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Abstract

We study the effect of adding localised stiffness, via a spring support, on the stability of flexible

panels subjected to axial uniform incompressible flow. Applications are considered that range

from the hydro-elasticity of hull panels of high-speed ships to the aero-elasticity of glass panels

in the curtain walls of high-rise building in very strong winds. A two-dimensional linear analysis

is conducted using a hybrid of theoretical and computational methods that calculates the system

eigen-states but can also be used to capture the transient behaviour that precedes these. We show

that localised stiffening is a very effective means to increase the divergence-onset flow speed in

both hydro- and aero-elastic applications. It is most effective when located at the mid-chord of

the panel and there exists an optimum value of added stiffness beyond which further increases to

the divergence-onset flow speed do not occur. For aero-elastic applications, localised stiffening can

be used to replace the more destructive flutter instability that follows divergence at higher flow

speeds by an extended range of divergence. The difference in eigen-solution morphology between

aero- and hydro-elastic applications is highlighted, showing that for the former coalescence of two

non-oscillatory divergence modes is the mechanism for flutter onset. This variation in solution

morphology is mapped out in terms of a non-dimensional mass ratio. Finally, we present a short

discussion of the applicability of the stabilisation strategy in a full three-dimensional system.
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1. INTRODUCTION

This paper addresses and extends the classical fluid-structure interaction (FSI) problem wherein

a flexible plate is destabilized by the action of a fluid flow parallel to the undisturbed panel. The

modern capabilities of high-speed ships with cruise speeds in the range to 38-45 knots (19.5-23.1

m/s) - and up to 60 knots (30.1 m/s) when powered by gas-turbine engines - means that hydroelastic

instability increasingly needs to be accounted for in the design of hull panels. Recent architectural

designs have seen the introduction of curtain walls comprising glass or perspex panels as an outer

skin on high-rise buildings for a combination of aesthetic and passive temperature-control reasons.

In addition to normal-loading effects, these may be susceptible to aeroelastic instability in storm

or hurricane-force winds aligned with the main axis of the panel. In this paper we present an

analytical study of panel stability into which localised stiffening is added and used to control aero-

/hydro-elastic instability in the above and other applications of the basic configuration.

The high Reynolds-number regime typical of the types of engineering applications cited above

makes the neglect of viscous effects on the flow a good approximation. Accordingly, potential

flow is most often assumed as is the case in this study. Given the importance and ubiquity of

applications, this FSI system has generated a rich literature in which, most commonly, a Galerkin

method is used to predict the system response with a particular focus on the parameters for which

it becomes unstable. Thus, for example, [1-5], show that as the flow speed is increased for a given

flexible plate, the panel first loses its stability to divergence. This buckling type of instability

occurs because the fluid forces generated by a deformation exceed the restorative structural forces

of that deformation. For a simple flexible plate held at both its ends, the fundamental mode is

the critical mode for divergence. If the flow speed is increased further, divergence is replaced by

modal-coalescence flutter that is best characterized as a Kelvin-Helmholtz type of resonance.

In parallel to these types of study, flexible compliant walls of infinite extent comprising more

than one structural component (e.g. a spring-backed flexible plate) have been studied, e.g. [1,6,7]

using an analytical approach wherein all system perturbations take a travelling-wave form, for

example exp[i(αx−ωt)] wherein α and ω are respectively the perturbation wavenumber and angular
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frequency. The omission of end effects - that may be considered to be inhomogeneities in such

modelling - is broadly acceptable provided that the length of the panel in any application is much

longer than the wavelength of the critical modes being studied. However, under such conditions

the travelling-wave analysis requires that some structural damping is present for the realisation of

divergence instability although its predictions of divergence-onset flow speed agree with those of the

Galerkin approach. This discrepancy was addressed in [8] wherein the role of end conditions, even

for very long flexible walls was explained. More recently the rigorous analysis of [9] constructed a

travelling-wave model that incorporated the fixed wall ends through a Weiner-Hopf technique and

thereby reconciled the differences in findings between the two types of modelling.

Clearly, the aforementioned boundary-value studies predict the long-time response of the system

after transients from some form of initial excitation have either been attenuated or convected away.

The finite-time response can be of equal importance in that it links the original source and charac-

teristics of an initial deformation to the long-time response through a process of response evolution.

The ability to model the finite-time, or receptivity, problem may lead to engineering strategies that

interrupt or modify this evolution and thereby prevent or postpone panel instability. Studies of

system response to a source of initial or continuing localized excitation have been presented. For

example, [10] and [11] respectively used initial impulse and oscillatory line excitation for the present

system, while [12] tackled the closely related shell problem with oscillatory line excitation. Using

a different analytical approach, [13] showed that absolute instability - that aligns with divergence

- could exist in the system if structural damping were included. These analyses assumed an in-

finitely long flexible panel and focused on the long-time response. Nevertheless, they showed that

the system could support a remarkable range of FSI wave types. Using numerical simulation, [14]

showed that the effects of finiteness and transients led to globally unstable responses unseen in the

analyses of infinitely long elastic panels.

In the present work, we use the hybrid of theoretical and computational modelling presented

in [15] that casts the FSI system equation in state-space form after solving the coupled fluid and

structure equations using boundary-element and finite-difference methods respectively. Like the
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purely analytical models discussed above, this approach is used to compute the system eigenmodes

while its numerical-simulation aspects readily accommodate inhomogeneity in the base system.

Thus we can evaluate the effect of an added localised spring support on the system eigenmodes

with a particular focus on instability-onset flow speeds. We also extend the modelling of [15] in

order to solve the initial-value problem and thereby simulate the transient response of finite flexible

panels showing how its evolution from a source of initial excitation evolves into the infinite-time

eigenmodes predicted by the boundary-value approach.

The paper is laid out as follows: We first extend the FSI system model of [15] to permit

the inclusion of impulse line excitation and a supporting spring foundation that may either be

uniform or comprise a discrete spring at a point along the flexible plate. We then present three

sets of results that illustrate the system dynamics covering a range of applications. The first

concerns a homogeneous Kramer-type compliant wall [7] comprising a flexible plate with a uniformly

distributed spring foundation. In part, we use this case to validate the present modelling and its

implementation. The second set of results addresses the classical case of a simple metal flexible

panel subjected to water flow for which we show how the addition of a spring support can be used

to modify hydroelastic instability onset. This case typifies the vast majority of incompressible flow

studies for which the fluid-to-solid ratio is O(1). In the third set of results we consider airflow

over a glass or aluminium panel for which the fluid-to-solid ratio is O(10−3), giving a system that

has not hitherto been fully explored, presumably due to a lack of recognised applications until the

emergence of curtain walls as an architectural feature. We show that this regime possesses some very

different dynamics from the classical hydro-elastic case. We therefore map out the parameter space

over which the differences occur as well as showing how adding a spring support can modify both

divergence onset and the flutter characteristics in air-over-glass aero-elastic applications. Finally

we unify our findings in the conclusions and explain how the present two-dimensional strategy for

controlling aero-/hydro-elastic instability of panels can be carried across to real three-dimensional

applications.
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2. METHODS

We first summarise the well-known governing equations for the fluid-structure systems depicted

in Fig. 1. We then outline the hybrid theoretical-computational approach that permits either an

eigen-analysis to be conducted for the long-time boundary-value problem or the time-evolution

of disturbances to be constructed for the initial-value problem. Finally, we describe the non-

dimensional framework adopted for the presentation of the results in this paper.

