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ABSTRACT

Understanding the effective stress coefficient for seismic
velocity is important for geophysical applications such as
overpressure prediction from seismic data as well as for hy-
drocarbon production and monitoring using time-lapse seis-
mic measurements. This quantity is still not completely un-
derstood. Laboratory measurements show that the seismic
velocities as a function of effective stress yield effective
stress coefficients less than one and usually vary between 0.5
and 1.At the same time, theoretical analysis shows that for an
idealized monomineral rock, the effective stress coefficient
for elastic moduli �and therefore also for seismic velocities�
will always equal one. We explore whether this deviation of
the effective stress coefficient from unity can be caused by
the spatial microheterogeneity of the rock. The results show
that only a small amount �less than 1%� of a very soft compo-
nent is sufficient to cause this effect. Such soft material may
be present in grain contact areas of many rocks and may ex-
plain the variation observed experimentally.

INTRODUCTION

Physical properties of porous rocks, such as seismic velocity, de-
end on both pore pressure Pp and confining stress � c. The depen-
ence of seismic velocity on pressure has been confirmed for a vari-
ty of rocks by laboratory measurements of elastic wave velocities in
amples with varying pressure in pore fluids �Terzaghi, 1948; Wyllie
t al., 1958; Todd and Simmons, 1972; Eberhart-Phillips et al., 1989;
immerman, 1991; Prasad and Manghnani, 1997; Siggins and Dew-
urst, 2003�. Because both confining stress and pore pressure vary in
he subsurface, knowledge of acoustic velocities in rocks as func-
ions of both confining stress and pore pressure is important for pre-
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icting overpressure from seismic data �Dutta, 2002; Huffman,
002; Sayers et al., 2002� and for correct interpretation of time-lapse
nd 4D seismic measurements �Tura and Lumley, 1999; Landrø,
001; Vasco, 2004�.

In general, for a rock subjected to a given confining stress � c,
igher pore pressure Pp corresponds to lower compressional and
hear velocities. Confining stress has a similar effect �but with oppo-
ite sign� on seismic velocities. Usually, the dependence of seismic
elocities on pore pressure and confining stress is described by an
mpirical relationship �Eberhart-Phillips et al., 1989; Zimmerman,
991; Prasad and Manghnani, 1997�:

vp,s�Pd� � a � kPd � b exp�� dPd� , �1�

here Pd � Pc � Pp is the differential pressure and Pc � �Tr
� c�/3 is the confining pressure. The coefficients a, k, b, and d are
mpirical fitting parameters. Shapiro �2003� develops a model that
elates the fitting parameters of equation 1 to physical properties of
orous and fractured rocks. Further, experimental observations �Sig-
ins and Dewhurst, 2003� show that equation 1 is stress-path depen-
ent and hence not unique. The velocity-stress analysis can be sim-
lified by introducing the concept of effective stress � e, in which the
escription of the stress dependence is given in terms of one single
arameter, the effective stress.

Consider that some property of the rock, say F, depends only on
he current stress state irrespective of the stress history and stress
ath. Thus, F can be written as a function �some linear combination�
f confining stress � c and pore pressure Pp:

F � F�� c,Pp� � F�� e� , �2�

here the tensor � e,

� e � � c � nFPp� ij , �3�

s called effective stress and nF is called an effective stress coefficient
or the property F. The property F can be any measurable parameter
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f the rock: density, overall volume �of a given rock sample�, pore
olume, ultrasonic compressional vp, or shear vs velocity.
From the definition of the effective stress law, the total differential

f equation 2 yields

dF�� c,Pp� � � �F�� c,Pp�
�� c

�
Pp

d� c � � �F�� c,Pp�
� Pp

�
� c

dPp.

�4�

rom equations 3 and 4, it follows that the effective stress coefficient
or the arbitrary property F can be defined as the ratio of the sensitiv-
ty of the property F to changes in the pore pressure, to the sensitivity
f the property F to changes in the confining stress �Al-Wardy and
immerman, 2004�:

nF � �

� �F

� Pp
�

� c

� �F

�� c
�

Pp

, �5�

here the subscript outside the parentheses indicates a variable that
s held constant. An in-depth analysis of the concept of effective
tress in general has been performed by Robin �1973�, Carroll and
atsube �1983�, Zimmerman �1991�, Berryman �1992�, and Gurev-

ch �2004�. These studies show there is no universal effective stress
oefficient for all rock properties, and different values apply for dif-
erent physical quantities F.

