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algorithm (OL-FCA) for charging plug-in electric vehicles 
(PEVs) in smart grid networks that will reduce the total cost of 
energy generation and the associated grid losses while 
maintaining network operation criteria such as maximum 
demand and node voltage profiles within their permissible 
limits. A recently implemented PEV coordination algorithm 
based on maximum sensitivity selection (MSS) optimization is 
improved using fuzzy reasoning. The proposed OL-FCA 
considers random plug-in of vehicles, time-varying market 
energy prices and PEV owner preferred charging time zones 
based on priority selection. Impacts of uncoordinated, MSS and 
fuzzy coordinated charging on total cost, gird losses and voltage 
profiles are investigated by simulating different PEV 
penetration levels on a 449-node network with three wind 
distributed generation (WDG) systems. The main advantage of 
OL-FCA compared with the MSS PEV coordination is the 
reduction in the total cost it introduces within the 24 hours.   

  Abstract- This paper proposes an online fuzzy coordination 

  Index Terms- Plug-in electric vehicles, online PEV 
coordination, fuzzy, load management and smart grid.  

I.  INTRODUCTION 
MART GRID (SG) technologies are currently undergoing 
rapid developments to modernize legacy power grids and 

to cope with the future increasing energy demands. Most 
electric power utilities are moving toward smarter solutions 
for generation, distribution and control of the grid. On the 
other hand, end users are also becoming more concern about 
their environments and are willing to adjust their life style 
and perhaps pay higher electricity bills to promote pollution 
free renewable energy resources and efficient smart 
appliances. It is expected that plug-in electric vehicles (PEVs) 
dominate the market in the near future as pollution-free 
alternatives to conventional petroleum based transportations. 
References [1-3] provide extensive reviews on smart grid, 
PEV impacts and coordination strategies. In general, PEVs 
connected to smart grids can operate in charge or discharge 
modes with the energy being transferred from grid to vehicle 
(G2V) or from vehicle to grid (V2G), respectively. The 
research on PEVs has been mainly focused on their impacts 
[4-6], G2V [7-20] and V2G operations [3, 21-24].  
Recent research indicates that uncoordinated (random) PEV 
charging at high penetration levels will have detrimental 
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impacts on grid performance and efficiency [1-6]. To 
overcome these problems, the utilities can either force 
coordinated PEV charging or motivate their consumers to 
shift their PEV charging loads to off-peak hours. Motivations 
can be initiated by educating PEV owners, offering price 
incentives for off-peak hours charging and implementing 
dynamic energy prices. To date, most proposed PEV 
coordination approaches [7-20] are not suitable for online 
applications as they are either based on forecasted PEV 
charging demand or require significant computing times 
when system size and/or vehicle penetration levels increase.  
Strategies for PEV charge coordination are generally divided 
into decentralized (distributed) and centralized categories [7]. 
With decentralized coordination strategies, individual PEV 
owners have authority to make decision about the time and 
rate of their own vehicle charging. While this approach offers 
significant ownership authority to the PEV owners; it may not 
ensure global optimal charging outcomes from the gird point 
of view in terms of system losses, voltage profile, overloading 
and security [7-8]. This is mainly due to the fact that the 
aggregator or system operator does not have a direct control 
over the widespread PEV charging activities and can only 
offer energy price incentives through dynamic pricing in 
order to shift charging tasks to valleys of the load profile. 
With the centralized coordination strategies, the aggregator 
acts as an interface between PEV owners and the system 
operator to provide charging services considering benefits of 
both parties by making decisions about the time and rate of 
all PEV charging in order to achieve an overall optimal 
solution [7-10]. The aggregator relies on the smart grid 
facilities such as smart meters for real-time updating of PEV 
load status such as vehicle arrival and desired departure 
times, battery state of charge (SOC), etc. The coordination 
can be based on dynamic or static charging. In centralized 
dynamic charging, PEVs can be plugged in/out at any time 
and the aggregator keeps updating the load profile and 
finding new schedule while static charging requires PEV 
owners to submit their schedule in advance. Dynamic 
charging offers more flexibility for PEV owners; however, it 
is more complicated and requires more computing time.  
Reference [6] investigates the impacts of coordinated PEV 
charging using deterministic and stochastic dynamic 
programing; however, the approach is not suitable for online 
PEV coordination as the user priorities/preferences are not 
included and the operational constraints such as node voltage 
magnitudes are not being directly involved. References [11-
12] implement a real-time (on-line) PEV coordination 
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algorithm based on maximum sensitivity selection (MSS) 
optimization to reduce grid losses and perform peak load 
saving considering random plug-in (arrival) of the vehicles. 
Reference [12] proposes an operating framework for 
aggregators of PEVs and also designs a minimum-cost load 
scheduling algorithm; however, the approach is based on the 
forecast electricity price and PEV power demands. Reference 
[14] presents vehicle usage data for 76 vehicles in a one-year 
period and predicts PEV charging profiles and electrical 
range reliability. Reference [9] proposes a PEV charging that 
will optimize aggregator's revenue, as well as customer 
demand and cost. In [15], a dynamic aggregator is proposed 
to optimize cost of PEV charging. In [8], a three-step 
approach is used for demand side management of PEVs. 
References [16] and [17] present centralize and iterative 
decentralized PEV charging algorithms that will smooth the 
daily load curve, respectively. References [9] and [18] 
propose optimal PEV charging coordination in day-ahead 
electricity market environment considering energy storage as 
ancillary services and V2G services, respectively. References 
[11-12, 19-20] also consider voltage quality in the PEV 
coordination problem.   
In references [3, 21-25], PEVs are operated in V2G modes to 
support smart grid through ancillary frequency regulation and 
energy storage services. The substantial grid energy 
requirements for PEV charging at high penetration levels can 
be partially supplied through PV and wind distributed 
generation (DG) systems. This may prove to be beneficial 
considering the intermittency of renewable DGs and 
possibility of charging PEVs during peak generation hours. 
However, there are limited publications on PEV coordination 
with DG resources [24-25].  
This paper proposes an online fuzzy coordination algorithm 
(OL-FCA) for charging PEVs that reduces total cost of energy 
generation and grid losses while considering random plug-in 
of vehicles, time-varying market energy prices, consumer  
preferred charging time zones, node voltage profiles and 
maximum demand (generation) limits. The impacts of MSS 
[11-12] and fuzzy PEV coordination charging on cost, grid 
losses, voltage profiles and distribution transformer loading 
are investigated by simulating a 449-node system consisting 
of the IEEE 23 kV distribution system connected to 22 low 
voltage 415 V residential networks populated with PEVs 
without/with three wind distributed generations (WDGs).  

