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Robust eigenstructure assignment in the computation of
friends of output-nulling subspaces

Lorenzo Ntogramatzidis and Robert Schmid

Abstract— In this paper we develop a strategy for the compu- to adapt them to a wider class of output-nulling subspaces.
tation of basis matrices of output-nulling subspaces, as Mleas  |n this paper we continue this investigation, and consider
of reachability and stabilisability output-nulling subspaces, with the problem of computing the associated friends. In Section

the simultaneous computation of the corresponding friend hat Vi ff h . tric f la f Il th
also delivers a robust closed-loop eigenstructure. We shothat we ofier a comprehensive parametric formula for all the

the methods introduced in this paper offer considerably moe  friends of the largest reachability output-nulling subspa
robust eigenstructure assignment than the other commonlysed and in Section VIl we use this parametric form to address the

methods employing subspace recursions. problem of robust eigenstructure conditioning. We propose
a nonlinear unconstrained optimisation problem to find a
. INTRODUCTION friend that minimises the Frobenius condition number of
In this paper we introduce a new computational framethe matrix of closed-loop eigenvectors. We consider some
work for the robust computation of friends of charactetisti example systems and compare the robustness performance
subspaces of linear time-invariant (LTI) systems. In thst la of the friend delivered by our method against that of the
forty years, geometric control has played a central roléén t friend computed by thé&A toolbox of [2], and thelinear
understanding of several structural properties of dynamicSystems Toolkit of [4]. We observe that our method delivers
systems and in the solution of important control and estimatramatically improved eigenvalue insensitivity.
tion problems. The monographs [19], [2], [17], [4] provide For the sake of simplicity of exposition, in this paper we
surveys of the extensive literature in this area. restrict our attention to the case of distinct eigenvalues a
The subspaces that underpin the classic geometric theanyariant zeros.
of LTI systems are the so-called output-nulling subspaces.
Two related families of subspaces, that also play a fun- Notation. Throughout this paper, the symbg| $tands for
damental role in control and estimation problems, are thibe origin of the vector spadk?. The image and the kernel
reachability and stabilisability output-nulling subspac of matrix A are denoted by imM\ and kerA, respectively.
The computation of friends of output nulling spaces ha¥he Moore-Penrose pseudo-inversefofs denoted byAT.
been considered by many authors and the texts [2] and [@iven a linear mafA: 2" — # and a subspace” of %/,
included publicly available MATLAB toolboxes. However, the symbolA~1.7 stands for the inverse image of with
none of the methods offered in those texts have consideregspect to the linear map. If 7 C 27, the restriction of
the problem of obtaining friends that also deliver a robushe mapAto ¢ is denoted byA| 7. If 2" =% and ¢ is
closed-loop eigenstructure that renders the closed-liggme A-invariant, the eigenvalues éfrestricted to_¢ are denoted
values as insensitive to perturbations in the state matase by o (A| #). If #; and _#, are A-invariant subspaces and
possible. FJ1C _#», the mapping induced bs on the quotient space
In this paper we consider alternative computational meth-#>/_#1 is denoted byA| 7>/ _#1. The symbokp stands for
ods for obtaining these subspaces via the system Rosenbrdlog direct sum of subspaces. Given a map 2" — 2
pencil matrix [12]. An early work in this direction was madeand a subspac& of 27, we denote byA %) the smallest
by Moore and Laub in [8], who proposed an algorithm forA-invariant subspace of2" containing #4. The symboli
the computation of the largest reachability output-ngllin stands for the imaginary unit, i.ei,= /—1. The symbol
subspace. That paper made a number of restrictive assurgpdenotes the complex conjugate ofc C. Given a matrix
tions, and perhaps consequently the methods in [8] have or¥, we denote by its i-th row and byM! its j-th column,
been given marginal attention. To the best of the authorggspectively. The normal rank of a rational mathiA) is
knowledge, the recent paper [10] was the first in the pasiefined as normrar(A) £ maxrankM(A).
few decades to further develop and extend the algorithnts tha AcC
were presented in [8] under less restrictive assumptiors, a Il. PRELIMINARIES
Consider an LTI systema modelled by
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matrices. Let the systerdi described by (1) be identified [1l. COMPUTATION OF %Z*
by the quadruplgA,B,C,D). We assume with no 0SS of g first aim of this section is to provide a generalisation
generality that all the columns C{fg} and all the rows of of a series of results, see e.g. [8, Proposition 4], on the
[C D] are linearly independent. relationship existing between the largest reachabilitpots
We define the Rosenbrock system matrix pencil as nulling subspace with the null-space of the Rosenbrock
system matrix pencil.
L[ A-Al B Given a set ofh self-conjugate complex number® =
Pe(A) = { c D ] . AeC, (@) {A1,...,A} containing exactlys complex conjugate pairs,
we say that? is s-conformably ordered if the first2values