The analysis of the elastic deformation of rocks shows that a
orous rock made of a single linearly elastic and isotropic mineral
as an effective stress coefficient for static drained bulk and shear
oduli �and, approximately, for elastic wave velocities� equal to one

Gurevich, 2004�. However, the results of many measurements
Todd and Simmons, 1972; Siggins and Dewhurst, 2003� consistent-
y show values for the effective stress coefficient for seismic veloci-
ies smaller than one. Of course, real rocks never conform to the as-
umptions of the theoretical analysis: They are virtually never mi-
rohomogeneous �made of one mineral�, and the minerals are almost
lways anisotropic. In addition, ultrasonic velocities are measured at
igh frequencies. However, it is not clear which of these effects
auses the discrepancy between theoretical and numerical values of
ffective stress coefficients.

We analyze one of these effects, microheterogeneity. Using a sim-
le spherical shell configuration, we investigate the degree of heter-
geneity required to produce the measured values of effective stress
oefficients. A similar approach using a cylindrical model is pro-
osed by Al-Wardy and Zimmerman �2004�.

THEORETICAL BACKGROUND

General effective stress rules, and a number of effective stress co-
fficients for various physical properties of inhomogeneous porous
ocks, are derived by Berryman �1992� using the general stress-
train relationships given by Brown and Korringa �1975�. Brown
nd Korringa �1975� define three independent constants for bulk
oduli of the porous frame:

1

K* �
1

V
� �V

� Pd
�

Pp

, �6�
1

Ks
* �

1

V
� �V

� Pp
�

Pd

, �7�

1

K�
* �

1

V�
� �V�

� Pp
�

Pd

. �8�

he fourth one, which is not independent, is given by

1

KP
* �

1

V�
� �V�

� Pd
�

Pp

, �9�

here V is total volume of the sample, V� � �V is pore volume, � is
orosity, and Pd � Pc � Pp is differential pressure. The bulk modu-
us KP

* is related to K* and Ks
* through the reciprocity theorem

Brown and Korringa, 1975; Berryman and Milton, 1991; Berry-
an, 1992�:

1

KP
* �

1

�
� 1

K* �
1

Ks
*� . �10�

rown and Korringa �1975� also derive an equation for the un-
rained bulk modulus Ksat

* . This equation is frequently called the
eneralized Gassmann’s equation �Brown and Korringa, 1975; Ber-
yman and Milton, 1991; Mavko et al., 1998� and reads

Ksat
* � K* � �*2M*, �11�

here

1

M* �
�

Kf
�

�*

Ks
* �

�

K�
* , �12�

�* � 1 �
K*

Ks
* . �13�

n the case of the single mineral, the generalized Gassmann’s equa-
ion 11 reduces to the standard Gassmann’s equation �Gassmann,
951; Berryman and Milton, 1991�:

Ksat � K � �2M , �14�

here

1

M
�

�

Kf
�

� � �

Ks
, �15�

� � 1 �
K

Ks
. �16�

sat and K represent the undrained and drained bulk moduli, Ks is the
rain bulk modulus, and the two bulk moduli Ks

* and K�
* from equa-

ion 12 are equal to the bulk modulus Ks of the single granular con-
tituent

Ks
* � K�

* � Ks. �17�

rown and Korringa’s equations 6–9 yield the isotropic-stress/vol-
me-strain relationships for the total volume strain
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Effective stress law for elastic properties E9
dV

V
�

dPd

K* �
dPp

Ks
* �18�

nd for pore volume strain

dV�

V�

�
dPd

Kp
* �

dPp

K�
* . �19�

Based on these considerations, Berryman �1992� derives a num-
er of effective stress coefficients for different properties of porous
ocks. Following Berryman’s work, we define here the effective
tress coefficient for total volume and porosity. These definitions are
sed further to derive those coefficients for proposed single- and
ouble-shell models and for comparison with the newly derived ef-
ective stress coefficient for drained bulk modulus.