II.  PROBLEM FORMULATION 
The PEV charging coordination (G2V) can formulated as a 
nonlinear cost minimization problem with the following 
objective function and constraints [12]: 
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where Fcost-loss and Fcost-gen are the costs corresponding to 
total system losses and total generation, respectively. Δt=5min 
is the time interval; KE=50$/MWh [12] and KΔt,G (Fig.1) are 
the costs per MWh of losses and generation, respectively; 
while k and n are the node number and total number of nodes. 
ΔVk  is the per unit (pu) voltage deviation of bus k which is 
limited to ΔVmax=0.1pu in this paper. Dt,max is the maximum 
demand level at t=Δt that can be set to the maximum demand 
without any PEVs. 
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Fig. 1. Daily residential load curve, variable short term market energy pricing 
and subscription options of charging time zones for PEV owners [12].   

III.  PROPOSED ONLINE FUZZY COORDINATION ALGORITHM 
(OL-FCA) FOR PEV CHARGING  

As an alternative to random charging of PEV batteries, this 
paper takes advantage of the sophisticated smart grid 
communication backbone and implements an online fuzzy 
coordination algorithm (OL-FCA) that will improve grid 
performance and reliability by taking charge controls out of 
the owners’ hand and automatically coordinate PEVs. A 
recent PEV coordination algorithm based on MSS 
optimization [11-12] will be improved using fuzzy reasoning.  

A.  Minimization of Objective Function (Cost) 
For online minimization of the cost function, the fast and 
relatively accurate MSS optimization approach is used to 
quantify the objective function sensitivity (system losses) to 
PEV charging loads at a given time step [12, 26]: 

mj,PEVloss,tj,t j....,,1j,P/PMSS =∂∂=                          (4) 

where MSSt,j is the sensitivity of system losses to PEV 
charging at node j at time interval t and mj is the total number 
of PEVs while PPEV,j is the power consumption of the PEV 
connected to node j. Entries of the MSS vector are readily 
deduced from the Jacobian matrix of the load flow [12,26]. 



 

B.  Fuzzification of Constraints 
Fuzzy reasoning is used to incorporate the PEV coordination 
constraints and to select the most suitable PEVs for charging 
at each time interval t. For the sensitivities of constraints and 
losses (ΔVk, Ploss,rated, Dt,max in Eqs.1-3) with respect to PEV 
charging at each bus, the fuzz membership functions of 
Figs.2(a)-(c) are used. In addition, the time-dependent 
weighting factors of Fig.2(d) are included in the maximum 
demand membership function to assure consumer satisfaction 
and full charge of all batteries by 6am. 

• Fuzzification of Voltage Deviations (ΔVk)- For the 
deviation of voltage constraints with respect to PEV 
charging at bus k, the exponential membership function 
µΔVk of Fig.2(a) is used. ΔV0=ΔVmax/2 corresponds to Eq.2 
such that buses with voltage deviations less than this limit 
have full set memberships. Therefore, a bus with high 
voltage deviation is given a low membership value: 
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• where ΔV0=0.05pu and the time constant is set to TV=0.034 
such that µΔVk=0.23 for ΔVk=ΔVmax =0.1pu (Eq. 2). 

