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Abstract: Mathematical modeling of drug delivery is of increasing academic and industrial 

importance in many aspects. In this paper we propose an optimization approach for the 

estimation of the parameters characterizing the diffusion process of a drug from a spherical 

porous polymer device to an external finite volume. The approach is based on a nonlinear 

least-squares method and a novel mathematical model which takes into consideration both 

boundary layer effect and initial burst phenomenon. An analytical solution to the model is 

derived and a formula for the ratio of the mass released in a given time interval and the total 

mass released in infinite time is also obtained. The approach has been tested using 

experimental data of the diffusion of prednisolone 21-hemisuccinate sodium salt from 

spherical devices made of porous poly(2-hydroxyethyl methacrylate) hydrogels. The 

effectiveness and accuracy of the method are well demonstrated by the numerical results. The 

model was used to determine the diffusion parameters including the effective diffusion 

coefficient of the drug from a series of devices that vary in both the porous structure and the 

drug loading levels. The computed diffusion parameters are discussed in relation to the 

physical properties of the devices.   
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1. Introduction 

Mathematical modeling of drug delivery is a field of significant academic and economic 

importance. This is true not only in the biopharmaceutical disciplines [1], but also in the 

increasingly active tissue engineering research field where the development of three 

dimensional scaffolds meeting the requirements of cell migration, tissue growth, and the 

transportation of nutritious chemicals such as growth factors is still a challenge [2]. An ideal 

delivery requires a device to supply and release therapeutic agents to a desired location with a 

precise therapeutic dose for a prolonged period of time [3]. The controllability of the delivery 

is dependent on many variables. These include the transport properties and the dosage of the 

drugs; the physiochemical and structural properties, the dimensions and geometry as well as 

the release mechanisms of the drug delivery systems. Effectively predicting these parameters 

and ultimately optimizing the design of a drug delivery system using mathematical 

approaches can significantly reduce manufacturing costs of both new and existing products 

[1].  

 

On the other hand, mathematical tools, particularly numerical partial differential equation and 

optimization techniques have been used successfully and extensively in optimum designs of 

many engineering devices such as semiconductor devices (cf., for example, [4-7]). Despite 

the success of these techniques in many areas, reports on the systematic use of advanced 

mathematical tools in the design of controlled drug delivery devices are limited in the open 

literature, except for some simple models with known analytical solutions of the diffusion 

equation (cf., for example, [8-10]). Our previous studies have shown that the mathematical 

approach is indeed useful in interpreting experimental data and establishing the relationship 

between the drug release characteristics and the material structures [11, 12]. This paper 

extends our studies on the parameter estimation of controlled drug delivery systems of a disk 
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geometry to a spherical geometry using similar mathematical tools. The drug delivery 

systems used in our studies are based on a porous matrix made of poly(2-hydroxyethyl 

methacrylate) (PHEMA) hydrogels.  

 

PHEMA is well known for its biomedical applications as contact lenses, intraocular lenses 

and cardiovascular implants [13, 14]. Materials based on PHEMA absorb large amounts of 

water without dissolving, and in their swollen state they behave like typical gels. Therefore, 

the term hydrogels is commonly employed for them. In most applications PHEMA hydrogels 

refer to the crosslinked polymers produced by bulk polymerization which are transparent and 

contain a homogeneous polymer matrix containing pores measured in nanometers. Although 

polymers of this type allow the diffusion of various solutes, their transport properties are 

limited by effective mean pores, or mesh diameters, within the polymer. They are more suited 

for such applications as contact lenses, in which a combination of optical clarity and limited 

diffusive characteristics is required [15]. 

 

Various methods can be used to increase the effective pore sizes of PHEMA. One of the most 

convenient methods is to polymerise the HEMA monomer in the presence of water above a 

critical level (reportedly 40-45%) (cf. [11] and the references quoted). The materials 

produced in the presence of water possess high water content and pores ranging from several 

to hundreds of microns. The biomedical applications of porous PHEMA materials include a 

novel design of an artificial cornea and an orbit implant in which the porous PHEMA skirt 

allows host cells and tissue to grow into the device therefore preventing extrusion of the 

implants [16-18]. Our recent studies show that the porous PHEMA hydrogels represent a 

significant advance over the non-porous types in the drug delivery applications with a much 

higher drug loading capacity. The loading of drugs can be achieved in ambient conditions 
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with very simple means, less concerning about the drug stability [11, 12]. To achieve an 

optimal design of such a device, we have been investigating mathematical models for (i) 

extracting the effective diffusion coefficient of a selected drug; and (ii) further establishing 

the relationship between the diffusion characteristics and various parameters of the drug 

delivery system including the drug loading level, the porosity and the geometry of the 

polymer matrix. 