2.1 Governing equations

The small-amplitude behaviour of a thin plate, supported by either a uniformly distributed

spring foundation with coefficient K 6= 0, and an added spring support with coefficient k 6= 0

localised at x = xk, in the presence of a fluid flow and subjected to a localised initial pressure pulse

of magnitude pe at x = xp is governed by

ρmhη̈ + dη̇ +Bη,xxxx +Kη + kδ(x− xk)η = −p(x, 0, t) + peδ(x− xp)δ(t) , (1)

where η(x, t), ρm, h, d and B are, respectively, the plate’s deflection, density, thickness, (dashpot-

type) damping coefficient and flexural rigidity (evaluated using B = Eh3/[12(1−ν2)] where ν is the

Poisson ratio of the plate material), δ is the Dirac delta function, and p(x, 0, t) is the fluid-pressure

perturbation that acts to deform the plate, noting that the mean transmural pressure is such that

the plate’s mean position lies in the plane y = 0. The flexible plate of length L is hinged at its

leading and trailing edges giving η(0, t) = η,xx(0, t) = η(L, t) = η,xx(L, t) = 0. We use overdot and

suffix notations for temporal and spatial derivatives respectively.

The flow is assumed to be incompressible and irrotational, allowing the introduction of a velocity

perturbation potential φ(x, y, t) that satisfies Laplace’s equation

φ,xx + φ,yy = 0 , (2)

with the condition that φ → 0 as y → ∞. The unsteady fluid pressure is determined using the

linearised unsteady Bernoulli equation

p = −ρf φ̇− ρfU∞φ,x , (3)
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where ρf and U∞ are, respectively, the fluid density and flow speed. The plate and fluid motions

are coupled through the kinematic boundary condition

φ,y = η̇ + U∞η,x , (4)

which in the linearised system is enforced at y = 0.

2.2 Solution methods

The governing equations are solved by combining a boundary-element method for the flow field,

as developed in [16, 17] for problems in FSI, with a finite-difference method for the wall motion.

This reduces the two-dimensional field problem to a one-dimensional line problem at the interface

of the fluid and structural components of the system. The resulting system equation, couched in

the interfacial variable η(x, t) and its differentials, is then cast in state-space form following the

approach developed in [15]. In the present work, we make the straightforward extension of these

methods to (i) incorporate spatial inhomogeneity in the form of an isolated spring support, and (ii)

model the initial-value problem. Accordingly, we provide herein only an outline and direct readers

to the papers cited above for details of the contributing elements of the solution procedures.

The panel is discretised into N collocation points at which its mass is lumped and which provide

the basis for writing Eqn. (1) in the finite-difference form

ρmh[I]{η̈}+ d[I]{η̇}+ (B[D4] +K[I] + [0k]) {η} = −{p}+ δ(t){0p} , (5)

where [I] is the identity matrix and [D4] is the penta-diagonal fourth-order differentiation matrix

operator. [0k] is a null matrix except for its element (m,m) which has the value k where m =

int[(xk/L)N ] is the collocation point closest to the location at which the spring has been added.

Although we add only one isolated spring support in this study, clearly any number of such springs

could be modelled using our approach. On the right-hand side of Eqn. (5), the pressure pulse

appears as the value pe at location n = int[(xp/L)N ] in the otherwise null vector {0p}.

The pressure perturbation due the motion of the wall is obtained by constructing a solution to

the Laplace equation (2) using a source-sink singularity distribution, discretising this using a set of
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boundary-elements based upon the N collocation points, enforcing the no-flux condition, Eqn. (4),

at the N control points of the boundary elements to determine the required singularity strengths,

and finally using the linearised Bernoulli equation (3) along a surface streamline; this gives the

result

−{p} = 2ρ[Φ][D+]{η̈}+ 2ρU∞([Φ][D1] + [T ][D+]){η̇}+ 2ρU2
∞
[T ][D1]{η} , (6)

where [Φ] and [T ] are respectively the matrices of perturbation-potential and tangential-velocity

influence coefficients, [D1] is the first-order differentiation finite-difference matrix operator and [D+]

is a matrix operator for the interfacial vertical speed; expressions for the influence coefficients are

listed in [17].

Substitution of Eqn. (6) into Eqn. (5) then yields the fluid-structure system equation

[A]{η̈}+ [B]{η̇}+ [C]{η} = −δ(t){0p} , (7)

where

[A] = −ρmh[I] + 2ρ[Φ][D+] , (8a)

[B] = −d[I] + 2ρU∞([Φ][D1] + [T ][D+]) , (8b)

[C] = −B[D4]−K[I]− [0k] + 2ρU2
∞
[T ][D1] . (8c)

Introducing the 2×N vector of state variables {x}T = {{η}, {η̇}}T , allows the system equation (7)

to be re-written as

{ẋ} = [H]{x}+ δ(t){G} . (9)

in which

[H] =

[

0 I
−[A]−1[C] −[A]−1[B]

]

and {G} =

{

0
[A]−1

{0p}

}

. (10a, b)

To determine the long-time response of the system we omit the initial excitation in Eqn. (9),

assume single-frequency response proportional to exp (ωt), and then solve the eigenvalue problem

to determine the 2N values of ω = ωR+iωI . The real part, ωR, gives the amplification/decay while

the imaginary part ωI is the angular frequency of the eigenmode.
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To solve the initial-value problem we apply a zero-order hold on the input, {G}, of Eqn. (9) to

digitize the continuous system (H,G). Time scaling is used to transform state-space solution into a

sampled system that is then solved using MATLAB functions to determine the transient response

of the system.

2.3 Non-dimensional framework

For simple panels with length L characterising the wavelength of typical flow-induced defor-

mations, it is common (e.g. [3, 18, 4, 15]) to non-dimensionalise the FSI system using this

lengthscale along with timescale defined as L/U∞. This yields the fluid-to-structure stiffness ra-

tio Λ = ρfU
2
∞
L3/B as a control parameter for a system with a given (solid-to-fluid) mass ratio,

µ = ρmh/(ρfL). In the present work that features spring supports, L does not necessarily represent

the wavelength of critical modes in the destabilisation of a panel through divergence and flutter.

Accordingly, we non-dimensionalise using a reference length-scale, lref and timescale tref defined by

lref =
ρmh

ρf
and tref =

(ρmh)5/2

ρ2fB
1

2

, (11a, b)

thereby following the scheme used in [10, 11, 19] that reduces an infinitely-long, unsupported elastic-

plate problem to a system of equations with just one non-dimensional control parameter, namely

the flow speed.