8l Recall that the i . o h | ¢ of £ are complex while the remaining are real, and for
[8]. Recall that the invariant zeros af are the values of _, j4q k < 25 we haveAc,1 — Ax. For example, the sets

A € C for which the rank ofP:(A) is strictly smaller than its L= {1+i,1—i,3,—4}, % — {10i,~10i,2+ 2i,2— 2i,7}

normal rank, and the invariant zero structure is given by thgndf3 — {3,—1} are respectively 1-, 2- and 0-conformably
zeros, multiplicity included, of the greatest common divis ordered ’ ’

of the minors of orden+min{m, p} of Px(4), see [7], [1]. The following theorem constitutes the main result of this

We denote by2” the set of invariant zeros &. section. It provides a method to construct a basisZorand

We use the symballz(A) to denote a basis matrix for the gmyitaneously a friend F that assigns the eigenstructure of
null-space ofRs(A), and we denote byl(A) the dimension he closed-loop restricted t@*. This theorem also identifies
of this null-space. Let = n+m—normranks(A). Clearly  the degree of freedom that can be exploited in order to
d(A) =d, unlessA is an invariant zero ok (in which case develop the theory for the robust eigenstructure assighmen
d(A) >d). established in Section VII.

For any matrixM with n+m rows, we definel{M} Theorem 3.1: Let r = dim%Z*. Let ¥ = {A1,..., A/} be
and i{M} by taking the uppen and lowerm rows of M,  s-conformably ordered and such thatn 2 = 0. LetK £
respectively. diag{Ks,...,K:}, whereK; € C? (recall thatd = n+m—

normrank) for eachi € {1,...,2s}, and for all odd < 2s,

Geometric background. Geometric objects extensively we haveK; = K, 1, whereask; € RY for i € {2s+1,....r}.
used in this paper are defined here. A controlled invarket Mk be an(n+m) xr complex matrix given by
ant subspace/ of the pair (A,B) is a subspace ofZ A
satisfyingA¥ C ¥ +imB. Ar(1 out)put—nulling subspace of Mic = [ Nz(A0) | Nx(A2) [ ... | Nz(Ar) K (3)
Z=(AB,C,D) is a controlled invariant subspac€ of =  and let for allj € {1,...,r}

which satisfies{é} Y C (¥ ®0p)+im {B} or, equivalently,

. _ P A Re{ML} if j <2sis odd
for which two matrices= and Q exist such that{c} V= mej 2 Jm{M,L} if j <2sis even 4)
[\(ﬂ =+ {g} Q, whereV is a basis matrix of/'. Mﬂ% if j>2s