• Fuzzification of System Losses ( loss,tP )- To limit total 
system power losses due to PEV charging, the exponential 
membership function of Fig.2(b) is used. The time constant 
should be adjusted such that PEV charging at time interval 
t result in system losses less than the rated losses Ploss,rated  
(e.g., highest losses within 24 hours without any PEV 
charging) have high membership values. This can occur at 
low levels of the daily load curve during early morning 
hours (Fig.1). Therefore, PEV charging scenarios with high 
losses are given low membership values: 

lossT/loss,tP
loss e−=µ                                                      (6) 

where the time constant is set to Tloss=0.034 such that 
µloss=0.5 for total losses equal to the rated losses without 
any PEV charging  Pt,loss=Ploss,rated  (Eq. 1). 

• Fuzzification of Maximum Demand Level ( max,tD )- Two 
exponential membership functions with different time 
constants are used to limit maximum total demand during 
PEV charging periods  as shown in Fig.2(c): 
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where WD is the maximum demand weight factor that will 
be adjusted based on the vehicle waiting time in the PEV 
Queue Table (Fig.2(d)). The time constant TD+ should be 
much smaller than time constant TD- to strictly prevent total 
system demands beyond the designated maximum value of 
Dt,max under all PEV charging conditions. This will also 
prevent possible line and transformer overloading. In this 
paper, TD+ = 0.0125 and TD- = 0.125. 

 
• Maximum Demand Weight Factors Based on PEV Waiting 

Time in the Queue Table- An important feature of OL-FCA 
is to perform coordination such that on one side vehicle 
charging are postponed to off-peak hours (to reduce cost of 
generating energy) and on the other side PEVs are charged 
as quickly as possible to assure consumer satisfaction and 
full charge of all batteries by 6am. To implement this, the 
weight factor WD of Eq.7 is adjusted according to the 
designated red, blue, and green time zones (Fig.2(d)).  
OL-FCA keeps track of all charging activities by 
continuously storing and sorting vehicle information 
(priorities, locations, plug-in and plug-out times) in the 
PEV Queue Table. However as the approach is online, at 
each time interval Δt, there are no information about the 
numbers and requested charging time zones of the 
incoming PEVs arriving at later hours; therefore, WD is 
linearly increased according to the vehicle waiting time in 
the Queue Table (particularly for the green time zone), as 
shown in Fig.2(d). Note that the slop of WD functions 
increase with time. That is the slop of the green zone (2-
6am) is much larger than the slop of the red zone (6-10pm) 
to assure full charge of all batteries by 6am. 

C.  Fuzzy Combination of Membership Functions 
The additive or multiplicative generators of a t-norm can be 
used to combine fuzzy membership functions [27]. In this 
paper, the algebraic sum of the weighted membership 
functions is used to combine the fuzzy constraints: 

mDlosskVj,PEV j....,,1j,4.03.03.0 =++= µµµµ ∆        (8) 

where 0.3, 0.3 and 0.4 are the selected weighting factors for 
voltage deviation, system loss and maximum demand  
membership functions, respectively. At each time interval t, 
the decision on whether to start or defer the charging of a 
vehicle will depend on its membership function as well as its 
ranking in the PEV Queue Table (Eq.4). 
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Fig. 2. Proposed membership functions for; (a) voltage deviations (Eqs.2 and 5), 
(b) total system losses (Eqs.1 and 6), (c) maximum demand level (Eqs.3 and 7), 
(d) maximum demand weighting factor (Eq.7). 

D.  Flow Chart of OL-FCA  
The proposed online algorithm (Fig.3) begins by reading 
input parameters and initializing variables. At each time step 



 

(t=Δt, 2Δt, 3Δt,….24 hours ), OL-FCA will: 
• Sample the current state of the grid (e.g., runs load flow to 

calculate load levels, node voltages, system losses, etc.). 
• Update Dt,max and DG status; compute MSS vectors and add 

randomly arriving PEVs to “PEV Queue Table”. The queue 
also contains PEVs from previous time steps that have not 
been charged due to a constraint violation. 

• Sort Queue Table from high to low priority based on the 
PEV time zones (red, blue, green) and sensitivities (Eq.4). 

• Compute (starting with the PEV at the top of Queue Table) 
PEV fuzzy membership function (Eq.9) and decide to either 
activate or delay (until next t) vehicle charging.  

input system parameters and initialize variables

more (red, blue, green) priority group ?   
yes

no
more time intervals t ? no

run load flow to compute objective function and 
constraints, extract MSS vector from Jacobian matrix, 
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ization 
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Fig. 3. Proposed OL-FCA for online PEV charging coordination with random 
arrivals of vehicles at each time interval considering system losses, voltage 
profiles and maximum demand levels. 
 

IV.  THE 449 NODE SMART GRID TEST SYSTEM 
The smart grid test system topology of Fig.5(a) is used to 
evaluate OL-FCA and compare its performance with the MSS 
PEV coordination approach of [12]. It consists of the IEEE 31 
bus 23kV distribution test system connected with 22 low 
voltage 415V residential feeders. In addition, OL-FCA 
performance will also be demonstrated with 3 WDG units 
connected to nodes 4, 7 and 12. Each residential feeder 
consists of 19 nodes representing customer households with 
randomly assigned priorities and charging time zone 
(Fig.5(b)). System data including line, residential load (2kW 
at 0.9 lagging power factor), transformer, PEV battery 
(10kWh, 70% depth of discharge), PEV charger (88% 
efficiency, fixed charging power of 4kW requiring 8kWh of 
energy from grid to charge a single PEV) parameters are 
available in [12]. 