The effective stress principle in equation 3 and the isotropic-
tress/volume-strain relationships in equation 18 define the effective
tress coefficient �* for the total volume:

dV

V
�

dPd

K* �
dPp

Ks
* �

1

K* �dPc � nV
*dPp� , �20�

here the effective stress coefficient for total volume nV
* ��* is giv-

n by equation 13 and for single-mineral porous rock is given by
quation 16, respectively. In the following, we use the more conven-
ional notation �*, or � in Gassmann’s limit, respectively. The usual
ange of values for �* is � ��*�1.

The variation in porosity � � V� /V yields

dV�

V�

�
d�

�
�

dV

V
. �21�

sing equations 13, 18, and 19, we obtain

�
d�

�
� �� � �

�K* ��dPc � n�
*dPp� , �22�

here the effective stress coefficient for porosity n�
* is given by

n�
* � 1 �

1

K�
* �

1

Ks
*

1

KP
* �

1

K*

. �23�

As noted by Berryman �1992�, when only one solid constituent is
resent, relationship 17 yields the effective stress coefficient for po-
osity in Gassmann’s limit n� �1. The coefficient n�

* equals unity
nly when Ks

* � K�
* or when K* � 0. If the moduli satisfy Ks

*�K�
*

0, then n�
* �1; however, if K�

* �Ks
* or if K�

* �0, then n�
* �1.

EXPERIMENTAL OBSERVATIONS

Stress-path-dependent velocity response in a selection of reser-
oir sandstones was investigated via ultrasonic velocity measure-
ents on cores subjected to varied confining- and pore-pressure re-

imes. The sandstone samples were from three wells that intersect
he Early Cretaceous Barrow Group in the Barrow Island subbasin in
heAustralian North West Shelf. They are from depths between 1700
nd 2100 m and have undergone similar geologic histories since
eposition. Porosities range from 6.6% to 24.1%, and permeabilities
ary from 0.01 to 1160 mD. The clay-content estimates vary from
% to 24% for individual samples. The sandstones were tested dry
nd oil saturated under ambient conditions and stepwise in a triaxial
ell to a differential pressure of 60 MPa.

The stress paths simulated under experimental conditions the
hree mechanisms of overpressure �Siggins and Dewhurst, 2003�:

� Normal compaction—constant pore pressure �5 MPa� with in-
creasing confining pressure reaching up to 65 MPa

� Fluid expansion—constant confining pressure of 65 MPa with
pore pressure rising incrementally from 5 to 60 MPa

� Disequilibrium compaction—constant differential pressure
�10 MPa� with confining and pore pressures rising incremen-
tally from 15 and 5 MPa, respectively, to 65 and 55 MPa,
respectively

Ultrasonic measurements of P- and S-wave velocities were made
long the length of the cores after pore-pressure equilibration at each
ressure increment. Full waveforms were recorded for both trans-
itted P- and S-waves at nominal center frequencies of 800 kHz �P-
ave� and 400 kHz �S-wave�, respectively. The effective stress co-

fficient for compressional velocities nvp
are derived according to

odd and Simmons �1972� in Table 1. Seven different core samples
how the deviation of the effective stress coefficient from unity. To
xplain this observation by means of the presence of microheteroge-
eity, we analyze this further in the double-shell model. The details
n the experimental data can be found elsewhere �Siggins and Dew-
urst, 2003; Ciz et al., 2005; Dodds et al., 2007�. Figures similar to
hose of Todd and Simmons �1972� are shown in these papers.

ANALYTICAL SOLUTIONS

As discussed, one possible factor that may cause observed values
f effective stress coefficient for seismic velocities nvp

to be smaller
han the theoretical value nvp

� 1 is microheterogeneity. To analyze
his effect, we compute effective stress coefficients for a simple
pherical shell configuration, where a spherical pore is surrounded
y spherical shells of two linear and isotropic minerals �a double-
hell model, Figure 1a�. However, before analyzing the double-shell
odel, we first consider the reference case of a single-shell model

Figure 1b�.

able 1. Experimentally derived effective stress coefficients
vp

for ultrasonic velocities vp for eight different oil-saturated
andstone samples. The confining pressure varies from
0 to 65 MPa, and the pore pressure varies from
to 60 MPa in three different stress paths simulated in the

xperiments.