These conditions are equivalent to the existence of a matrlbinally, let
F eR™" such that(A+BF)¥ C ¥ Cker(C+DF). Any
such matrixF is referred to as &iend of ¥. The largest Xk
output-nulling subspace & is denoted with?*, and repre- Y
sents the set of all initial stateg of (1) for which a control
u exists such that the corresponding outgus identically For almost every choice of the parameter matkix=
zero. Such input function can always be implemented as®ag{Ks, ..., K}, the rank ofX« is equal tor. Moreover, for
static state feedback of the formit) = Fx(t) whereF is all K is such that ranKx =r, there holds%Z* = imXx, and
a friend of ¥*. The so-called largesteachability output-  the set of all friends ofZ* such thato(A+BF |%*) = &
nulling subspace on ¥*, here denoted with the symbat*, IS parameterised as
is the smallestA-+ BF)-invariant subspace of” containing
the subspace/*NBkerD, where F is a friend of 7*.
Loosely speaking, this subspace represents the states that
are reachable from the origin on a state trajectory for which

the output is zero, [17, Ch. 8], [9]. FF is a friend of V"%, We now present a simple numerical case, which will be
it is also a friend of%*. The spectrumo(A+BF[%*) used as a running example in this paper.

is assignable, whereas the spectrafh+BF |7/ %) is Example 3.1: Consider a quadruplA, B,C,D) where
fixed, and its elements are the invariant zero&.osimilarly,
if we denote byZ%, the reachability subspace from the A [ 0 0 0] B [ 1 0]

T{[mk1 Mk2 ... Mrl}, (5)
m{[mc1 Mk2 ... M)} (6)

> >

Fc = Yi X - @)

origin, i.e., Zo = (A, imB) = im[B AB ... A"1B], the 0 30 2 0
spectrumo (A+BF | ¥* + %/ 7™) is assignable, whereas 0 00 0 3
the spectrunmo(A+BF | 27 /7* + %) is fixed. C=[0 0 0], D=[0 4].



The only invariant zero of this systems=0. It is easy to and letmk x/ j be defined as
verify that%* is spanned by the first two canonical basis vec-

tors of R3. Hencey = dim#* = 2. Let us choose for example %e{Mﬂ( k) if j<2sp0dd orr < j <r+2sut
L ={A1,A2} ={—2,—4}. Basis matrices for ké¥(—2) and ' is such that + j is odd
kerPs(—4) are given respectively bMs(—2)=[5 4 0| — Jm{MK K,} if j <2sn even orr < j < r -+ 2sout

T _ T ;=
10 0]" andNs(—4)=[7 8 0| —28 Q. Thus, (3) becomes Mk k', is such that + j is even

5 7 M|J<K, if je{2sn+1,...,r}
4 8 U{r+2s+1,...,ro}
Mk = 0 0 |K, where K:[Igl I?Z}
—&0 —58 Finally, let X = TH{[Mk k1 - Mkkrrol} and Yoy =
m{[Mgkr1 ... Mkkrr,)}. For almost every choice ok
57 and K’ we have rankTT{[mKK/ .. Mgyl =1 and

By choosingk; =k, =1, we find Xk = [4 8} and Y« =  rankXy ' = ro. Moreover, the set of all friends o#* such

00 *\ *
’éo 758} . Thus, as expected ik = Z*, andFk = Yk X,I = itg?ataaré\ﬁ—ietzgslz i)K angKa/\n:Sa(A—k BF |%0/%") = Zou
8/3 =356 01 i a friend of . Indeed, it can be immediately
verlfleg thgt(A+ BF«)Z* C %* C ker(C+DFx). Moreover, i =Y XII,K” ©)
with this choice ofF the eigenvalue ofA+ BFx) restricted
to %* are indeed{—2, —4}. g whereK andK’ are such that rank k' =ro (and therefore,

Remark 3.1° The fact that Theorem 3.1 assumes thd°f suchK and K’, the matrixXx x/ represents a basis for
knowledge of the dimension of#?* does not constitute 0 adapted toz”). _ _
a limitation in the calculation of a basis fo* and of A proof of this result can be carried out following the same
the corresponding friend. Indeed, one can progressiveRfguments of the proof of Theorem 3.1, and is omitted.
compute the submatricelds (A1), Ns(A2), and so on, for Example 4.1: Qon5|der the system in Example 3.1. S_mce
different values ofA;, until a value) is found for which the pair (A;B) is reachable, we can compute a friend
rank Ns(A1)]...|Ns(Ax_1)] = rankNs (A1)]...|Ns (A)]. The F of #* by assigning a further eigenvalue ¢A+ BF)

dimension of%Z* equals the rank ofNs(A1)|...|Ns(A)]. which corresponds to the map induced Ay BF on the