Using the forms in Eqn. (11a,b) we define the non-dimensional terms

x′, η′ =
x, η

lref
, t′ =

t

tref
, d′ = d

[

(ρmh)
3

2

ρ2fB
1

2

]

, K ′, k′ = K, k

[

(ρmh)4

ρ4fB

]

, p′ = p

[

(ρmh)3

ρ3fB

]

, (12a− e)

that give the non-dimensional form of the system equation as

η̈′ + d′η̇′ + η′,x′x′x′x′ +K ′η′ + k′δ(x′
− x′

k)η = −p′ + p′eδ(x
′
− x′

p)δ(t
′) , (13)

with panel length, often termed the mass ratio, and applied flow speed taking the non-dimensional

forms

L′ =
ρfL

ρmh
and U ′ = U

[

(ρmh)
3

2

ρfB
1

2

]

. (14a, b)

8



This approach allows us to vary independently the key parameters of panel length and applied flow

speed in the non-dimensional results that follow. The relationship between the often-used stiffness

ratio, Λ = ρfU
2
∞
L3/B, and the two system variables used in this paper is

Λ = (U ′)2(L′)3 . (15)

Furthermore, for a panel with given geometric properties, L and h, variations to L′ can be in-

terpreted as changing the fluid-to-solid density ratio, ρf/ρm, thereby highlighting the differences

between the aero- and hydro-elastic behaviour of a given panel.

3. RESULTS

We present results for three related engineering systems. Although our results are presented

in a non-dimensional form that spans the physical parameter space, each system aligns with a

distinct engineering application, these being water flow over a rubber-like compliant wall (Section

3.1) with drag-reduction capabilities, water flow over a simple metal panel (Section 3.2) typical

of that used for the hulls of high-speed ships, and air flow over simple glass panels (Section 3.3)

typical of curtain walls in modern high-rise buildings. For the last two applications we close with a

dimensional demonstration of how instability can be controlled by using a localised spring support

for the applications cited. We do not present a separate validation of the present method because

that has already been done for the base method in [15] while the validation of our extensions to

the method are embedded in the new results upon which we focus.

3.1 Flexible panel with uniformly-distributed spring foundation

We consider the spring-backed flexible-plate configuration of Fig. 1a, incorporating structural

damping, that approximates a compliant coating of the type investigated in, for example, [7, 15,

17, 20]. The physical properties of this wall have h = 0.01 m, ρm = 852 kg/m3, B = 4.44 × 10−2

Nm (having used E = 4 × 105 N/m2 and ν = 0.5) , d = 2.0 × 104 Ns/m3 and K = 3.68 × 107

N/m3; the length, L, of the flexible panel is 0.6 m and the fluid is water with density ρ = 103

kg/m3. These data yield the non-dimensional parameter values d′ = 2.36, K ′ = 4.41 and k′ = 0 in

the governing equation (13) and L′ = 70.4 in Eqn. (14a).
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With p′e = 0 in Eqn. (13), the infinite-time behaviour of the system is represented by the

variation of its eigenvalues with non-dimensional flow speed in Figs. 2a and 2b that respectively

chart the real (positive denoting amplification and negative decay) and imaginary (oscillatory) parts

of the eigenvalues non-dimensionalised using the reference time defined in Eqn. (11b). Only the 40

eigenvalues having the lowest oscillatory frequencies are plotted although all 1600 were calculated

having discretised the wall into N = 800 elements. The onset of divergence instability is seen to

occur at U ′ = 2.326 where the locus of the mode that yields this critical speed first crosses into the

amplifying quadrant of Fig. 2a and its oscillatory frequency becomes zero in Fig. 2b; the latter

feature has led to this instability often been termed static divergence in the very early studies of

compliant walls such as [6, 21].

The envelope formed by the closely spaced discrete modes seen in Fig. 2 suggests that the

system can be modelled by a continuous spectrum of modes that is assumed in the normal-mode

decomposition used to analyse walls of infinite extent. Using this approach, also referred to as

a travelling-wave analysis wherein all system disturbances are proportional to exp [i(αx − ωt)],

[7] derived analytical expressions for the critical, or lowest, flow speed for divergence-onset and

determined the wavelength (λ = 2π/α) of the critical mode that has ω = 0 at divergence onset;

these were respectively given by

UD = 2

(

BK3

27ρf

)
1

8

and λD = 2π

(

3B

K

)
1

4

. (16a, b)

Using the present wall properties Eqn. (16a) gives the critical flow speed UD = 19.51 m/s that,

when non-dimensionalised yields U ′

D = 2.303. This is approximately 1% lower than our prediction

of 2.326 from Fig. 2. Exact agreement could only be expected in the limit of infinite plate length

and the present prediction for a plate of finite length is expected to be higher, as found, because

of the structural restraints at its leading and trailing edges. This correlation supports the integrity

of our approach and its implementation.

Using our transient analysis, we now solve an initial-value problem to map out the system

behaviour that would lead to the establishment of the infinite-time behaviour predicted by Fig.
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2. This type of analysis also serves to distinguish valid modes from physically unachievable, or

spurious, system states that can be predicted in an eigen-solution. A line impulse is applied at the

centre of the undisturbed compliant-wall panel to initiate motion. The time sequence of profiles in

Fig. 3a shows wall deformations at U ′ = 2.320, incrementally below the predicted divergence-onset

speed, so as to simulate the marginally stable state that exists just before divergence onset. At

early times flow-modified flexural waves propagate outwards from the impulse while at later times

the wall settles into a nearly uniform mode across the entire wall in which fit approximately 12

wavelengths. This mode would be almost identical to the critical mode of divergence onset at a

marginally higher flow speed. However, in the present simulation, amplitude decay occurs through

the action of the structural damping. The wall would therefore return to its undisturbed state in the

long-time limit when all of the energy initially input by the excitation has been dissipated. Again,

good agreement is found with the travelling-wave based predictions of [7]; for the present physical

data, Eqn. (16b) predicts a critical wavelength of 0.049 m that would yield close to 12 disturbance

wavelengths on the present finite wall of length 0.6 m. A much higher flow speed, U ′ = 3.867,

than that of divergence onset is used to generate Fig. 3(b) to illustrate unstable behaviour. Rapid

amplitude growth of system disturbances is seen to propagate in both upstream and downstream

directions from the point of initial excitation. This is characteristic of absolute instability as defined

in [22]. For the present fluid-structure system it is discussed and demonstrated theoretically and

numerically in [23] and for a cylindrical shell in [12] that has a similar solution morphology to that

of a spring-backed flexible plate. In [12] and [23] it is shown that the addition of a further structural

component - a spring backing to a flexible plate or hoop stress in a cylindrical shell - causes a very

significant increase to Crighton & Oswell’s [11] flow speed of U ′ = 0.074 for the onset of absolute

instability. This is reflected by the critical flow speeds, U ′

D = 2.303 and 2.326 for infinitely long

and the present finite walls respectively, of instability-onset determined herein; we return to this

point in Section 3.2 where the flexible wall is similar to that studied by Crighton & Oswell. The

importance of absolute instability owes itself to the fact that it can spread to all locations of the

compliant wall irrespective of the location of the initial, or a continuing ([14]), excitation.
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3.2 Flexible panel with a single-spring support: hydroelastic applications

The investigation of this paper now focuses on the hydro-elasticity of a simple elastic panel held

at its ends. The purpose here is to show that the addition of an isolated spring support between

the two ends, as shown in Fig. 1b, can control the onset and form of instability. The dimensional

properties used correspond to those of an aluminium panel with h = 0.0025 m, ρm = 2600 kg/m3,

and B = 76.62 Nm (having used E = 5.52 × 1010 N/m2 and ν = 0.25). The spring-stiffness

coefficient is ks =
∫

kδ(x − xk) dx and initially explored in multiples, n, of k+ = 6.0 × 103 N/m2,

hence ks = nk+. The length, L, of panel is 0.6 m (although we close this sub-section with results

that show the dependence of divergence instability upon L/h) and the fluid is water with density

ρ = 103 kg/m3. The non-dimensional parameter values in the governing equation (13) are therefore

d′ = 0, K ′ = 0, k′ selected so that k′+ = 2.15 × 10−5, and with L′ = 92.3 in Eqn. (14a).