V.  SIMULATION RESULTS AND DISCUSSIONS 
Simulations are performed on the smart grid system of Fig.5 
considering eight PEV charging scenarios (Table I). 
Simulation results with time interval of Δt=5min for PEV 
penetration levels of 16%, 32%, 47% and 63% without/with 
three WDGs are presented in Figs.6-9 and Tables II-III. 
 

TABLE I 
PEV CHARGING SCENARIOS FOR SMART GRID SYSTEM OF FIG.5 WITH WDGS 

(FIG.4) CONSIDERING DAILY LOAD CURVE, ENERGY PRICING, AND PEV 
CHARGING TIME ZONES OF FIG.1. 

Case Operating Conditions and PEV Coordination  
A Uncoordinated (random) PEV charging 
B MSS PEV coordination [12] 
C OL-FCA (fuzzy PEV coordination; Fig.3) 
D MSS PEV coordination with WDGs (3x5=15% penetration)  
E OL-FCA with WDGs (3x5=15% penetration) 
F Impacts of WDG peak generation time on OL-FCA 
G Impacts of WDG penetration on OL-FCA  
H Impacts of WDG location on OL-FCA  
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Fig. 4. WDG active output power characteristic with peak generation of 50 kW 
at 6pm (based on scaled down actual recordings from Walkway wind farm, WA, 
Australia on July 7, 2012). 

A.  Uncoordinated PEV Charging (Case A) 
To investigate the impacts of uncoordinated charging on the 
grid, a realistic charging scenario is simulated with vehicles 
being randomly plugged in during early evening hours 
(1800h-2200h). Simulation results are summarized in Table 
II (rows 4-8) and plots of system power consumption, voltage 
profile of the worst effected bus and system power losses are 
shown in Figs.6(a), 8(a), and 9(a), respectively.  As expected, 
there are significant increases in power demand, power 
generation, voltage deviations and power losses even at low 
PEV penetrations. For example, total cost is increased by 
30% for PEV penetration of 16%. The system is also 
experiencing extensive voltage drops beyond the accepted 
limit of 0.9pu at higher PEV penetration levels (Fig.8(a)).     

B.  MSS Coordinated PEV Charging (Case B) 
The MSS based PEV coordination algorithm of [12] is 
simulated and results are presented in Table II (rows 9-13), 
Figs.6(b), 8(b), and 9(b). A general improvement in system 
performance including reduction in total costs is observed 
while all node voltages are regulated within permissible lower 
(0.9pu) and upper (1.1pu) limits even at high PEV 
penetration level of 47% and 63% as reported in [12]. 

C.  Fuzzy Coordinated (OL-FCA) PEV Charging (Case C) 
The proposed OL-FCA of Fig.3 is implemented and results 
are presented in Table II (rows 14-18), Figs.6(c), 7, 8(c) and 
9(c). There is significant improvement in system operation 
and performance compared with both the uncoordinated and 
MSS coordinated charging of Cases A-B. For example, there 



 

is a considerable improvement in the percentage increase of 
total cost (Table II, column 6) with 63% PEV penetration 
from 59% (uncoordinated charging) and 15.24% (MSS 
charging) to 12.7% while keeping node voltage profiles and 
maximum demand level within the permissible limits. Unlike 
MSS coordination, OL-FCA is designed to allow small 
deviations/violations of (voltage and/or maximum demand) 
constraints according to the corresponding member functions 
of Fig.2 to limit losses and reduce cost of generating energy. 

D.  MSS and Fuzzy Coordination with WDGs (Cases D-E) 
Both MSS and OL-FCA can accommodate DG resources by 
treating them as PQ nodes injecting power into the grid. To 
demonstrate possible DG participations and contributions in 
PEV charging, three WDGs (with peak output power of 
50kW at 6pm, Fig.4) are connected at nodes 4, 7 and 12 as 
shown in Fig.5. This will represent a total wind penetration of 
3x5=15%. Simulation results for MSS and fuzzy coordination 
with 63% PEV penetration are presented in Table II (rows 
19-28) and Figs.10(a) and (b), respectively. Results show that 
WDGs will further enhance the overall performance of the 
system in terms of reducing voltage deviation, system losses 
and total cost at all PEV penetration levels. Note that MSS 
coordination utilizes the entire available WDG output power 
at each time interval to charge as many (red, blue and green) 

PEVs as possible during the peak load hours (Fig.10(a), 
1700h-2200h). The problem with this simple approach is in 
reducing the possibility of serving high priority (red) vehicles 
that may shortly arrive within the next few time intervals. 
Therefore, OL-FCA prefers to use WDG output during peak 
hours to only charge the high priority (red) vehicles 
(Fig.10(b), 1700h-2000h). This will also have the advantage 
of reducing transform loadings during peak load hours 
(Fig.11).  