Theorem 3.1 guarantees that almost any choice ofAhe quotient space%o/%* = 2 /%*. Assume that¥, = & =
will lead to the determination of a basis fe#*. {—2,—-4} and Z.t = {—6}. We have already computed

Ns(—2)=[54 0| —10 0T andNs(-4)=[7 8 0| —

IV. ASSIGNING THE OUTER EIGENSTRUCTURE O87* 28 Q]". A basis matrix Of kefA— (—6)13 B] is given
by S(-6) = [gg 01: 018 g} Thus, choosing for example

In the previous section, we showed how to construct a _ _ 0
friend F of the subspace?* that arbitrarily assigns all the K = diag{ky, ko} = diag{1,1} and K’ =k = [J we get
eigenvalues of the closed-loop restricted &¥. However, Xk = d|ag{{ } _1} and Yo = | 29289 Then
we also know that the spectrum induced by the rAapBF L 8‘/)3 7g5/§ 0
on the quotient spac&o+ #* | #* = %o/ #* (WhereZy 2 With Fe g = YK,K/XK,K' =Yk Xk = o o ,2]’ we
(A,imB) is the classic (Kalman) reachable subspace from tifind (A+BFx /) Z* C %* C ker(C+DF x/). The eigenval-
origin) is assignable using a frierfél. The following result ues of(A+BFx k' |#*) are{—2,—4}, while the eigenvalue
shows how Theorem 3.1 can be adapted to this case.  induced by(A+BFx k') on %o/ %* is —6.

Theorem 4.1: Let r = dim#%Z* and ro = dim%p. Let
Zin = {A1,...,Ar} be sp-conformably ordered with ele- V. COMPUTATION OF ¥*
ments all different from the invariant zeros, and J&: =
{U1,..., tro—r} be sourconformably ordered with elements The following theorem adapts Theorem 3.1 to the case of
all different from the uncontrollable eigenvalues of thérpa the subspace’ ™.

(A,B) with %y N Zout = 0. Let K = diag{ks,...,k} be  Theorem5.1: Letr = dim%*. Let all the invariant zeros
defined as in Theorem 3.1 fa¥ = %,. Moreover IetK’ £ ofthe system be distinct. Le¥ = {z1,2,...,z} be thes,-
diagky, ..., ki, }, wherekj € C™ for eachi € {1,...,2%ut}, conformably ordered set of invariant zeros f Let £ =
and for all oddi < 2syy;, we havel_<f = ki’H, whereak € R™  {A1,...,Ar} be s-conformably ordered such tha’ N2 =
forie{2su+1,....,ro—r}. Let M x» be an(n+m) xrg 0. Let the column vectorsn j, for all j € {1,...,r}, be

complex matrix given by constructed as in (4). Let £ diag{hy,...,h}, whereh; €
cdimkes(2) for eachi € {1,...,2s;}, and for all odd < 2s,
Mgk = [Ns(A1) ... Nz(Ar) we haveh, = h,1, whereash; € RIMke:(z) for j ¢ {25 +

S () .. SZ(IJrofr)]diag{K,K/}, (8) 1,...,r}. Let My be a complex matrix given by

where Sy (1) represents a basis matrix for kar— ul, B, My =[ Ng(z2) | Ns(z) | ... | Nz(z) | H (10)



and let for allj € {1,...,t} uncontrollable modes of the p&jA, B) are real and distinct.
The complex conjugate case follows straightforwardly by

Re{My} if j <2sis odd applying the result in Theorem 4.1.