Figures 4a and 4b respectively shows the variation of the real and imaginary parts of the two

lowest-frequency system eigenmodes with flow speed; however, all 2N = 400 eigenmodes are in-

cluded in the solution of the FSI system. Three sets of data, k′s = nk′+ with n = 0, 6 and 15 for a

spring support added at the panel mid point x/L = 0.5, are presented, the first giving the result

for the standard panel studied many times before, for example [2, 3, 18, 24] and the homogeneous

results of [15]. At low flow speeds, the fluid-loaded panel undergoes neutrally stable oscillations.

Figure 4b shows that the oscillation frequency in the first mode is increased by the inclusion of

the spring but that the second mode is almost unaffected because the spring has been placed at

the nodal point of this mode. As the flow speed is increased a bifurcation is seen to occur at

U ′ = 0.00714 for the homogeneous case. This is the onset of divergence instability at which the

flow speed is sufficiently high that the hydrodynamic stiffness - the last term on the right-hand

side of Eqn. (6) - exactly balances the panel’s structural restorative forces. Combining the present

critical flow speed U ′ = 0.00714 with the present length of the panel, L′ = 92.31, through Eqn.

(15) gives the non-dimensional stiffness ratio Λ = 40.1 for divergence-onset. This is in excellent

agreement with the predictions of the aforementioned studies of homogeneous plates. Beyond this

threshold a positive real part of the eigenvalue appears in Fig. 4a that commences the divergence
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loop of instability. As the added-spring constant is increased the divergence-onset flow speed, for

a panel of given flexural rigidity, is seen to increase to 0.0123 for 6k′+ and 0.0174 for 15k′+. At

higher flow speeds there is a recovery from divergence but soon after modal-coalescence (of the

first two modes) flutter occurs at a flow speed of 0.0199 for the standard case (0k′+), at 0.0203

for 6k′+ and 0.0210 for 15k′+. The very significant increase in divergence-onset flow speed as k′s is

increased, together with the lesser postponement of flutter, suggest a simple strategy for extending

the envelope of stable operation of fluid-loaded panels in engineering applications.

We now show how the added spring contributes to the postponement of divergence in terms of

energy budgets. The dimensional wall energy comprises three parts, namely plate strain energy

ES , plate kinetic energy EK and the stored energy of the added spring ESP , respectively defined

as

ES =
1

2
B

∫ L

0

η2,xx dx , EK =
1

2
ρmh

∫ L

0

η2,t dx , and ESP =
1

2
ksη

2
|x=xp

. (17a, b, c)

[14] also introduced a term called the virtual work done by the hydrodynamic stiffness component,

ps - the part of of the pressure that is dependent upon the interfacial displacement (the final term

on the right-hand side of Eqn (6)) - in the establishment of a wall deformation. This is defined as

EV W = −

1

2

∫ L

0

ηps dx . (18)

Each of the terms in Eqns. (17) and (18) is non-dimensionalised through multiplication by (ρmh)/(ρfB),

consistent with the scheme outlined in Section 2.3. The eigenmodes, η(x, t), corresponding to the

eigenvalues of Fig. 2 are normalized and thus the non-dimensional energy terms are scaled for an

amplitude of unity. It was shown in [14] that divergence onset can be defined as the flow speed

for which EV W exactly balances the mechanical energy of the wall. To show how this occurs, both

without and with an added spring, we present Fig. 5. Figure 5a corresponds to the standard result

in Fig. 4 and is a time-stepping numerical evaluation of the Mode-1 energy terms for a flow speed

marginally lower than that of divergence onset at U ′ = 0.00710. Because the flow speed is so close

to that of divergence onset, where structural and hydrodynamic forces nearly balance each other,
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the wall acceleration and velocity are very small, hence the insignificant values of EK in the plot

and the slow oscillation of the wall. The key feature is that EV W is almost exactly balanced with

the plate’s strain energy, ES . Figure 5b is the equivalent result with a spring added at the panel

mid-point and corresponds to the result of Fig. 4 for k′s = 6k′+. The evaluation is conducted at

U ′ = 0.0120 slightly lower than that of divergence onset. It is now seen that both the strain energy

of the plate and the spring energy contribute to the total value of mechanical energy that balances

EV W and the proportions in which they do so. In this particular case, it is evident that most of

the wall’s restorative force is provided by the added spring in the stabilisation strategy.

To illustrate the effect of the added spring support on the key fluid-structure modes that would

be most evident in the system response, we present Figs. 6, 7 and 8 obtained using k′s = 6k′+.

Figure 6 shows the neutrally stable oscillations at U ′ = 0.00378 as a set of panel profiles over

one cycle corresponding to the eigenvalues of Modes 1, 2 and 3 calculated using the analysis

that generated Fig. 4. The thick lines show the initial and final positions of the panel. While

superficially Mode 1 appears similar to the fundamental mode for a standard panel (see [15] for

comparisons), the effect of the spring added at the mid-point has clearly introduced the next

higher harmonic. Similarly Mode 2 can be seen to contain an element of the fourth harmonic

albeit at a lower intensity. This progression continues with Mode 3 for which the higher sixth

higher harmonic is perceptible upon very close inspection . Further results (not presented here) for

example at k′s = 15k′+ serve to increase the contribution of these ‘wavelength-doubling’ harmonics;

this phenomenon could be expected given that in the limit of infinite added-spring stiffness the

flexible panel effectively becomes two separate panels. Figure 7, obtained at U ′ = 0.0151 in the

divergence loop of Fig. 4 (6k′+ result), shows the amplifying and accompanying decaying modes of

the instability over a sequence of equal time-steps. Growth is seen to occur as a quasi-downstream-

travelling wave while the attenuating wave, that would not be evident in the physical system

(demonstrated in the initial-value problem presented below) is a quasi-upstream-travelling wave.

Further results show that increasing k′s from the value used in Fig. 7a causes greater downstream

distortion of the wave so as to increase the ratio of the peak amplitude to the deflection of the panel
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mid-point where the spring has been located. Figure 8 shows the amplifying mode of the complex-

conjugate pair at U ′ = 0.0227 in the regime of flow speeds of Fig. 4 for which Modes 1 and 2 have

coalesced to give a powerful flutter instability. Figure 8a shows the actual sequence of deformations

while in Fig. 8b amplitude growth has been (artificially) suppressed so as to give a clearer picture

of the mode shape. Animations show that the flutter effectively occurs as a travelling wave that

‘sloshes’ between the leading- and trailing-edge constraints as demonstrated theoretically by [4].

The mode shape principally comprises a natural Mode 2 shape whereas the standard unsupported

case features significant Mode 3 content ([15]). This is because the presence of the added spring

predisposes the panel to a reduction of the mid-point deflection for which Mode 2 has a lower

energy intensity in the combined plate-plus-spring system.