Sample Porosity � Clay C

Effective stress coefficient
for P-wave velocity

nvp

1207 20.4 10 0.58

1203 20.6 24 0.79

1204 18.7 6.3 1.00

1206 19.9 4 0.60

05 V 23.7 3 0.76

08 V 20.3 3 0.68

15 V 24.1 4 0.77

12 V 6.6 4 0.35
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ingle-shell model

Figure 1b shows an idealized rock represented by a spherical shell
ith inner radius Rp and outer radius Rc. The shell itself is made of a

olid with the bulk modulus Ks, shear modulus �s, and density 	s. We
ssume that within the range of stress fields considered, the solid
rain material is linearly elastic, that is, Ks and �s are constants. The
nner sphere represents the pore filled with a fluid with the bulk mod-
lus Kf, viscosity 
 , and density 	 f.

Suppose that the shell is in the static equilibrium state when it is
ubjected to the confining stress Pc on the outer sphere and pore pres-
ure Pp on the inner sphere. Let � be the stress field within the solid.
o obtain the effective stress coefficient for drained bulk modulus
or our model, we must solve the elasticity equations for static equi-
ibrium. The equations of equilibrium for an inhomogeneous elastic

edium are, in general, three coupled partial differential equations
ith three unknown components of the displacement vector �Lan-
au and Lifshitz, 1959; Pilant, 1979�.

However, for the model with spherical symmetry, where the radial
isplacement ur is the only nonzero component of displacement, the
roblem simplifies considerably. Two of the three equations of stress
quilibrium are satisfied identically. The third one and Hooke’s law
rovide the solution for the exact moduli for the single-shell model
for details of the derivation, seeAppendix A�:

1

K
�

3

1 � �
� 1

3Ks
�

�

4�s
� , �24�

1

KP
�

3

1 � �
� 1

3Ks
�

1

4�s
� , �25�

nd

K� � Ks. �26�

Further, these moduli �equations 24–26� enable us to derive the
ffective stress coefficients for total volume � by substituting them
nto equation 16. The effective stress coefficient � for the single-
hell model then reads

� � 1 �
K

Ks
�

��3Ks � 4�s�
�3�Ks � 4�s�

. �27�

ubstituting equations 24–26 into equation 23 for the effective stress
oefficient for porosity and into general equation 5, we obtain the ef-
ective stress coefficients for porosity n� and drained bulk modulus
K for the single-shell model to be unity:

igure 1. �a� Double-shell and �b� single-shell models. Pore pressure
p is applied from inside and confining pressure Pc from outside the

pherical shell.
n� � nK � 1. �28�

his agrees with Gassmann’s limit �Berryman and Milton, 1991;
erryman, 1992; Gurevich, 2004� when only a single mineral is
resent.

ouble-shell model

The effect of microheterogeneity can be modeled schematically
sing a double-shell model shown in Figure 1a. Elastic moduli of the
nner and outer shell are denoted by superscripts 1 and 2, respective-
y. We follow the same approach as for the single-shell model.
ence, to obtain the effective stress coefficients for the double-shell
odel, we need to solve the elasticity equations for a pore embedded

nto the elastic solid composed of two elastic shells. The spherical
hell has inner radius Rp, outer radius Rc, and radius of the spherical
oundary between these two shells Ri. The inner and outer solid
omponents are assumed to be linear elastic materials described by a
onstant bulk and shear moduli Ks

�1�, �s
�1� for the inner shell material

nd Ks
�2�, �s

�2� for the outer shell solid.
We assume that the shell is in a static equilibrium state when it is

ubjected to the confining pressure Pc on the outer sphere and pore
ressure Pp on the inner sphere. These acting pressures cause chang-
s in the stress field � , strain e, and displacement u, which can be de-
cribed by the static equilibrium equation A-1 or A-5, respectively,
nd the stress/strain relationship in each shell as given by Hooke’s
aw �equation A-2�. The details of the derivation for the double-shell

odel are given inAppendix B.
The resulting cumbersome equation B-10 for drained bulk modu-

us K can be simplified using the following substitutions:

Ri � Rc�1 � �� Ks
�2� � a�Ks

�1� �s
�2� � b�Ks

�1�. �29�

n the limit �→0, the drained bulk modulus yields

K �
4Ks

�1��s
�1��Rp � Rc��Rp

2 � RpRc � Rc
2��4b � 3a�

�12�s
�1�a � 16�s

�1�b � 36�s
�1��Rc

3 � �9Ks
�1�a � 36�s

�1� � 12Ks
�1�b�Rp

3
,

�30�

here a and b are parameters given by substitutions in expressions
9. The results are discussed in more detail in the next section.