My j =14 Im{M}} ?f J <2sis even (11) Theorem 6.1: [PARAMETERISATION OF FRIENDS OF #*
Mﬁ if j>2s WITH INNER-OUTER SPECTRUMASSIGNMENT]
Finally, let Letr =dim%Z*. Let %4, = {A1,...,Ar} be sp-conformably

ordered. Let? = {z,...,z} be the set of invariant zeros.
XeH = T{[Mc1 ... Mcr My ... Muel},  (12)  Let Louw={U1,...,Hq} be sourconformably ordered, where

YkH = 7_T{[I’T'K1 cee My My 1 .0 My ]} (13) q = dim(%o + /7/*) - dlm(”f/*) Finally, let¥ = {gla X agrl}

- ' ~ represent the uncontrollable eigenvalues@B), wheren =

For almost every choice of the parameter matriceg_ dimz,. We assume without loss of generality thz, N

K = diag{ks,...,k} and H = diag{hy,...,hk} we have o _ ¢ and that%,,:N¥ = 0. Define
rankXk n = r +t. Moreover, the set of all friends of* such

that o(A+BF | 7*) = £ U Z is parameterised iK andH Mk = [ Nz(A1) ... Ns(Ar)|Ns(z1) ... Ng(z)

as S(t) - S(Ha) [ S:(91) - S(gn) ] K,
Fon =Yoo XIIH (14)  whereK = diag{K , Kz, Ky, Kg}, and
whereK,H are such that rank =r +t. « Ky =diag{k},....k'}, with k* € RY, and whered =

) , dimkerPs(A) whenA is not an invariant zero;
The proof can be carried out along the same lines of the | K, = diag{k%,... K¢}, with K R%, and d, =

proof of Theorem 3.1, taking into account [8, Proposition i, kerPs (z) whenze 2 B
5]. Notice that the same procedure can be used for the Ky = diag{kt',... ki} \'/vith K“ € R™, since m =
computation of/", by considering only the minimum-phase dim kerSz()\)lWhenA is not an uncontrollable eigen-
invariant zeros in the se¥”. value of the pair(A,B);

Example 5.1: Consider again the system in Example 3.1. | Kg — diag(k’, ... k?,’} with k9 ¢ R™, and wherem, —
We want to compute a basis fdf* and a friend of/™ such dimkerSs(g) wheng is an uncontrollable eigenvalue of
thato(A+BF |%*) = {—2,—4}. Since this system has an in- the pair (A, B).
variant zero at the origin, this task can be accomplisheld wi ’
a friend such that(A+BF|7¥™) = {-2,—4,0}. We have
already computedNs(—2) =[5 4 0| —10 O], Nx(—4) = Xk =TH{Mk} € R™™ and Yk = m{Mg} € R™"
[7 8 0| —28 Q]". A basis matrix for ke/A—0-1,, B] is

]
given byNs(0) = {1 ooro 0} . Hence, we can compute

tFinally, define

For almost every choice &, the matrixXk is invertible, and

ootlioo the set of all friends of/* such thato (A+BF | #*) = %,
517 11 0 O(A+BF |7*/%*) = % and G(A+BF | Zo+ 1 /1) =
4 8 |0 O ki | 0] 0 Zout — and therefore obviouslg(A+BF | 2"/ %o+ V™) =
Mc=| O 0 lo 1 0k 9 _ @ — is parameterised iK as
0|0
-10| -28|(0 O _
0 ‘ 0 ‘0 o)t 01° ¢ Fio =YX, (15)

Choosing for example; = k, = 1, k. = 0 andk? = 1, we find whereK is such thatXk is invertible. Moreover, for suck
5 go Ifbllo ,2820 3 3 the firstr columns ofXx are a basis foz*, the firstr +t

— — i i — T_
X = [é ik =109 o o}' which yield R« =Y« X« = columns ofXk are a basis for”* and the firstr +t+q are
83 *3;"/6‘; . Clearly, (A+ BFc)?* C ¥* C kerC + a basis for/* + Z,.