The foregoing results of this sub-section predict the infinite-time response of the system - the

boundary-value problem. We now investigate how such responses might come into being from a

source of localised initial excitation in finite time by a time-stepping solution of the initial-value

problem. The merit of such an enquiry is that understanding the mechanism through which panel

instability comes into being might lead to the development of intervention strategies by which it

can be forestalled. The undeformed plate is subjected to a line impulse at t′ = 0 modelled as

non-zero p′e applied at the plate’s mid-point in Eqn. (13) for the same case, k′s = 6k′+ as Figs. 7

and 8. Figure 9 shows the development of divergence instability at a flow speed U ′ = 0.0151 for

the case modelled in Fig. 7. Immediately after the applied excitation Fig. 9a shows that the plate

response is characterised by very high frequency low-wavelength waves that travel outwards from

the point of initial excitation. These are essentially flexural waves of the plate - the structural-force

intensity far outweighs the pressure loading - possessing a range of frequencies because the input

impulse is a wide-spectrum excitation. These waves are neutrally stable and serve to propagate

disturbance energy upstream and downstream of the original input source. The evident amplitude

growth over this sequence of time-steps might suggest instability. However, what occurs is that

the quantum of energy input first transfers to very short wavelength disturbances that have a high

spatial energy intensity. The energy is then re-distributed to waves of lower spatial energy intensity
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with an accompanying amplitude growth that maintains constant total mechanical energy of the

panel. This type of amplitude adjustment for neutrally-stable linear waves on flexible surfaces has

been demonstrated and explained in [19]. In the later sequence of time-steps of Fig. 9b these

disturbances rapidly evolve into the dominant low-frequency divergence-instability mode predicted

by the eigenvalue analysis of Fig. 7a as the infinite-time response.

Crighton & Oswell [11] studied a similar problem comprising an fluid-loaded, infinitely long,

elastic plate subjected to continuous line excitation. Their theoretical analysis predicted the ex-

istence of an absolute instability at U ′ = 0.074, a much higher speed than that (0.0151) used to

generate the instability that evolves through Fig. 9. However, Crighton & Oswell remarked that in

an unpublished report by D. Atkins (cited by [7] and [10]) the presence of some structural damping

precipitated an absolute instability that persisted down to zero flow speed for a plate of infinite

length. Lucey [14] and Abrahams & Wickham [13] subsequently demonstrated, for a long but finite

elastic plate and an infinitely long damped plate respectively, that the Atkins absolute instability

existed at the maxima turning point on the lower branch of the wavenumber-frequency dispersion

curve and was therefore different to Crighton & Oswell’s ‘triple-point’ absolute instability. The

divergence instability in the present work aligns better with the Atkins instability of an infinitely

long flexible plate but does not persist down to a zero critical flow speed because, as demonstrated

by Fig. 9, it is the finite length of the panel that determines the longest permissible disturbance

wavelength and thus the non-zero value of critical flow speed.

Figure 10 shows the transient response at flow speed U ′ = 0.0227 that is predicted to give

the modal-coalescence flutter instability of Fig. 8. Figures 10a and 10b show the early response

to the initial excitation as a sequence of wall-deformation plots within the time ranges 1∆T ′ to

50∆T ′ and 50∆T ′ to 2,500∆T ′ respectively where ∆T ′ = 0.813. At later times in the evolution

Fig. 10c shows superimposed panel profiles as time progresses for the time range 2,500∆T ′ to

125,00∆T ′, in equal time steps of 2,500∆T ′, that follow immediately from that of Fig. 10b. Figure

10a shows that essentially flexural waves of the plate carry disturbance energy away from the

source of excitation in both upstream and downstream directions with a similar phenomenology
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to that in the establishment of divergence instability described in the preceding paragraph. After

reflection from the end points wave superposition occurs and longer wavelength disturbances start

to dominate the response as seen in Fig. 10b. Finally, in Fig. 10c, the highly unstable flutter mode

becomes established and rapid deformation growth is evidenced. For even later times of the same

simulation, Fig. 10d shows a sequence of responses over one cycle of oscillation (200,000∆T ′ to

220,000∆T ′, in equal time steps of 730∆T ′) to highlight the mode shape of the instability; this is

seen to be exactly the same as the infinite-time prediction of Fig. 8a.

Thus, we have mapped out the entire evolution history of divergence instability and modal-

coalescence flutter when initiated by a line impulse. The mechanism for disturbance spread at

early times means that a similar process of panel destabilisation would occur if the initial excitation

were applied at a position on the panel other than its mid-point. Overall, the route to instability

closely resembles that termed ‘from waves to modes’ in the studies of [25] for fluid-conveying flexible

pipes. Given that high-frequency (lightly-loaded) flexural waves feature significantly in the early

development of both divergence and flutter instabilities, the effects of dissipation in the structure

and/or designing-in structural damping, for example through doping the panel, could serve to

inhibit the development of instability at post-critical flow speeds.

We now show the extent to which the strategy of divergence postponement by an added spring

support can be taken. Figures 11a and 11b show the variation of flow speeds of divergence onset,

divergence recovery and model-coalescence flutter onset with the magnitude of the added spring

support, k′s for two cases of spring location xk/L = 0.5 and 0.25. For ease of interpretation it is

more convenient to non-dimensionalise distance of the added-spring location from the leading edge

by the panel length. For each figure L′ = 92.31, the same used throughout this sub-section and we

note that the critical speeds plotted take the functional form

U ′

c = f(L′, k′s, xk/L) . (19)

These results clearly show that the addition of a single localised spring support can significantly

increase the divergence-onset flow speed. As could be expected on physical grounds, this strategy
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is more effective when the spring is placed at the panel mid-point. When placing it here, it is noted

that there is a threshold of approximately k′s = 0.4 × 10−3 for which further stabilization of the

system ceases. This is because the second system mode replaces the first as the critical mode for

divergence onset, the spring support being so stiff that it effectively divides the original panel into

two separate panels of equal length. Accordingly, this value may be regarded as optimal for the

design of divergence-free flexible panels.

The results presented herein show that the addition of an isolated spring support to the structure

can yield a very significant extension to the flow-speed range of a simple flexible panel before

divergence instability sets in. To give an engineering feel for this benefit, we provide the following

dimensional examples that arise from the non-dimensional results. For aluminium panels subjected

to a water flow (i.e. defining the properties of the two media) with the single spring added at the

panel mid-point, the functional relation of Eqn. (19) with divergence onset as the critical speed

takes the dimensional form UD = f(L/h, ks, 0.5). We consider three aluminium panels typically

used for the hulls of high-speed ships. These have lengths and thicknesses: (i) L = 0.6 m, h = 2.5

mm giving L/h = 240, (ii) L = 1.2 m, h = 8.0 mm giving L/h = 150, and (iii) L = 0.9144 m,

h = 6.35 mm giving L/h = 144. Table 1 shows the predicted divergence-onset flow speed for each

of these panels and how this increases with the addition and stiffening of an added spring support.