 

It is worth mentioning that drug delivery from porous PHEMA is diffusion driven.  In a 

diffusion-controlled device, the delivery of drugs is largely dependent on the diffusion 

property of the drug in a constructed device, which is often characterized by the effective 

diffusion coefficient of the drug in the material. The effective diffusion coefficient of a drug 

delivery system is a measure of the diffusion process of a drug through a selected system over 

a period of time. It is determined mainly by the properties of a polymer matrix and the 

interactions, if any, between the drug and the polymer matrix. For a given device, drug 

release profiles from the device into a finite volume during a period of time can be 

determined through laboratory experiments.  The estimation of the effective diffusion 

coefficient of the drug during the process involves two tasks. One task is to set up a 

mathematical model for the diffusion process of the device and the other is to numerically 

estimate the effective diffusion coefficient based on the model and some given information 

such as experimentally observed drug release data.  

 

In general, a diffusion process is governed by a diffusion equation with appropriate initial and 

boundary conditions. However, solving such a diffusion problem analytically is very difficult. 

Analytical and approximate solutions to several simple models can be found in [1, 19-22]. 

Some widely used models such as those in [22] are based on the assumption that the liquid in 
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the diffusion region is ‘well-stirred’, i.e., the concentration of the substance in the liquid is 

uniform which is not always true. In practice, even if the liquid is ‘well stirred’ the magnitude 

of the flow velocity on the boundary of the device should be zero due to the so-called ‘no-

slip’ boundary condition. Therefore, there exists a region, called a boundary layer, near the 

boundary of the device in which the magnitude of velocity varies from zero to some positive 

value. As a result, the substance concentration is non-uniform in the boundary layer. 

Furthermore, excessive drugs may be left on the surface of the device which causes a higher 

concentration on the surface than in the subsurface of the device. It is also possible that the 

drug concentration on the surface is lower than that in the subsurface of the device if the 

device is pre-washed prior to a drug release experiment. Both of these cases may lead to an 

initial phase of the drug release that is different from the rest of the process. Therefore, it is 

desirable to determine an effective critical time separating the two phases and to extract the 

effective diffusion coefficients for the two phases.  

 

Once a diffusion model has been established, one needs to determine the effective diffusion 

coefficient using the model. A classical ‘trial-and-error’ process is neither optimal nor 

automatic. In our previous work [23], we have proposed a model for the estimation of 

effective diffusion coefficients and other critical parameters of PHEMA devices of a 2D disc 

geometry. The model was used in conjunction with a nonlinear least-squares method. Unlike 

existing ones such as those in [22], this model can handle both the initial burst and boundary 

layer effects. In the present work, we extend the techniques in [23] to devices of a spherical 

geometry (Figure 1). We first propose a basic mathematical model governing the diffusion 

process of a drug from a spherical device into a finite volume. The model is then further 

developed to include both the initial burst and the boundary layer effects. Analytical solutions 

to these mathematical problems are then obtained to provide explicit expressions for the total 
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mass diffused from the device into the external volume in a given period of time. The 

unknown parameters including the effective diffusion coefficients, the width of the boundary 

layer and the critical time in the models are determined by an optimization technique. Six 

porous PHEMA spherical devices that contain various pore structures and different levels of 

prednisolone 21-hemisuccinate sodium salt, a commonly used anti inflammation drug, are 

then prepared. The drug release experiments are conducted and the acquired data are used to 

test the mathematical models. The full model is finally used to determine the diffusion 

parameters including the critical time for the initial burst of drugs, the effective boundary 

layer, and the effective diffusion coefficient of the drug from these devices. The drug 

diffusion characteristics are discussed in relation to the physical properties of the devices.   

 

 

Figure 1. Schematic illustration of a porous PHEMA spherical device. 

 

 

2. The mathematical methods 

2.1. The basic model and its analytical solution 

We first consider a spherical device with radius 1r  pre-loaded with an amount of drug, 
0M . 

