (a)   (b) 9 

Fig.7. weights tracking evolution from the initial PDF to the given PDF after reagent dosage is altered. (a) the 10 

2-D plot of weights tracking evolution (b) the 3-D mesh plot of weights tracking evolution 11 

4.3 Results discussion12 

In the flotation plant, the operators are most concerned about the production indices since the 13 
14 indices are closely related to employee performance evaluation. To evaluate the effectiveness of 

15 the proposed method, it is suggested that the production indices produced by the proposed method 

16 compare with those produced by the workers. Moreover, the reagent dosage expended by the 

17 proposed method is also compared with those expended by the workers. At present, three shifts 18 
including morning shift (0:00~8:00), afternoon shift (8:00~16:00) and night shift (16:00~24:00) 19 
are scheduled in the plant. Generally, the process experiment using the proposed method is 

20 arranged during afternoon shift, the flotation productions using manual mode are arranged during 

21 the other shifts. During afternoon shift, the reagent dosage is regulated according to the PDF of the 

22 output bubble size. If the adjusted reagent increment (or decrement) is larger than 20ml/min, the 

23 control system sounds an alarm and inform the workers that the pulp level of flotation machine 24 
may need to be regulated. The workers then observe the froth image and regulate the pulp level by 25 
the monitoring system. During morning and night shift, the workers inspect(巡视) flotation 

26 process every one hour. When the workers observe the froth and consider that the bubble size 

does 27 not meet his criteria for good bubble size, they will regulate the reagent dosage and the pulp 

level 
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1 by reagent control panel. It is noticing that the workers need repeatedly regulate the reagent 

2 dosage and the pulp level by observing the bubble size until the output bubble size meet their 3 
criteria. Generally, the flotation parameters don't change from one shift to the next shift. So, the 4 
reagent dosage and the pulp level will be regulated from afternoon shift to night shift only when 5 
the workers inspect flotation process and find flotation abnormalities. The reagent dosage is 6 
regulated according to the changing bubble size every several minutes from morning shift to 7 
afternoon shift. 

As discussed in the paper, the feed grade and the other feed parameters (such as the 8 
9 feed flow rate, the solid constant, the pH and the mineral size distribution) are considered as a 10 

prerequisite and disturbance variables for flotation, respectively. The operation parameters such as 11 
the reagent dosage and the pulp level are regulated variables for flotation. The feed flow rate, the 12 
pH, the pulp level and the reagent dosage are capable to be obtained by OPC all the time. The 13 
grade (such as feed grade, concentrate grade and tailing grade), the solid percent and the particle 14 
size of solid need to be obtained by assay. However, the workers do not assay the parameters other 15 
than the grade since the flotation state is determined by observation of bubble size during the 16 
experiment. So, it is shown in Fig. (8) that the obtained experimental data of every shift include 17 
the feed grade, the handling capacity, concentrate grade, recovery and reagent dosage. It is seen in 18 
Fig. 8 (a) that the feed grade varied from 0.95% to 1.01%. It is seen in Fig. 8 (b) that the handling 19 
capacity is fluctuated from 4065 ton to 4396 ton. It is seen in Fig. 8 (c) that the fluctuation of 20 
grade of afternoon shift is less than that of the other shifts, and the grade of afternoon shift is 

21 relatively higher than that of the other shifts. It is seen in Fig. 8 (d) that the fluctuation of recovery 

22 of afternoon shift is less than that of the other shifts, and recovery of afternoon shift is relatively 

23 higher than that of the other shifts. However, it is shown in Fig. 8 (e) that the consumption and 24 
fluctuation of reagent dosage of afternoon shift are less than those of the other shifts. It is 

25 indicated in Fig. 8 that using the proposed method is capable to make flotation running more 

26 stable than using manual operation.  

27 
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1 

Fig. 8 Feed grade, Handling capacity, Grade, recovery and reagent dosage of every shift during the experiment. (a)2 
cu grade of ore. (b) handling capacity. (c) cu grade.(d) cu recovery. (e) reagent dosage3 

  The eligible grade and recovery need to be larger than 14% and 0.55 for the copper rougher, 4 

respectively. Table 1 shows the amount of the eligible indices during the experiment and the5 

consumption of the Z200. The amount of the eligible recovery of afternoon shift, morning shift6 

and night shift is respectively 26, 24 and 23 during the experiment. The amount of the eligible7 

grade of afternoon shift, morning shift and night shift is respectively 21, 18 and 18 during a month.8 

The reagent consumption of afternoon shift, morning shift and night shift has respectively 2758.189 

kg, 2874.28 kg and 2943.97 kg during a month. It is obvious that the eligible indices amounts of10 

afternoon shift are more than those of morning shift and night shift. However, the reagent11 

consumption of afternoon shift decrease 116.1kg and 185.79 kg than that of morning shift and12 

night shift, respectively. Expect for more qualified recoveries and grades, more economy benefit is13 

also produced by the proposed method.14 

Table 1 evaluation indices of every shift during a month 15 

Amount(percept)  of 

recovery larger than 0.55 

Amount(percept) of grade 

larger than 14% 

Reagent(Z200) dosage 

in a month(kg) 

afternoon shift (the 

proposed method) 
87% 70% 2758.18

morning shift 

(manual mode) 
80% 60% 2874.28

night shift  

(manual mode) 
77% 60% 2943.97

16 

5 Conclusion and future work 17 

First of all, process description of copper flotation is presented and modeling analysis of 18 

reagent dosage control is discussed in this paper. A PDF based reagent dosage predictive control19 

structure is then proposed. The structure consists of a measurement unit, a MLS-SVM unit, a20 

feedback correction unit and a reagent dosage optimization unit. The captured froth images is21 

segmented by the two-pass watershed algorithm and the PDF of bubble size is depicted by entropy22 
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based B-spline technology in the measurement unit. Since the PDF is characterized by weights of 1 

B-spline, controlling for BSD is transformed into controlling for discrete weights. The dynamic2 

relationship between the reagent dosage and the PDF of bubble size is built by MLS-SVM. The3 

reagent dosage is optimally calculated by entropy based optimization algorithm. Finally, the4 

hardware, the camera installation position and the system network is discussed and then the5 

flotation experiment is presented to implement tracking control for the output PDF of bubble size6 

using the proposed algorithm. Experimental results are presented to show the effectiveness of the7 

proposed method. Note that the unexpected emergency of the flotation sometime need manual8 

intervention mode to guarantee the safety of production during the experiment period.9 

As a future work, a similar multi-camera system should be installed into other circuit of the 10 

copper flotation, including the last cell of the cleaning and the scavenging. Data collection and11 

analysis campaign will be launched. Based on subsequent data analysis of all circuits, appropriate12 

updates will be done to reagent dosage controller in the copper flotation, and performance of the13 

updated controller will be analyzed. Another a important area for future work is the accurate14 

measurement of froth texture. Data analysis done so far has shown that texture and bubble size can15 

be strongly correlated with the grade. Based on two dimension relation with bubble texture and16 

size using the joint probability density distribution, How reagent addition control is well17 

accomplished? In addition, abnormal flotation states such as froth outflow, pulp upturn and low18 

pulp level, etc. sometimes occur for some reasons during flotation running. Data-driven based19 

fault detection and isolation (FDI) and fault-tolerant control (Yin, Luo, Ding, 2013) for flotation20 

will be good and interesting topics since control and FDI in the identical framework will further21 

the system integration of control and FDI for mineral flotation, which is beneficial for better22 

flotation running. As such, this will be one of our future topics.23 
24 
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