Note that these predictions from our two-dimensional analysis are lower than those for a truly

finite panel held along all four of its edges. For example, [4] shows that a panel with an aspect

ratio 1 (width divided by length), has a divergence-onset flow speed that is approximately twice

that predicted by the two-dimensional (infinite aspect ratio) analysis herein, whereas at aspect

ratio 5 the difference is approximately 5%. However, the relative increases to onset flow speeds

achieved by adding a single spring support would also be expected for truly finite panels. The

data of Table 1 shows how the addition of a spring support can increase the operational speed of a

craft. Alternatively, the operational flow-speed limit imposed by hydroelastic instability can be kept

constant and a spring support added to permit a thinner panel to be used. Table 2 therefore shows

how the thicknesses of the three panels could be reduced if a spring support were to be introduced
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to keep the divergence-onset flow speed unchanged. While these results indicate material, hence

mass, savings, the addition of a transverse array of spring imposes a mass penalty. To quantify

this balance, we consider Panel (ii) in Table 2. The panel mass saved, per transverse metre, by

reducing its thickness is 3.12 and 5.93 kg/m respectively when introducing added spring support at

6k+ and 15k+. Suitable transverse arrays of springs would respectively have masses 0.425 kg/m (18

springs per metre with maximum load capacity 1321 N/m) and 1.062 kg/m (45 springs per metre

with maximum load capacity 3301 N/m). Thus, the net mass savings, relative to an unsupported

panel, when adding spring support at 6k+ and 15k+, would then respectively be 11% and 19%

which remain a significant engineering benefit.

3.3 Flexible panel with a single-spring support: aeroelastic applications

When considering the non-dimensional FSI system defined by Eqns. (12)-(14) it is evident that

the flow speeds of divergence onset, divergence recovery and modal-coalescence flutter onset are,

for a simple unsupported elastic panel, functions of the non-dimensional length, L′ that is the

inverse of the solid-to-fluid mass ratio. Sections 3.1 and 3.2 have primarily used L′ = 70.4 and

92.3 respectively. We now present the FSI phenomenology of a panel with the much lower value

of L′ = 0.225 that we will show is markedly different from that prevailing at the higher value

used in Section 3.2. This finding is of practical relevance because such results appertain to the

aero-elasticity of a typical glass panel of a curtain wall subjected to an axial-flow wind loading with

air density ρ = 1.27 kg/m3 . To illustrate how this non-dimensional data could be constituted, the

glass panel would have h = 0.004 m, L = 1.7 m, ρm = 2400 kg/m3, and B = 381 Nm (having used

E = 6.85× 1010 N/m2 and ν = 0.2025). When we investigate the same stabilisation strategy used

in Section 3.2, the added spring has stiffness ks = nk+ given in multiples, n, of k+ = 8.5 × 103

N/m2 that when non-dimensionalised gives k′+ = 9.64 × 103.

Figure 12 shows the variation of the two lowest system eigenvalues with flow speed for the

standard panel and two cases of a panel with an additional spring support, k′s = 1k′+ and 2k′+,

located at its centre. We first focus upon the standard case, comparing the solution morphology
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with Fig. 4 for which the fluid was water. As the air speed is increased divergence-onset is first

encountered at U ′ = 59.35; combining this with the present L′ = 0.225 through Eqn. (15) gives

the non-dimensional stiffness ratio Λ = 40.1 for divergence-onset, again in excellent agreement with

previous works as discussed in Section 3.2. Beyond this critical speed the panel undergoes Mode-1

divergence. Further increases to U ′ then cause Mode 2 to succumb to divergence instability at

U ′ = 155.0. In a physical situation Mode-1 divergence would be seen to dominate the panel be-

haviour because it has a higher amplification rate. The hydroelastic result of Fig. 4 shows Mode-1

divergence recovery with neutral stability of Mode 2 until a further increase to flow speed causes

these two oscillatory modes to coalesce into flutter. In contrast, the airflow case features the coales-

cence of the two unstable non-oscillatory divergence Modes 1 and 2 to create the oscillatory flutter

instability. The fact that two non-oscillatory modes can merge to give an oscillatory instability is

highly unusual, although we have shown earlier in Fig. 7a that, although a divergence eigenmode

has zero oscillatory component, its form of amplification gives it the character of a travelling wave;

this was first proposed in [16]. The explanation for the unusual overall behaviour is that for air-

flow the FSI is dominated by fluid-stiffness effects due to the third term (ρU2
∞
-dependent) of the

fluid-pressure loading in Eqn. (6). To generate equivalent hydrodynamic-stiffness effects between

air (with density ρA) and water (with density ρW ) flows, the fluid-damping and fluid inertia effects,

respectively given by the second and first terms in the right-hand side of Eqn. (6), are factors of

√

ρA/ρW and ρA/ρW smaller for air than water. When water is the fluid medium the magnitude of

these terms is principally responsible for the coupling of Modes 1 and 2 that leads to the far-better

known sequence of divergence recovery followed by modal-coalescence flutter.

The foregoing discussion shows that the fluid density and, in particular, its value relative to that

of the solid medium is responsible for the solution morphology remarked upon in the standard case

of Fig. 12. In the non-dimensional scheme, the panel length L′, defined in Eqn. (14a), may be

interpreted as the fluid-to-solid density ratio for a panel of given dimensional length and thickness.

We therefore show how the key flow-speeds of Mode-1 divergence onset, Mode-1 divergence recovery

or Mode-2 divergence onset, and modal-coalescence flutter vary with L′ in Fig. 13. Rather than
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flow speed, we plot (U ′)2(L′)3 which is the fluid-to-solid stiffness, Λ, on the vertical axis against the

logarithm of 1/L′ on the horizontal axis because the domain covers number of decades. First we

remark that Fig. 12 indicates that the value of Λ for Mode-1 divergence onset is independent of L′

taking the value 40.1. This is to be expected because exactly at divergence onset the panel is static

and the solid inertia (and thus density) can play no part in its determination. For post-Mode-1

divergence behaviour, Fig. 13 shows that the system solution follows the pattern typical of water

over a metal panel for 1/L′, inversely proportional to the fluid density, up to a threshold value of

approximately 0.57 (noting that ln(0.57) = −0.57 on the horizontal scale). For higher values than

this, the fluid density is sufficiently low, relative to that of the solid, that both Modes 1 and 2

concurrently succumb to divergence instability and then coalesce at higher flow speeds to create

the flutter instability. This interpretation is based upon density differences between fluid and solid

media. The alternative interpretation of Fig. 13 is that, for given solid and fluid media, a panel

with low h/L (long panel for a given thickness) has the well-known solution morphology following

the sequence of Mode-1 divergence-onset, Mode-1 divergence recovery, modal-coalescence flutter

typified by Fig. 4, whereas a panel with high h/L (short panel for a given thickness) evinces the

unusual two-mode divergence and then coalescence route to flutter typified by Fig. 12.

We now return to Fig. 12 to consider the effect of adding a spring support to the panel as

a stabilisation strategy. It is seen that the added spring postpones Mode-1 divergence onset to

higher flow speeds. It does not affect Mode-2 divergence onset because the spring has been added

at the panel mid-point where there is a quasi-node for this mode. With regard to post-divergence

modal-coalescence flutter, Fig 12 shows that increasing the spring-stiffness coefficient reduces the

flutter-onset speed slightly and causes the envelope of the amplifying part of its eigenvalue to narrow

with increasing flow speed. In Fig. 14 we show the effect of further increases to the spring-stiffness

coefficient on the solution morphology. Figures 14a and 14d are obtained when k′s = 1.5k′+ and

show results similar to those shown in Fig. 12. When k′s = 2.5k′+, Figs. 14b and 14e show a clear

difference. At flow speeds higher than the range that gives modal-coalescence flutter, the system

decouples and returns to Mode-1 and Mode-2 divergence at U ′
≈ 240. Figures 14c and 14f show
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that when k′s = 3.5k′+ the modal-coalescence flutter disappears entirely and the system stability for

the range of flow speeds shown is dominated by Mode-2 divergence. The continuous variation of

divergence- and flutter-onset flow speeds with the spring-stiffness coefficient, k′s is shown in Figs.