Assuming, 1) the device is placed in a sphere container of radius 2r  filled with water so that 
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the device and the container are concentric, as depicted in Figure 2; and 2) the release process 

is diffusion-dominant and radial because of symmetry, i.e. the concentration of drug in liquid 

is uniform for a fixed r, the diffusion process of this problem is governed by the following 

diffusion equation in spherical coordinates: 
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where D is a constant and ),( trC  is the unknown concentration. 

 

 

 

 

 

 

 

 

Figure 2: A sphere device with radius 1r  placed in a container with radius2r . 

 

We assume that at 0=t , the concentration is uniform in the device and zero in liquid, i.e., 
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where 3/4 3
1rVd π=  is the volume of the device. To solve this problem, we use the technique 

of separation of variables as outlined below.  
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Let )()(),( rvtutrC = . Eq. (2.1) then becomes 
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where 0>λ  is a constant to be determined. The above expression contains two equations: 

,0=+′ Duu λ         (2.5) 

.0
2 =+′+′′ vv
r

v λ        (2.6) 

Eq. (2.5) has the (fundamental) solution Dteu λ−=  and Eq. (2.6) is a Bessel’s equation of the 

form 

      0)/(/)1( 2 =−+′−+′′ yxxydy µλ  

with 3=d  and 0=µ . The fundamental solution to this equation is (cf., for example, [25], 

p.231) 

      ( )λrjrv 0)( = , 
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z

z
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sin
)(0 = is the 0th order spherical Bessel function. Therefore, the solution of (2.1) 

is of the form 
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where λ  is a parameter called the eigenvalue of the problem. To determineλ , we apply the 

boundary condition (2.2) to (2.7) to get 
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This is a solution to (2.1) for each ,...2,1=n .  

    

When 0=λ , (2.6) has the general solution 
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with additive constants 0A  and 0B . (Note 00 =α is also a root of (2.8) and thus 0=λ  is the 

eigenvalue corresponding to this root.) Thus, (2.9) represents the steady-state solution to 

(2.1)-(2.3).  Applying the boundary condition (2.2) to (2.9) gives .00 =B  Therefore, 

combining the fundamental solutions to (2.5) and (2.6) and using the superposition principle, 

we have the following series solution to (2.1): 
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where nA 's are coefficients to be determined. (Recall that 00 =α and 1)0(0 =j .)  

     

Note that the steady-state solution of the problem when ∞→t  is cVMrC /),( 0=∞ , where 

3/4 3
2rVc π= is the volume of the container. Therefore, we have, from (2.10), 
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cVMA /0
0 = .        (2.11) 
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The derivation of this integral is given in the appendix. 
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where zzzzzj /)(cos/)(sin)( 2
1 −= is the 1st order spherical Bessel function (cf., for 

example, [25], p233). We thus have 
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Substituting (2.11) and (2.13) into (2.10) we finally get 
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This is an analytical solution to (2.1)-(2.3) in the region defined by 20 rr <<  and ∞<< t0 . 
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This is a formula for the ratio of the mass released from the device into the liquid during the 

time interval [0,t] and the total mass release from the device in infinite time. We comment 

that the deduction of (2.16) is based on the assumptions that the device and container are 

concentric as depicted in Figure 2 and that the diffusion in the liquid is homogeneous. These 

assumptions are normally satisfied in ideal laboratory conditions. When the assumptions are 

not satisfied, the diffusion problem (2.1)-(2.3) can only be solved by a full numerical method 

which will be discussed in a future paper. 

 

2.3. The initial burst 

A burst often appears in the initial phase of a release process. This is because, during the drug 

load process, some free drugs are left on the device surface. In this case, the initial release 

rate is substantially greater than that during the rest of the process. On the other hand, the 

initial release rate may also be much smaller than the normal rate if a device is pre-washed to 

remove the free drugs on the device surface. In both cases, it is desirable to identify the initial 

burst and its effect on the diffusion process. To characterize the initial burst, we assume that 

the effective diffusion coefficient is a piecewise constant in time, i.e., 
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where nA 's are coefficients to be determined. Using the same argument employed for 
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Matching the coefficients on both sides of the above equality, we have 
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for 1≥n . Combining this with (2.17) we have the expression for ),( trC  when ctt > . 

 

It is clear that when ctt ≤≤0 , 
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2.4. Effective boundary layer 
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When the liquid is well stirred, the concentration can be considered uniform in most of the 

liquid region except for a thin layer, called the boundary layer, around the device. In this 

case, the diffusion dominates the mass transfer only in the boundary layer region. For 

simplicity we assume that thickness of the boundary layer is uniform around the device. Let 

1r denote the radius of the device, 12 rr −  the thickness of the boundary layer and 3r the radius 

of the container, satisfying 3210 rrr ≤<< . The geometry is depicted in Figure 3. 