RESULTS AND DISCUSSION

We have shown that the single-shell model, representing the rock
omposed from homogeneous material, yields an effective stress co-
fficient for porosity and drained bulk modulus equal to unity. The
iot’s effective stress coefficient � for total volume is given by
quation 27 and depends on drained and grain bulk moduli K and Ks.

Figure 2a shows the comparison between fluid-saturated bulk
oduli computed for the double-shell model by the Brown and Kor-

inga equation and Gassmann’s equation. The Gassmann fluid sub-
titution is computed with the effective grain bulk modulus obtained
rom the average of Hashin-Shtrikman bounds �Hashin and Shtrik-
an, 1963�. The results show that Gassmann’s equation is consistent
ith Brown and Korringa’s equation for the wide range of realistic
arameters of rocks. The inconsistency is shown for unrealistic pa-
ameters �very high contrast in elastic moduli� by Berge and Berry-
an �1995�. Figure 2b shows the difference between the undrained

nd drained bulk moduli in dependence of porosity. The difference
ncreases from zero to the value of the bulk modulus of pore-filling
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Effective stress law for elastic properties E11
uid Kf � 2.2 GPa for porosity � � 1. The parameters of the model
re the bulk and shear moduli of the inner spherical shell are Ks

�1�

37 GPa and �s
�1� � 43 GPa and the outer shell material has bulk

nd shear moduli Ks
�1� � 3.7 GPa and �s

�1� � 4.4 GPa, representing
soft microlayer of heterogeneity with thickness h � Rc � Rp

1e � 2.
The effective stress coefficients are shown in Figure 3. The effec-

ive stress coefficients for total volume in single- and double-shell
odels are the same because of the small volume fraction of the soft

omponent. However, even a very tiny amount of the soft compo-
ent causes the variation of effective stress coefficients from unity
or porosity and drained bulk moduli in the double-shell model. The
ffective stress coefficient for porosity n�

* in the double-shell model
s bigger than one. This is in agreement with theoretical analysis of
erryman �1992� and Berge and Berryman �1995�: The effective

tress coefficient for drained bulk modulus nK
* is less than one. Thus,

he presence of microheterogeneity can be the cause of variation of
ffective stress coefficient from unity observed experimentally �Sig-
ins and Dewhurst, 2003�. This is consistent with a thin clay coating
n the sandstone grains and grain contacts.

The experimentally obtained effective stress coefficients are de-
ived for seismic velocities, whereas we have derived the effective
tress coefficient for drained bulk modulus. However, we assume
hat in the stress range considered, the effect of stress on both fluid
roperties and overall rock density is small; hence, these two effec-
ive stress coefficients �for seismic velocities and for drained bulk

odulus� show similar behavior. Therefore, our spherical model
epresents the idealized situation for analyzing of the effect of mi-
roheterogeneity on the effective stress coefficients.

igure 2. �a� Saturated and drained bulk moduli derived for the dou-
le-shell model in dependence on porosity. �b� Difference between
ndrained and drained bulk moduli from �a� in dependence on poros-
ty. The bulk and shear moduli of the inner spherical shell are Ks

�1�

37 GPa and �s
�1� � 43 GPa. The outer-shell material has bulk and

hear moduli Ks
�2� � 3.7 GPa and �s

�2� � 4.4 GPa, representing a
oft microlayer of heterogeneity with the thickness h � Rc � Rp

1e � 2 and bulk modulus of pore fluid K � 2.2 GPa.
f
Figure 4 shows the variation of effective stress coefficient from
nity for a negligible amount of very soft component of the outer
hell. In this case, the outer-shell material has the bulk and shear
oduli Ks

�1� � 0.037 GPa and �s
�1� � 0.043 GPa, representing a soft

icrolayer of heterogeneity with the thickness h � Rc � Rp � 1e
6. The outer-shell material having such parameters can also rep-

esent a very small amount of gas bounded on the grains. The small
mount of gas significantly decreases in seismic velocities.