15a and 15b with the spring located at xk/L = 0.5 and 0.25 respectively. The critical speeds are

the loci of the function written as Eqn. (19) with L′ = 0.225 for the present data. With the

spring located at the panel mid-point it is seen that the change of solution morphology occurs

at k′s = 2.69 × 104(= 2.75k+) with the replacement of modal-coalescence flutter by two-mode

divergence illustrated by the sequence in Fig. 14. Thus, the inclusion of an isolated spring can be

used the replace a more damaging dynamic instability such as flutter with divergence buckling of

the panel that would become static due to nonlinear saturation if even a marginal level of structural

damping were present ([17, 26]). It is also noted that both Figs. 15a and 15b indicate that the

onset of divergence can be postponed to significantly higher flow speeds through the addition of

an isolated spring. Clearly the postponement is greatest when the spring is located at the panel

mid-point because it is Mode 1 that gives the onset of divergence below the threshold value of

k′s = 2.69 × 104 in Fig. 15a and throughout the range of k′s for Fig. 15b.

To give an engineering feel for the potential benefits of stabilisation through an added spring

support, Table 3 provides dimensional examples of critical wind speeds for glass panels of different

lengths and thicknesses. The glass panel has a single spring added at its mid-point and, with the

two media defined, the critical-speed function of Eqn. (19) for divergence-onset becomes UD =

f(L/h, ks, 0.5). Table 3 lists the predicted divergence-onset flow speeds (in km/h) for each of three

typical flat tempered-glass panels for different values of the stiffness coefficient of the added spring.

Further increases to spring-stiffness would yield even higher divergence-onset wind speeds because,

for example, the results for the panel with L/h = 406 that has a mass ratio similar to that used

to generate Fig. 15a approximately correspond to data points on the rising divergence-onset curve

between k′s = 0 and 0.5 × 104. Given that Category 1 cyclones have wind speeds in the range

119-153 km/h, while Category 4 and 5 cyclones respectively generate wind-speeds in the ranges

210-249 km/h and over 250 km, the value of this stabilisation strategy for the panels of curtain
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walls is clearly evident.

4. CONCLUSIONS

We have extended the methods of [15] to study the initial-value problem of a finite flexible

panel or compliant wall interacting with an inviscid flow for small (linear) disturbance amplitudes.

Our results show that waves propagate in both downstream and upstream directions from a highly

localised source of excitation so that with the passage of time instability comes to occupy all

locations of the flexible panel. Thus, at applied flow speeds greater than those of divergence and

modal-coalescence flutter, destabilisation is global and ultimately leads to the establishment of

the system eigenmodes that are predicted by the boundary-value problem. This elucidation of

the transients that lead to system instability may permit the design of intervention strategies to

postpone, either in developmental time or to a higher critical flow speed, the onset of instability.

By investigating the solution space over a range of non-dimensional mass ratios, we have shown

that different eigen-system morphologies can exist. Of particular note is that, when the fluid density

is much lower than that of the solid for given panel dimensions (e.g. a wind flow over a realistic

glass panel), flutter instability occurs through the coalescence of two non-oscillatory divergence

modes. This counter-intuitive behaviour can be understood by recognising that at post-divergence

flow speeds, divergence modes evidence a form of downstream wave travel more usually identified

with conventional oscillatory travelling waves. A similar phenomenology can occur for denser fluids

when the panel is very short for which high flows speeds are required for its destabilisation. The

instability phase space has been mapped out to identify quantitatively the value of mass ratio at

which the flutter-onset mechanism switches between divergence-mode coalescence and oscillatory-

mode coalescence.

The major finding of the present work is that the addition of highly localised stiffening to

the structural design of an otherwise homogeneous flexible panel can be a very effective means to

postpone instability to a higher flow speed or beneficially modify the form of instability. Divergence

postponement can be achieved across the full range of mass ratios, most effectively through the
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addition of an isolated spring support at the panel mid-chord. A stiffer spring yields a greater

postponement until an optimal value of spring stiffness is reached at which the critical mode switches

from Mode 1 to Mode 2 and no further postponement of divergence occurs. This type of tailored

stabilization strategy may find engineering use in that it can be far more effective than a ‘brute

force’ approach to design that, for example, thickens the entire panel to prevent aero-/hydro-elastic

instability within the envelope of operational flow speeds. For applications with low values of

mass ratio, the addition of an isolated spring has also been shown to change the eigen-system

morphology so that modal-coalescence flutter instability is replaced by two-mode divergence. This

can be advantageous because flutter is a dynamic instability leading to material fatigue whereas

divergence instability grows into a static nonlinear buckled state.

Stabilisation by means of an added spring is more effective than including an additional fixed

(zero-displacement) restraint within the panel streamwise extent as investigated in [15]. A fixed

restraint may be considered an added spring of infinite stiffness in the context of the present work

and this exceeds the optimal value of spring-stiffness for divergence postponement. Moreover, [15]

showed that a fixed restraint modifies the spatial energy balance of the panel and can introduce a

new low-speed form of mild panel flutter. This does not occur in the present work that permits

motion of the spring’s attachment point to the panel.

Finally, for real engineering applications, the use of an added spring in the present two-dimensional

work is questionable because the lower end of the spring must be attached to a rigid structure that

could equally be used as a support to replace the panel with two shorter, more stable, flexible

panels. However, in the three-dimensional application of localised stiffening, the spring would be

replaced by a transverse stiffening strip adhered to the under-surface of the panel and attached

to the side edges of the ribbed bay or baffle that the panel encloses. Our preliminary work on

this extension, [27], shows that the stabilising benefits demonstrated in the present paper carry

across into the full three-dimensional problem thereby making the localised stiffening strategy a

practicable technology. Moreover, in the full problem multiple combinations of both transverse and

streamwise stiffening strips could be used to optimise instability postponement for a given overall
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- plate plus stiffening strips - structural mass.
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Table Captions

TABLE 1: Examples of the increase to divergence-onset flow speed for typical aluminum panels

forming the hull of a high-speed ship through the addition of a single spring support at the panel

mid point. The length and thickness of the panels are respectively: (i) L = 0.6 m, h = 2.5 mm

giving L/h = 240, (ii) L = 1.2 m, h = 8.0 mm giving L/h = 150, and (iii) L = 0.9144 m, h = 6.35

mm giving L/h = 144.

TABLE 2: Examples of material savings (by decreasing panel thickness) keeping the divergence-

onset flow speed unchanged for typical aluminium panels forming the hull of a high-speed ship

through the addition of a spring support at the panel mid point. Panels (i)-(iii) as described in

Table 1.

TABLE 3: Examples of the increase to divergence-onset flow speed for typical flat tempered-glass

panels subjected to axial wind-flow through the addition of a single spring-support at the panel

mid-point.

Figure Captions

FIGURE 1: Schematics of a uniform flow past a flexible panel with (a) uniformly distributed

spring foundation, and (b) localised added spring support.