 

 

 

 

 

 

 

 

Figure 3: A spherical device with radius 1r  placed in a container with radius3r . 
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where 3/4 3
1rVd π= , the volume of the device as defined before, and )(0 tC is the (unknown) 

concentration outside the layer. The second equation above represents the fact that from 2r  
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to 3r , the concentration is uniform. Using the results in Section 2.1 it is easy to verify that the 

solution to this problem is 
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for 0>t with the continuity condition ),()( 20 trCtC = , where ),( trC  is given by (2.14). We 
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Using (2.21) and the technique in Section 2.3 for deducing (2.19) it is easy to derive the 

following formula containing both the initial burst and the convection phenomena: i.e., 
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M t
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(2.22) 

for ctt > , where ct  is the effective critical time. 

 

We comment that the thickness of the boundary layer, 12 rr − , can not normally be determined 

exactly. In this investigation, we treat 2r  as a decision parameter in an optimization process, 

and refer to the resulting value as the effective boundary layer. 

 

3.  Device preparation, drug loading and release experiments 

3.1. Chemicals and materials 

HEMA (Bimax, ophthalmic grade) was used as received. The cross-linking agent 1,5-

hexadiene-3,4-diol (DVG) with a purity of 97% was supplied by Sigma-Aldrich. An aqueous 

solution of 10 wt % ammonium persulphate (APS) (Ajax Chemicals) was used together with 

N,N,N’,N’-tetramethylethylene diamine (TEMED) (Aldrich Chemical Co.) as initiators. 

Prednisolone 21-hemissucinate sodium salt powder was purchased from Sigma Chemical 

Co., Belgium.  Deionised water was used for all experiments in the study. 
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3.2. Device preparation 

Three porous PHEMA sphercal devices, S2080, S3070 and S4060 were cast following the 

specifications given in Table 1. The formulations were selected to produce devices 

chemically identical but structurally different. The physical properties including the swelling 

behaviour, the polymer volume fraction, density of the dry and wet polymer hydrogels have 

been reported in our previous work [11, 12].  To cast the polymer devices, HEMA and water 

were well mixed in a beaker followed by the addition of the cross-linking agent (DVG) and 

the initiators (APS and TEMED). The solution was then distributed into a plastic mold as 

displayed in Figure 4a. Polymerization was carried out at room temperature for 3 hours and 

then at 50°C for 24 hours. Following the polymerisation, the samples were removed from the 

mould and immersed in deionised water for 4 weeks with daily water exchange to remove 

residual monomers and oligomers. Photographs of td the produced spherical devices are 

displayed in Figure 4b.   

 

Table 1.  Chemical formulations for PHEMA device preparation 

Device 

Name 

HEMA 

(g) 

Water 

(g) 

DVG 

(µL) 

APS (10%) 

(µL) 

TEMED 

(µL) 

S2080 50 200 500 1000 1000 

S3070 75 175 750 1500 1500 

S4060 100 150 1000 2000 2000 
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Figure 4. Photographs of (a) the plastic mould and (b) the spherical PHEMA devices. 
 
 
 

3.3. Drug loading and release experiments 

Upon completion of water exchange the devices were freeze-dried and placed in containers 

containing a drug solution of either 1.0 wt% or 0.5 wt% concentration. Sufficient drug 

solution was added to allow the maximum absorption of the drugs upon swelling of the 

devices.  

 

The drug loaded devices, S2080-10, S3070-10, S40-60-10, S2080-05, S3070-05 and S4060-

05 were then placed in the centre of a container which has an air tight seal (10 and 05 are 

used in the sample codes representing 1.0 wt% and 0.5 wt% drug solution respectively). The 

container was then filled with enough deionised water and placed upon an orbital shaker 

(Chiltern Scientific) at a speed of 45 rpm. At preset time points 500µL of the drug solution 

was removed from a marked location and further diluted for quantitative analysis of released 

drug concentrations tM using a UV-Vis spectrometer. Details of the quantitative analysis of 

drugs can be found in references [11, 12]. 