E.  Impact of WDG Peak Generation Time (Case F) 
Due to the stochastic nature and behavior of WDGs, their 
peak generation times and duration will randomly change 
within the 24 hours and may not always coincide with the 
residential peak load hours as shown in Fig.2. To demonstrate 
impact of WDG peak generation time on PEV coordination, 
Case C is repeated with shifted WDG peak time from 6pm to 
8pm, 10pm and 12pm. WDG have the potential to reduce 
total losses and total cost, as well as the burden on the power 
transformers. Fig.11 shows impacts of WDG peak generation 
time on distribution transformer loading. As expected, there 
is more reduction in transformer loading when the peak 
WDG durations occur during early evening peak load hours 
(e/g., 6pm, 8pm) with sustainable PEV charging activities.  
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(b)  

Fig. 5.  The 449 node smart grid topology consisting of the IEEE 31 node 23 kV system with 3 WDG units and 22 low voltage 19 node 415 V residential feeders; (a) 
system diagram, (b) detailed diagram of one 415 V residential feeder with 16%, 32%, 47% and 63% PEV penetration showing high, medium and low priority 
consumers in red, blue and green colours paying very high, moderate and very cheap tariff rates, respectively.                                                                                    



 

 

 
Fig. 6. System power consumption of 449 node smart grid (Fig.5) with 63% 
PEV penetration for; (a) Case A, (b) Case B, (c) Case C (Tables I, II). 

 
 

 

 
Fig. 7. System power consumption for Case C (OL-FCA) with PEV penetration 
levels of; (a) 47%, (b) 32%,  (c) 16%. 
 

 



 

 
 

 
Fig. 8. Voltage profile (for the worst affected nodes) of the 449 node smart grid 
(Fig.5) for; (a) Case A, (b) Case B, (c) Case C (Table I).  
 

 
 
 

 
 

 
Fig. 9. Total system power losses of the 449 node smart grid (Fig.5) for; (a) Case 
A, (b) Case B, (c) Case C (Table I).  
 

 
 
 



 

 

 
Fig. 10. System power consumption with 3x5=15% WDG penetration; (a) Case 
D (MSS coordination), (b) Case E (OL-FCA).  
 

F.  Impact of WDG Penetration (Case G) 
The sizes of the three WDGs (Fig.5) are adjusted to examine 
six wind penetration levels of 5, 15, 10, 20, 30, and 40. 
Simulation results with OL-FCA coordination for 63% PEV 
penetration are summarized in Table III and Fig.12. 
According to these results, increasing WDGs penetration will 
substantially reduce system losses, generation cost and 
transformer loading. 
 

G.   Impact of WDG Location (Case H) 
To investigate impacts of wind location, one large 21kW 
WDG unit is considered and connected at different nodes. 
The calculated total system losses with PEV penetration of 
63% are plotted in Fig.13. As expected, the most appropriate 
locations of WDGs are toward the end of the HV network on 
nodes 11-15.   
 

 

 
TABLE II 

IMPACT OF UNCOORDINATED, MSS [12] AND FUZZY COORDINATED PEV 
CHARGING ON SMART GRID SYSTEM OF FIG.5. FOR COMPARISON, THE SAME 

GAUSSIAN RANDOM PEV DISTRIBUTIONS AND PLUG-IN TIMES ARE USED. 
PEV 
[%] 

∆V  
[%] 

IMAX  
[%] 

Generation 
cost* [$/day]  

Total cost (Eq.1) 
[$/day] 

Increase in Total 
cost [%]** 

Nominal Operation without any PEVs or WDGs 
0 7.646 0.147 770.3 786.2 0 

Case A: Uncoordinated PEV; Figs.6(a),8(a),9(a) 
16 7.69 0.179 829 1,030 31.10 
32 9.05 0.218 871 1,090 38.67 
47 16.20 0.263 916 1,180 50.10 
63 17.60 0.307 958 1,250 59.0 

Case B: MSS Coordination [12]; Figs.6(b),8(b),9(b) 
16 7.67 0.161 808 825 4.93 
32 7.66 0.167 841 858 9.12 
47 10.00 0.163 865 884 12.44 
63 10.00 0.172 886 906 15.24 

Case C: OL-FCA; Figs.6(c),7,8(c),9(c) 
16 7.65 0.159 805 821 4.42 
32 7.65 0.158 828 845 7.48 
47 10.32 0.160 842 861 9.51 
63 9.72 0.159 866 886 12.70 

Case D: MSS Coordination with (15% penetration) WDGs; Fig.10(a)  
16 7.66 0.177 717 733 -6.76 
32 7.83 0.178 754 771 -1.91 
47 10.00 0.189 782 801 1.88 
63 10.00 0.182 805 825 4.93 

Case E: OL-FCA with WDGs (15% penetration); Fig.10(b) 
16 7.65 0.160 714 730 -7.14 
32 7.78 0.160 738 755 -3.97 
47 10.04 0.160 753 771 -1.93 
63 9.78 0.172 778 797 1.37 

  *) Excluding WDGs. 
  **) Percentage of nominal cost with no PEVs, exculding WDG cost. 