At this stage, a question must be asked: Is this scenario �with a
uge contrast� plausible? We do not know. Coating might result from
rapped gas or some unknown alteration. We want also to underline
he usefulness of the negative result of the paper: If heterogeneity is
esponsible for this, the contrast must be huge. But this is possible
ith a tiny amount of coating so small, it does not affect the effective
odulus.

igure 3. The effective stress coefficient for total volume � and for
he drained bulk modulus nk versus porosity as derived for the dou-
le-shell model. The model parameters are the same as in Figure 2.

igure 4. The effective stress coefficient for total volume � and for
he drained bulk modulus nk versus porosity as derived for the dou-
le-shell model. The model parameters are the bulk and shear modu-
i Ks

�1� � 0.037 GPa and �s
�1� � 0.043 GPa representing a soft mi-

rolayer of heterogeneity with a thickness h � R � R � 1e � 6.
c p
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CONCLUSIONS

We have analyzed the effect of spatial microinhomogeneity on the
ffective stress coefficient for elastic moduli of porous rocks using a
ouble-shell model: a system of two concentric spherical shells
ade of two distinct elastic solid materials surrounding a spherical

ore. This analysis shows that spatial microinhomogeneity can in-
eed significantly affect the effective stress coefficient and cause its
eviation from unity, but only if the contrast between the two materi-
ls is very large—more than one order of magnitude. In particular,
his can occur if a small amount of very soft component is added to
he main grain material. Although, to have a noticeable effect on the
ffective stress coefficient the elastic moduli of the soft component
ust be 10–30 times smaller than the moduli of the main grain mate-

ial, its volume concentration can be very small, such that it has neg-
igible effect on the effective moduli of the overall material.

It is not clear whether this scenario is realistic and if the spatial mi-
roinhomogeneity is indeed the cause of the deviation of the experi-
entally observed effective stress coefficients from unity. The very

mall amount of the soft component sufficient to produce such an ef-
ect suggests that we may not be able to notice the presence of such
icroinhomogeneity from acoustic or other petrophysical measure-
ents.
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APPENDIX A

DERIVATION OF SOLUTION FOR
THE SINGLE-SHELL MODEL

The equation for the stress equilibrium in spherical coordinates
eads

�� rr

� r
�

2�� rr � � � ��
r

� 0, �A-1�

here the elastic stress-strain relationship is given by Hooke’s law:

� rr � Ks
 � 2�s�err �
1

3

 �,

� � � � Ks
 � 2�s�e� � �
1

3

 � , �A-2�

ssuming only a linearized expression for elastic strain

err �
�ur

� r
, e� � �

ur

r
, 
 �

�ur

� r
�

2ur

r
. �A-3�
ubstituting equations A-2 and A-3 into equation A-1 yields the
quation of equilibrium for isotropic bodies in terms of displace-
ents �Landau and Lifshitz, 1959; Pillant, 1979�:

�Ks �
4

3
�s��2ur � �Ks �

4

3
�s�� � 2

� r2 �
2

r

�

� r
�ur � 0.

�A-4�

hus, equation A-4 becomes ��� .ur� � 0 and in spherical coordi-
ates reads

� . ur �
1

r2

�

� r
�r2ur� � constant � A . �A-5�

he general solution to equation A-5 yields �Landau and Lifshitz,
959�

ur �
Ar

3
�

B

r2 . �A-6�

ntegration constants A and B are obtained by solving boundary con-
itions on the inner and outer surface of the spherical shell:

� rr�r � Rp� � Pp �A-7�

nd

� rr�r � Rc� � Pc. �A-8�

he solution yields integration constants A and B:

A �
1

Ks

Rp
3Pp � Rc

3Pc

Rc
3 � Rp

3 , �A-9�

B �
1

4�s

Rp
3Rc

3�Pp � Pc�
Rc

3 � Rp
3 . �A-10�

ubstituting the integration constants A and B �equations A-9 and
-10� into the general solution in equation A-6 and introducing the
orosity of our simple spherical model � � �Rp/Rc�3 gives the radial
isplacement ur as a function of applied pressures on the inner and
uter shell surface:

ur �
r

3Ks�1 � ��
��Pp � Pc� �

Rp
3

4r2�s�1 � ��
�Pp � Pc� .