 

4. Results and discussions 

4.1. Testing the mathematical models 

In this section we will test the models established in the previous section using some 

experimental data.  
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The series solutions obtained from Section 3 contain up to four unknown parameters 

ctDD ,, 10 and 2r . To determine these parameters, a nonlinear least-squares algorithm is used as 

proposed in [23]. The algorithm is to minimize the fitting error 

    ( ) ,),,,,()(),,,(
2

1
1010 k
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k
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−= θθ  (4.1) 

where kw is a positive constant, )( ke tR is the experimentally measured value of the ratio 

∞M

M t (or 
∞M

M t

ˆ

ˆ
) at kt  for Kk ,...,2,1= , and )/()( 1312 rrrr −−=θ is a parameter characterizing 

the width of the boundary layer satisfying 10 ≤< θ . The quantity NR  in (4.1) is the sum of 

the first N terms of an exact solution of the ratio. For instance, NR for the solution in Section 

2.3 (i.e., (2.16) and (2.19)) is given by 
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(In this case 1=θ  is not a decision variable since 32 rr = .) For simplicity, we assume that 

ct only takes values from the discrete set { }Kttt ,...,, 21 . For all the tests below, we 

choose 62=N . The first 62 roots of (2.8) are calculated numerically using Matlab. To avoid 

possible local minima, the least-squares problem is solved using the following initial starting 

points 

iDD 2/10 5
10

−==  for 10,...,2,1=i  and j1.0=θ  for 10,...,2,1=j . 

 

The weights in (4.1) are chosen to be Nkkk tttKw /)( 1−−=  for Kk ,...,2,1= with 00 =t . 
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In what follows, we shall refer the solution (2.16) to as Model BM, the solution (2.1) and 

(2.19) to as Model IB, (2.21) to as Model BL and (2.21) and (2.22) to as Model IB+BL. 

 

4.1.1 The effect of initial burst 

In order to see the effect of initial burst, experimental data of S2080-10, ∞MM t / , collected 

at 12 time points from 0.5 to 72.8 (Table 2) were fitted with all four models. The radius of the 

device,1r , was measured as 0.906 cm and the radius of the effective container, i.e., 2r  in 

Models BM and IB or 3r  in Models BL and IB+BL, used in experiments is 2.037 cm.  

Table 2: Experimental data of ∞MM t / for S2080-10 and S4060-05  

Time (hour) 0.5 1.0 1.5 2.0 3.0 4.5 

S2080-10 0.577 0.671 0.675 0.686 0.697 0.732 

S4060-05 0.158 0.212 0.230 0.260 0.286 0.332 

Time (hours) 6.9 24.9 32.7 51.0 55.8 72.8 

S2080-10 0.866 0.934 0.963 0.989 0.980 1.000 

S4060-05 0.365 0.645 0.781 0.971 0.973 1.000 

 

The fitted curves using the four models BM, IB, BL and IB+BL are displayed in Figure 5. 

The curves fitted by BM and BL are almost identical, so are those fitted by IB and IB+BL 

which indicate an insignificant boundary layer effect for the selected device. On the other 

hand, an apparent initial burst from device S2080-10 is identified by both IB and IB+BL. The 

fittings by Models IB and IB+BL are more satisfactory than those by Models BM and BL. 

The more adequate approximation by Models IB and IB+BL is also demonstrated by a ten-

fold smaller value of the lease squares error of these methods in comparison with the other 

two models (Table 3).  
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Figure 5: Fitted curves by the four mathematical models for S2080-10. 

 

Table 3: Results from Models BM, IB, BL and IB+BL for S2080-10 

 

 

 

 

 

 

 

4.1.2. The effective boundary layer 

To determine the effective boundary layer, similar fittings were performed on the 

experimental data from the device S4060-05 (Table 2). The fitted curves from the four 

models are displayed in Figure 6 and the computed optimal parameters are listed in Table 4. 

In this case, a minor drug burst during the first two hours is revealed by both IB and IB+BL 

(Fig. 6). In addition, effective boundary layers, measured as θ = 93% and 84%, are identified 

Model Diffusivity( cm2/s) tc (hour) θ  Least-squares Error 

BM 1.56E-5 __ __ 2.81E-2 

IB (4.13E-5,3.65E-6) 1.0 __ 2.85E-3 

BL 1.56E-5 __ 1.00 2.81E-2 

IB+BL (4.13E-5,3.65E-6) 1.0 1.00 2.85E-3 
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by BL and IB+BL respectively (Table 4). For this particular device, the computed values of 

the effective diffusion coefficient from the four models are similar. However, the best fit is 

obtained by the combined model IB+BL which is demonstrated by the smallest least squares 

error of the fitting.  