TABLE III 
CASE G: IMPACT OF CHANGING WDG PENETRATION ON SMART GRID SYSTEM 

OF FIG.5 WITH 63% PEV PENETRATION AND OL-FCA COORDINATION.  

WDG 
[%]* 

∆V  
[%] 

Total Power 
Loss   

[MW/day] 

Generation 
cost   

[$/day]  

Total cost   
(Eq.1) 
[$/day] 

Increase in Total 
cost [%] 

5 9.70 0.2093 838 858 9.13 
10 9.74 0.2078 808 827 5.19 
15 9.78 0.2065 781 801 1.88 
20 9.87 0.2053 753 772 -1.81 
30 9.96 0.2031 696 715 -9.05 
40 10.05 0.2012 639 658 -16.30 

  **) Percentage of nominal generation with no PEVs. 

      
Fig. 11. Case F: Impact of WDG peak generation time on distribution 
transformer loading (OL-FCA coordination, 63% PEV penetration). 



 

 
Fig. 12. Case G: Impact of WDG penetration on distribution transformer loading 
(OL-FCA coordination, 63% PEV penetration, WDG peak generation at 6pm). 
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Fig. 13. Case G: Impact of WDG location on total system losses (63% PEV 
penetration with one 21kW WDG connected at different nodes). 

VI.  CONCLUSION 
This paper proposes a fast and simple online fuzzy 
coordination algorithm (OL-FCA) for charging PEV batteries 
based on MSS optimization and fuzzy reasoning. It is 
implemented on a 449-node 23 kV test system consisting of  
22 low voltage residential networks populated with PEVs. 
OL-FCA has the following advantages and capabilities: 
• Compared to MSS coordinated PEV charging of [12], it 

offer further improvements in terms of loss and cost 
reduction.  

• It takes advantage of DG resources by utilizing their output 
powers particularly during peak DG generation periods to 
service more vehicles and reduce the total cost.  

•  It does not require forecasting of PEVs and/or DGs as the 
information on random arrivals of vehicles and the 
intermittent outputs/status renewable resources are updated 
online through the smart meters. 

•  It provides consumer charging time zones based on 
priority, regulates node voltages and controls system peak 
demand while improving the efficiency and economy of 
smart grid by reducing cost of energy generation.  

• It will also reduce the burden on substation and local 
distribution transformers and circuits that will minimize the 
risk and cost of premature equipment failures and 
associated outages.  

The main improvements of OL-FCA compared with the MSS 
algorithm of [11-12] are application of fuzzy theory to 
increase the possibility of capturing a better local solution and 
the reduction in the total cost (over 2.5%; Table II, rows 12-
13 and 17-18) particularly at high penetrations of PEVs. 
The fuzzy set theory is used to properly combine the objective 
function (Eq.1) and constraints (Eqs.2–3). Therefore, the 
quality of solution and convergence characteristic of OL-FCA 
are the same as the MSS technique [11-12, 26]. However, 
application of fuzzy theory increases the possibility of 
capturing a better local solution.  
To improve the solution, near global optimization techniques 
with more computational efforts such as genetic algorithm 
(GA) [28], particle swarm optimization (PSO) [29], tabu 
search [30] may be considered. The authors are investigating 
the computation of near global PEV coordination solutions 
and hope to publish some results in the future. 
 