�A-11�

quation A-11 represents the solution for the solid displacement of
he single spherical shell loaded by the pore pressure Pp on the inner
urface and by the confining pressure Pc on the outer surface. The
isplacement changes on the inner and outer shell surfaces because
Pp and dPc are

dur�r � Rp� �
Rp

1 � �
�� �

3Ks
�

1

4�s
�dPp

� � 1

3K
�

1

4�
�dPc� �A-12�
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nd

dur�r � Rc� �
Rc

1 � �
��� 1

3Ks
�

1

4�s
�dPp

� � 1

3Ks
�

�

4�s
�dPc� . �A-13�

orresponding changes in the pore volume V� � 4�Rp
3 /3 and total

olume V � 4�Rc
3/3 are

dV� �
3V�

1 � �
�� �

3Ks
�

1

4�s
�dPp � � 1

3Ks
�

1

4�s
�dPc�
�A-14�

nd

dV �
3V

1 � �
��� 1

3Ks
�

1

4�s
�dPp � � 1

3Ks
�

�

4�s
�dPc� .

�A-15�

sing equations A-14 and A-15 and Brown and Korringa’s isotro-
ic-stress/volume-strain relationships 18 and 19 yields the exact
oduli for the single-shell model �equations 24–26�.

APPENDIX B

DERIVATION OF SOLUTION FOR
DOUBLE-SHELL MODEL

We assume the shell is in a static equilibrium state when it is sub-
ected to the confining pressure Pc on the outer sphere and pore pres-
ure Pp on the inner sphere. These acting pressures cause changes in
he stress field � , strain e, and displacement u, which can be de-
cribed by the static equilibrium equation A-1 or A-5, respectively;
he stress/strain relationship in each shell is given by Hooke’s law
-2. The general solutions for inner and outer shell layers in spheri-

al coordinates according to equation A-6 reads

ur
�q� �

Aqr

3
�

Bq

r2 , �B-1�

here q � 1,2 represent the solid shell components 1 and 2, respec-
ively. Integration constants Aq and Bq are obtained by solving the
ollowing boundary conditions. Radial stress component � rr

�1� equals
ore pressure Pp on the inner shell boundary:

� rr
�1��r � Rp� � Pp. �B-2�

adial stress component � rr
�2� equals confining pressure Pc on the

uter shell:

� rr
�2��r � Rc� � Pc. �B-3�

ontinuity of stress on the inner shell interface r � R :
i
� rr
�1��r � Ri� � � rr

�2��r � Ri� . �B-4�

ontinuity of the displacement on the inner shell interface r � Ri:

ur
�1��r � Ri� � ur

�2��r � Ri� . �B-5�

olving these 4�4 equations, we obtain the unknown constants A1,
2, B1, and B2:

A1 �
1

�
�	�4�s

�1��s
�2� � 3Ks

�2��s
�2��Ri

3

� �3Ks
�2��s

�1� � 3Ks
�2��s

�2��Rc
3
Rp

3Pp

� �3Ks
�2��s

�1� � 4�s
�1��s

�2��Rc
3Ri

3Pc� ,

B1 �
1

�
���3

4
Ks

�1�Ks
�2� � Ks

�2��s
�2��Rc

3

� �Ks
�1��s

�2� � Ks
�2��s

�2��Ri
3�Rp

3Ri
3Pp

� �3

4
Ks

�1�Ks
�2� � Ks

�1��s
�2��Rc

3Ri
3Rp

3Pc
 , �B-6�
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6
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3. �B-9�

ubstituting into the general solution in equation B-1 yields the par-
icular solution of the elasticity problem which defines local dis-
lacement in response to the changes in pore and confining pressure.
his solution enables derivation of bulk moduli given by Brown and
orringa’s equations 18 and 19 for our double-shell model:
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By substituting these moduli into equations 13 and 23, we get ef-
ective stress coefficients for total volume and porosity for the dou-
le-shell model. To obtain the effective stress coefficient for the
rained bulk modulus nK, we express the displacement changes dui

n the inner and outer shell boundary and on the inner shell interface
aused by the pore- and confining-pressure changes dPp and dPc us-
ng equation B-1:

dur � wrdPc � vrdPp, �B-15�

here r � �Rp,Ri,Rc�. Using the general definition of the effective
tress coefficient 5 and equation B-10 yields the effective stress co-
fficient for drained bulk modulus nK:

nK �

�
r

�K*

� r
wr

�
r

�K*

� r
vr

. �B-16�

he explicit expression is cumbersome and thus we show the results
n graphical form �Figures 2–4�.
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