0
DF¢) ando(A+BF«|7") = 0(A+BF) = {0,-2,-4} as VII. THE COMPUTATION OF FRIENDS FOR ROBUST

required. . EIGENSTRUCTURE
VI. COMPUTATION OF FRIENDS WITH OUTER SPECTRAL In this section we consider the problem of obtaining
ASSIGNMENT friends of output-nulling subspaces that also yield a rbbus

We now show that it is always possible to parameterise atlosed loop eigenstructure. For any square maitjxt was
the friends that assign the internal and external eigecisirer  shown in [18] that the sensitivity of the eigenvalde to

of ¥* by means of a formula perturbations ifM can be measured by the condition number
_ —1 v
e =Yk X &, v HTH\,/'”a (16)
|y Vi

i.e., where this timeXx is square and invertible (for almost
all choices of the parameter mathy. This step is crucial in wherev; andy; are the right and left eigenvectors af,

the robust computation of friends. For the sake of simglicitrespectively. We use. = max ¢ to denote the worst-case
of exposition, we assume that all the internal/externateig eigenvalue sensitivity. Furthermore, in [6] the sendiivaf
values to be assigned, as well as all the invariant zeros atite eigenvalues is linked to measures of the conditioning of



the matrixX of eigenvectors oM, in terms of the Euclidean VIIl. AN ILLUSTRATIVE EXAMPLE

and Frobenius norms: Consider the following quadruple

06-40 000 00 0
Co < K2(X) < Kero(X), (17) 200 0 07 00 92 5
0-9-9-108 0 06 00 0
. . N A_ |2 00 0 0-2-40 B_ 050

where k2(X) = [[X][2 - [[X7*]2 and Kero(X) = [[X][ero - “]looo0o 0 0036/ ° |oo ol
X~1|lero are the condition numbers of with respect to 9 01 0-10 00 00 -6
the 2-norm and the Frobenius norm respectively. 0 0-80 0 0-30 000
. - . . 30 0-10-3 0 8 00 -3

For pairs(A,B), the problem of finding a gain matrix C=[-70-40000d, D=[000]

that assigns a certain set of desired eigenvaldeso the
matrix A+ BF and also minimises these condition number$n this example, we have/* = %*, dim%Z* = 6, and the

is known as therobust pole placement problem, and has pair (A,B) is reachable, so tha#y = £". This system has
an extensive literature. Notable contributions includg [6 no invariant zeros. We want to find a friefd of %* such
[16] and the recent paper [11]. For quadrupi{ésB,C,D) that.%, ={-1,-2,-3,-4,-5,—6} and %= {—7,—8}.
we introduce theobust friend computation problem, which Using the routineef f est a. min the toolboxGA [2], we
involves obtaining a friend of an output-nulling subspacdind that a friend that accomplishes this task is given by
that assigns a certain desired set of internal and external _00648-3.3046-0.1467 00853 04753 —0.7881—0.0953—1.096
closed-loop eigenvalues, and also a robust closed-lo@meig F1= | -1.1223-1.5083 09430 08138 02027 —0.3425—1.0706—0.105%
structure. Despite several authors explicitly acknowéstg —0.3199 39952 07620 -0.5444-0.8419 01628 05686 20574
the need for a development of robust techniques within tHdsing the routineat ea. min the toolboxLinear Systems
geometric framework [8], [5], to date there have been ndoolkit [4], we find that an alternative friend that achieves
results on this problem. the same goal, and is given by

We now consider how the parameterisation of the friends [ 33163 —1.3615-1.1872—0.4456 08412 —0.7835—0.0651—0.9233]
given in Theorem 3.1 can be adapted for this pr0b|erTE2: —2.9733-2.7000 16130 10320 —0.1698—-0.3660—0.9051—0.3408
According to Theorem 6.1, if all eigenvalues to be assigned, -—>3155 04780 28057 ~0.1256-2.2519 00498 14428 10926
invariant zeros and uncontrollable eigenvalues are real, Wsing the gradient iterative method developed in this paper
can expresX — where from now on we omit the dependencave obtain
upon the parameter matrkk — as —0.1495—-0.8175—-0.3581 20241 —0.4644—0.7285—-0.5987—1.8265]