REFERENCES 
[1]. W. Su, H. Rahimi-Eichi, W. Zeng,  M.Y. Chow, “A survey on the 
electrification of transportation in a smart grid environment”, IEEE 
Transactions on Power Systems, Vol.3, No.1, pp.1-10, 2012. 
[2]. X. Fang, S. Misra, G. Xue, D. Yang, “Smart grid- the new and improved 
power grid: A survey,” IEEE Communications Survey & Tutorials, Vol.14, 
No.4, Fourth Quarter, pp.944-980, 2012.  
[3]. M. Yilmaz, P.T. Krein, “Review of the impacts of vehicles-to-grid 
technologies on distribution systems and utility interfaces,” IEEE Transactions 
on Power Electronics, Vol.28, No.12, pp.5673-5689, 2013. 
[4]. L.P. Fernández, T.G.S. Román, R. Cossent, C.M. Domingo, P. Frías, 
“Assessment of the impact of plug-in electric vehicles on distribution networks”, 
IEEE Transactions on Smart Grid, Vol.26, No.1, pp.206-213, 2011. 
[5]. E. Sortomme, M.M. Hindi, S.D.J. MacPherson, S.S.Venkata, “Coordinated 
charging of plug-in hybrid electric vehicles to minimize distribution system 
losses”, IEEE Transactions Smart Grid, Vol.2, No.1, pp.198-205, 2011. 
[6]. K. Clement-Nyns, E. Haesen, and J. Driesen, “The impact of charging plug-
in hybrid electric vehicles on a residential distribution grid”, IEEE Transactions 
on Power Systems, Vol.25, No.1, pp. 371-380, 2010.  
[7]. M. Zhongjing, D.S. Callaway, I.A. Hiskens, “Decentralized charging control 
of large populations of plug-in electric vehicles,” IEEE Transactions on Control 
Systems Technology, Vol.21, No.1, pp.67-78, 2013. 
[8]. S. Vandael, B. Claessens, M. Hommelberg, T. Holvoet, G. Deconinck, “A 
scalable three-step approach for demand side management of plug-in hybrid 
vehicles,” IEEE Transactions on Smart Grid, Vol.4, No.2, pp.720-728, 2013. 
[9]. C. Jin, J. Tang, P. Ghosh, “Optimizing electric vehicle charging: A 
customer's perspective,” IEEE Transactions on Vehicular Technology, Vol.62, 
No.7, pp.2919-2927, 2013. 
[10]. J.M. Foster, M.C. Caramanis, “Optimal power market participation of 
plug-in vehicles pooled by distribution feeder,” IEEE Transactions on Power 
Systems, Vol.28, No.3, pp.2065-2076, 2013. 
[11].  Amir  S. Masoum, S. Deilami, P.S. Moses, M.A.S. Masoum, A. Abu-
Siada, “Smart load management of plug-in electric vehicles in distribution and 
residential networks with charging stations for peak shaving and loss 
minimization considering voltage regulation”, IET Proceedings on Generation, 
Transmission and Distribution, Vol.5, No.8, pp.877-888, 2011. 
[12]. S. Deilami, A.S. Masoum, P.S. Moses, M.A.S. Masoum, “Real-time 
coordination of plug-in electric vehicle charging in smart grids to minimize 
power losses and improve voltage profile”, IEEE Transactions on Smart Grid, 
Vol.2, No.3, pp.456-467, 2011. 
[13]. D. Wu, D.C. Aliprantis, L. Ying, “Load scheduling and dispatch for 
aggregators of plug-in electric vehicles”, IEEE Transactions on Smart Grid, 
Vol.3, No.1, pp.368-376, 2012. 
[14]. A. Ashtari,, E. Bibeau, S. Shahidinejad, T. Molinski, “PEV charging 
profile prediction and analysis based on vehicle usage data”, IEEE Transactions 
on Smart Grid, Vol.3, No.1, pp.341-350, 2012. 
[15]. B. Geng, J.K. Mills, D. Sun, “Two-stage charging strategy for plug-in 
electric vehicles at the residential transformer level,” IEEE Transactions on 
Smart Grid, Vol 4, No.3, pp.1442-1452, 2013. 



 

[16]. J. Linni, X. Honghong, X. Guoqing, Z. Xinyu, Z. Dongfang, Z.Y. Shao, 
“Regulated charging of plug-in hybrid electric vehicles for minimizing load 
variance in household smart microgrid,” IEEE Transactions on Industrial 
Electronics, Vol.60, No.8, pp.3218-3226, 2013. 
[17]. L. Gan, U. Topcu, S. Low, “Optimal decentralized protocol for electric 
vehicle charging,” IEEE Transactions on Power Systems, Vol.28, No.2, 
pp.940-951, 2013. 
[18]. N. Rotering M. Ilic, “Optimal charge control of plug-in hybrid electric 
vehicles in deregulated electricity markets,” IEEE Transactions on Power 
Systems, Vol.26, No.3, pp.1021-1029, 2011. 
[19]. S. Deilami, A.S. Masoum, P.S. Moses, M.A.S. Masoum, “Voltage profile 
and THD distortion of residential network with high penetration of plug-in 
electrical vehicles”, IEEE ISGT Europe 2010 Conference, Gothenburg, Sweden, 
October 10-13, 2010. 
[20]. P. Richardson, D. Flynn, A. Keane, “Optimal charging of electric vehicles 
in low-voltage distribution systems,” IEEE Transactions on Power Systems, 
Vol.27, No.1, pp.268-279, 2012. 
[21]. S. Bashash, H.K. Fathy, “Transport-based load modeling and sliding mode 
control of plug-in electric vehicles for robust renewable power tracking”, IEEE 
Transactions on Smart Grid, Vol.3, No.1, pp.526-534, 2012. 
[22]. J M. Falahi, C. Hung-Ming Chou, M. Ehsani, X. Le. K.L. Butler-Purry, 
“Potential power quality benefits of electric vehicles”, IEEE Transactions on 
Sustainable Energy, Vol.2, No.1, pp. 1016-1023, 2013. 
[23]. J.R. Pillai, B. Bak-Jensen, “Integration of vehicle-to-grid in the Western 
Danish power system”, IEEE Transactions on Sustainable Energy, Vol.2, 
No.1, pp. 12-19, 2011. 
[24]. W. Hu, C. Su, Z. Chen, B. Bak-Jensen, “Optimal operation of plug-in 
electric vehicles in power systems with high wind power penetrations”, IEEE 
Transactions on Sustainable Energy, Vol.2, No.1, pp. 577-585, 2013. 
[25]. S.Y. Derakhshandeh, A.S. Masoum, S. Deilami, M.A.S. Masoum, M.E.H. 
Golshan, “Coordination of generation scheduling with PEVs charging in 
industrial microgrids”, IEEE Transactions on Power Systems, Vol.28, No.3, 
pp.3451-4361, 2013. 
[26].  M.A.S. Masoum, A. Jafarian, M. Ladjevardi, E.F. Fuchs, W.M. Grady, 
“Fuzzy approach for optimal placement and sizing of capacitor banks in the 
presence of harmonics”, IEEE Transactions on Power Delivery, Vol.19, No.2, 
pp.822-829, 2004. 
[27]. G. Deschrijver, “Additive and multiplicative generators in interval-valued 
fuzzy set theory”, IEEE Transactions on Fuzzy Systems, Vol.15, No.2, pp.222-
237, 2007. 
[28]. A. Ulinuha, M.A.S. Masoum, S.M. Islam, “Hybrid genetic-fuzzy algorithm 
for Volt/Var/THD control of distribution systems with high penetration of 
nonlinear loads”, IET Proceedings on Generation, Transmission and 
Distribution, Vol.5, No.4, pp.425-439, 2011. 
[29]. S. Hajforoosh, S.M.H. Nabavi, M.A.S. Masoum, “Coordinated aggregated-
based particle swarm optimization algorithm for congestion management in 
restructured power market by placement and sizing of unified power flow 
controller”, IET Proceedings on Science, Measurement & Technology, Vol.6, 
No.4, pp.267-278, 2012. 
[30]. B.R. Pereira Junior, A.M. Cossi, J. Contreras, J.R.S.  Mantovani, 
“Multiobjective multistage distribution system planning using tabu search”, IET 
Proceedings on Generation, Transmission and Distribution,Vol.8, No.1, 
pp.35-45, 2014. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Amir S. Masoum received his B.S. and M.S. degrees in Electrical Engineering 
and Electrical Utility Engineering from the University of Western Australia, 
WA, Australia, and Curtin University, WA, Australia in 2009 and 2010, 
respectively. He has been a Project Manager at the Operational Asset 
Management, Western Power, WA, Australia since 2010 and is currently 
working towards a PhD degree in Electrical Engineering at Curtin University, 
WA, Australia.  