 

Figure 6: Fitted curves by the four mathematical models for S4060-05. 

 

Table 4: Results from Models BM, IB, BL and IB+BL for S4060-05 

 

 

 

 

 

 

 

4.2.  Determination of the diffusion parameters  

Applying the four mathematical models to the experimental data of all investigated devices 

Model Diffusivity( cm2/s) tc (hour) θ  Least-squares Error 

BM 1.55E-6 __ __ 5.51E-2 

IB (1.25E-6, 1.86E-6) 2.0 __ 5.28E-2 

BL 2.10E-6 __ 0.93 3.69E-2 

IB+BL (2.94E-5, 2.00E-6) 0.5 0.84 2.44E-2 
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has indicated that, 1) models IB and IB+BL yield better fitting and approximation results 

when an initial burst of drugs occurs, 2) the effective boundary layers are not always present 

in the spherical devices investigated in this study, however when the effect is apparent, 

models BL and IB+BL are more efficient to identify the phenomenon, and 3) in all devices, 

the combined model IB+BL has produced more satisfactory results than the individual 

models developed, judged by both the ability to identify the effect of the initial burst and the 

effective boundary layers, as well as by the smaller least square errors. Therefore only the 

computed parameters from Model IB+BL are listed and used for further discussions (Table 

5). Fittings of all experimental data by the combined model are shown in Figure 7a and 7b.    

 

Table 5: Computed diffusion parameters of all devices by Model IB+BL 

Diffusion coefficient ( scm /2 ) 
Device 

D0 D1 
θ  hour)(ct  Least-squares Error 

S2080-10 4.13E-05 3.65E-06 1.00 1.0 2.85E-03 

S3070-10 5.03E-06 2.30E-06 1.00 1.0         5.04E-03 

S4060-10 1.49E-05 2.20E-06 0.92 1.0 5.11E-03 

S2080-05 6.01E-06 2.83E-06 0.98 1.0 7.67E-03 

S3070-05 3.44E-06 2.02E-06 0.94 2.0 8.35E-03 

S4060-05 2.94E-05 2.00E-06 0.84 0.5 2.44E-02 

  

4.3. Comparison of the diffusion parameters 

The computed parameters listed in Table 5 demonstrate that the corrected effective diffusion 

coefficient, 1D , of S2080 is greater than that of S3070, and greater still than that of S4060 at 

both drug loading levels. The descending trend of 1D in devices loaded with 1.0 wt% drug 

solutions is more significant than that in devices loaded with 0.5 wt% drug solutions. These 
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observations are coincide with the fact that S2080 has a more porous structure than the other 

two devices and are also in agreement with our previous results on the disc geometry [11, 

12].  We have also noticed that the initial burst effect in S2080 is more significant than in the 

other two devices (Table 3 and 5), indicating that the drugs are more prone to burst from 

S2080 due to its softer and more porous nature. 

 

 

                              (a)         (b) 

Figure 7: Fitted curves by Model IB+BL for devices loaded with (a) 1.0 wt% and (b) 0.5 

wt% drug solutions. 

   

5. Conclusions 

In this work we have developed a full mathematical model for extracting effective parameters 

such as diffusion coefficients, critical time of initial burst and width of boundary layers that 

determine the release process of a drug from a spherical device into a finite volume. The 

model contains three other simpler models as special cases. Explicit expressions for the 

analytical solutions of these models have been obtained which contain the parameters as 

unknown decision variables. A nonlinear least-squares method is then used for finding the 

optimal solutions to these parameters, yielding an optimal fit to a set of experimental data. 

Numerical experiments have been performed using laboratory observed data of three drug 
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release devices made of porous hydrogel polymers with two different drug loading levels to 

show the accuracy and usefulness of the models. The results demonstrated that the full 

mathematical model can effectively identify both the drug burst effect and the effective 

boundary layer, if any, and therefore can more accurately determine the diffusion parameters 

that govern a true diffusion process, whilst the three simpler models are effective only for the 

uncontaminated experimental data. The computed diffusion parameters are explicable in 

terms of the drug loading concentrations and the porous structure of the devices and are 

generally consistent with the results obtained from our previous studies on the disc geometry. 

Full numerical methods such as those in references [26, 27] are under development for 

estimating effective diffusion parameters of drugs from hydrogel devices of more general 

geometries. 
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