F3=|-1.0727-3.0008 10185 —0.3810 08063 —0.3769—0.7796 03626
[ -0.1783-0.3409 08712 —4.0825 09965 00659 13905 34818
To compare these friends df*, we consider several perfor-
mance measures. Computing the conditioning measuie
whereG; is a basis of the kernel of either the Rosenbrock16) arising from each friend, we observe tigatF;) = 624
matrix Nz (A;) (or Nx(z)), or of the matrix penciBs(Ai) (or  while c.(F2) = 7144, c.(F3) = 617, indicating that our

X=T{[Gy ... Gy]}diaglky,...,kv},

S:(gi))- Moreover, we define the column vector method gives reduced eigenvalue sensitivity, by one and two
orders of magnitude, respectively. We may also compare
tl norms of these gain matrices. We obtd|R;||> = 5.20,
£a 2 ’ IF2]|2 =8.18, while||Fs||> = 6.42, indicating that our method

used somewhat higher gain that ef f est a. m but less
than at ea. m for this example. By further considering a
weighted robustness and gain minimisation problem,

Ky

and we denote by; the number of components &f, so

that ¢ hasrd+td,+gm+nmyg=I1+...41, components. min{a f2(&) + (1— a)||F||2} (18)

With these definitions, we can now exploit a crucial result ¢

in [3], which says that minimisingrro(X) is equivalent to we can sacrifice some robustness in exchange for reduced

minimising the alternative objective function gain. Choosingxr = 0.001, we were able to obtain a matrix
—0.0914—1.8620—0.8391 08569 00904 —0.7584—0.2856—1.440

| T

—1.1672—-2.3583 13484 03826 04125 —0.3600—-0.9600 00853

A 2 ~1 2
f2(&) = X (E)Fro + X&) [Fro —0.5807 15595 19179 —1.7291-0.2776 01125 08822 25786

jelding eigenvalue sensitivityc.,(F4) = 67.63 and gain

4]|2 = 4.94, and thus offering improvement ovéron both
riteria.

Another performance consideration is the accuracy of
the pole placement achieved by each method. We use the
Reasure

In order to use gradient descent methods to obtain loc
minima of this function, the first and second derivatives o
[IX|lero @and || X~1||ero are employed. The full computation
of the derivatives is outlined in [13]. Then, using eithemNe

ton’s method or quasi-Newton one, we achieve a solution
the problem of minimisingro(X), thereby providing good

robustness for the eigenvalues of the closed-loop system. A(F) £ max{|eigi(A+BF) — Aj| : Ai € £} (19)



which represents the largest absolute value difference bjg@e] A. L. Tits and Y. Yang, Globally Convergent Algorithmsrf Robust

tween each eigenvalue Af+-BF, and the correspondin’g in Pole Assignment by State FeedbatkEE Transactions on Automatic
. _ 12 - " 11 Control., vol. 41(10), pp. 1432-1452, 1996.
Z. We Obta'nedx(':l) =116x10""4 A(FZ) =2.34x10 [17] H. Trentelman, A. Stoorvogel, and M. HautuSpntrol theory for

andA(F3) = 3.20x 10714 A(Fy) =3.74 % 10~ indicating linear systems, ser. Communications and Control Engineering. Great

that our method achieved more accurate pole placement, Britain: Springer, 2001. o
[18] J. H. Wilkinson, The Algebraic Eigenvalue Proble®xford University

again by some orders of magnitude. Press 1965,
[19] W.M. Wonham.Linear Multivariable Control: A Geometric Approach.
IX. CONCLUDING REMARKS Springer-Verlag, 3 edition, 1985.

This paper provides new procedures for the computation of
bases matrices for the fundamental output-nulling sulespac
Z*, ¥v* and 73 as well as of their corresponding friends
which robustly assigns their free internal and externagieig
structure. We compared the method introduced in this paper
against the two most widely known and used MATLAB
toolboxes for the computation of such subspaces to show
the dramatic improvement of the eigenvalue sensitivity.

An important direction of future research is the exploita-
tion of the results presented in this paper to the problems
of designing linear state feedback control laws that yigld a
non-overshooting and non-undershooting step response for
an LTI systems as studied in [14] and [15], based on the
computation of the Rosenbrock matrix.
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