Sara Deilami received her B.S. and M.S. degrees in Electrical Engineering from 
Islamic Azad University, Tehran, Iran and Curtin University, WA, Australia in 
2000 and 2011, respectively. She was awarded a Curtin University Postgraduate 
Scholarship (CUPS) and an Australian Postgraduate Award (APA) scholarship 
in 2010 and 2011, respectively. She has nine years of industry experience. 
Currently, she is a Faculty Member at the Electrical and Computer Engineering 
Department, Curtin University, Perth, WA, Australia.  

A. Abu-Siada (M’07, SM’12) received his B.Sc. and M.Sc. degrees from Ain 
Shams University, Egypt and the PhD degree from Curtin University of 
Technology, Australia, All in Electrical Engineering. Currently, he is a senior 
lecturer at the Department of Electrical and Computer Engineering, Curtin 
University. His research interests include power system stability, condition 
monitoring, power electronics, power quality and energy technology. 

Mohammad A.S. Masoum (S’88–M’91–SM’05) received his B.S., M.S. and 
PhD degrees in Electrical and Computer Engineering in 1983, 1985, and 1991, 
respectively, from the University of Colorado at Boulder, USA. Currently, he is a 
Professor and the discipline leader for Power System Engineering at the 
Electrical and Computer Engineering Department, Curtin University, Perth, 
Australia. Dr. Masoum is the co-author of “Power Quality in Power Systems 
and Electrical Machines” (Elsevier, 2008) and “Power Conversion of 
Renewable Energy Systems” (Springer, 2011).  
 
 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Falahi,%20M..QT.&newsearch=true�
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Hung-Ming%20Chou.QT.&newsearch=true�
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Ehsani,%20M..QT.&newsearch=true�
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Ehsani,%20M..QT.&newsearch=true�
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Butler-Purry,%20K.L..QT.&newsearch=true�
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Pereira%20Junior,%20B.R..QT.&newsearch=true�
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Cossi,%20A.M..QT.&newsearch=true�
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Contreras,%20J..QT.&newsearch=true�

	Introduction
	Problem Formulation
	Proposed Online Fuzzy Coordination Algorithm (OL-FCA) for PEV Charging
	Minimization of Objective Function (Cost)
	Fuzzification of Constraints
	Fuzzy Combination of Membership Functions
	Flow Chart of OL-FCA

	The 449 Node Smart Grid test System
	Simulation Results and Discussions
	Uncoordinated PEV Charging (Case A)
	MSS Coordinated PEV Charging (Case B)
	Fuzzy Coordinated (OL-FCA) PEV Charging (Case C)
	MSS and Fuzzy Coordination with WDGs (Cases D-E)
	Impact of WDG Peak Generation Time (Case F)
	Impact of WDG Penetration (Case G)
	Impact of WDG Location (Case H)

	Conclusion
	References
	A. Abu-Siada (M’07, SM’12) received his B.Sc. and M.Sc. degrees from Ain Shams University, Egypt and the PhD degree from Curtin University of Technology, Australia, All in Electrical Engineering. Currently, he is a senior lecturer at the Department of...