FIGURE 2: Variation of system eigenvalues with non-dimensional flow speed for a (plate-spring)

compliant-wall panel with L′ = 422.5, d′ = 11.30 and K ′ = 4.41: (a) is the real (positive, growth;

negative, decay) part, and (b) is the imaginary (oscillatory) part of the eigenvalues.

FIGURE 3: Sequence of instantaneous panel profiles developing (top to bottom) from a line

impulse applied at the mid-point for the compliant-wall panel of Fig. 1 at: (a) a marginally pre-

divergence flow speed, U ′ = 2.320, at time steps 1∆T ′, 5∆T ′, 20∆T ′, 50∆T ′, and 300∆T ′, and (b) a

post-instability-onset flow speed, U ′ = 6.410, at time steps 125∆T ′, 625∆T ′, 1,250∆T ′, 1,875∆T ′,

and 2,500∆T ′, where ∆T ′ = 2.53.
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FIGURE 4: Variation of the two lowest system eigenvalues, (a) real (positive, growth; negative;

decay) part, and (b) imaginary (oscillatory) part, with non-dimensional flow speed for an elastic

flexible panel with L′ = 92.31 for different values of a spring support at the panel mid-point: ——,

0k′+ (homogeneous case); —◦—, 6k′+, —△—, 15k′+, where k′+ = 2.15× 10−5.

FIGURE 5: Variation of flexible-panel strain energy, ES (· · ·), kinetic energy, EK (+), spring

energy, ESP (——) and virtual work done by the hydrodynamic stiffness, EVW (◦) with time for

neutrally stable oscillatory motion at a flow speed incrementally below that of divergence onset for

the system of Fig. 4: (a) 0k′+ (homogeneous case), and (b) added spring support with coefficient

6k′+ added at the panel mid-point.

FIGURE 6: Snapshots of panel deformation illustrating the neutrally-stable oscillatory motion

corresponding to the flexible-panel eigenmodes of Fig. 4 for the case of a spring support with 6k′+

at U ′ = 0.00378: (a) Mode 1, (b) Mode 2, and (c) Mode 3. The thick broken line and circle symbols

respectively indicate the starting and finishing deformations over the time period of the evaluation.

FIGURE 7: Snapshots of panel deformation illustrating motion in the divergence range of flow

speeds of the flexible-panel eigenmodes of Fig. 4 for the case of a spring support with 6k′+ at

U ′ = 0.0151: (a) amplifying, and (b) decaying solutions of the divergence mode. The thick broken

line and circle symbols respectively indicate the starting and finishing deformations over the time

period of the evaluation.

FIGURE 8: Snapshots of panel deformation illustrating motion in modal-coalescence-flutter of

the flexible-panel eigenmodes of Fig. 4 for the case of a spring support with 6k′+ at U ′ = 0.0227:

(a) showing modal amplification, and (b) with the modal growth suppressed to illustrate the mode

shape. The thick broken line and circle symbols respectively indicate the starting and finishing

deformations over the time period of the evaluation.
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FIGURE 9: Development of divergence instability from a line impulse applied at the mid-point

of a flexible panel with spring support for the case of Figs. 4 (at U ′ = 0.0151 and with 6k′+) and

7: (a) sequence of instantaneous panel profiles (from top to bottom) at time steps 1∆T ′, 10∆T ′,

20∆T ′, 30∆T ′, and 50∆T ′, and (b) sequence of superimposed panel profiles for times 0∆T ′ to

250,000∆T ′ plotted at time increments of 2,500∆T ′, where ∆T ′ = 0.813. In (b) the thick broken

line and circle symbols respectively indicate the starting and finishing deformations over the time

period of the evaluation.

FIGURE 10: Development of modal-coalescence flutter from a line impulse applied at the mid-

point of a flexible panel with spring support for the case of Figs. 4 (at U ′ = 0.0227 and with

6k′+) and 8: (a) and (b) respectively show sequences 1∆T ′, 6∆T ′, 7∆T ′, 20∆T ′, 50∆T ′ and

50∆T ′, 300∆T ′, 350∆T ′, 1000∆T ′, 2,500∆T ′ of instantaneous panel profiles (from top to bottom

in each and noting the different scales on the vertical axes), while thereafter (c) shows sequences

of superimposed panel profiles for times 2,500∆T ′ to 125,000∆T ′ plotted at time increments of

2,500∆T ′, and (d) shows motion in the established mode for later times 200,000∆T ′ to 220,000∆T ′

plotted at time increments of 730∆T ′, where ∆T ′ = 0.813. In (c) and (d) the thick broken line and

circle symbols respectively indicate the starting and finishing deformations over the time period of

the evaluation.

FIGURE 11: Variation of divergence-onset (—◦—), divergence recovery (– · –) and modal-

coalescence flutter (– – –) onset flow speeds with the coefficient of an added spring support for

a flexible panel with L′ = 92.31: spring added at (a) panel mid-point (xk/L = 0.5), and (b)

xk/L = 0.25.

FIGURE 12: Variation of the two lowest system eigenvalues, (a) real (positive, growth; negative,

decay) part, and (b) imaginary (oscillatory) part, with non-dimensional flow speed for an elastic

flexible panel with L′ = 0.225 for different values of a spring support at the panel mid-point: ——,

0k′+ (homogenous case); —◦—, 1k′+, —△—, 2k′+, where k′+ = 9.64× 103.

FIGURE 13: Variation of Mode-1 divergence-onset (—◦—), Mode-1 divergence recovery (– ·

–), Mode-2 divergence-onset (—△—) and modal-coalescence flutter (– – –) onset flow speeds

(Λ = (U ′)2(L′)3) with the logarithm of the inverse of the mass ratio L′ for a simple unsupported

elastic panel.
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FIGURE 14: Variation of the two lowest system eigenvalues, (a), (b) and (c) real (positive, growth;

negative, decay) part, and (d), (e) and (f) imaginary (oscillatory) part, with non-dimensional flow

speed for an elastic flexible panel with L′ = 0.225 for different values of a spring support at the

panel mid-point: (a) and (d) 1.5k′+, (b) and (e) 2.5k′+, and (c) and (f) 3.5k′+, where k
′

+ = 9.64×103 .

FIGURE 15: Variation of Mode-1 divergence-onset (—◦—), Mode-2 divergence-onset (—△—)

and modal-coalescence flutter (– – –) onset flow speeds with the coefficient of an added spring

support for a flexible panel with L′ = 0.225: spring added at (a) panel mid-point (xk/L = 0.5),

and (b) xk/L = 0.25.
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Figure 1(b): Schematic of a flexible panel in a uniform flow; the localised spring support is added as a 

stabilising strategy. 
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Figure 1(b): Schematic of a flexible panel in a uniform flow; the localised spring support is added as a 

stabilising strategy. 
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Spring L/h

constant 240 150 144

(k+ = 6 ⇥ 10

3
N/m

2
) Panel (i) Panel (ii) Panel (iii)

0k+
3.7 m/s 7.6 m/s 8.1 m/s

(7.2 knots) (14.7 knots) (15.7 knots)

6k+
6.5 m/s 9.3 m/s 9.8 m/s

(12.6 knots) (18.0 knots) (19.0 knots)

15k+
9.2 m/s 11.4 m/s 11.8 m/s

(17.8 knots) (22.1 knots) (22.9 knots)

Table 1:

Spring L

constant 0.6 m 1.2 m 0.9144 m

(k+ = 6 ⇥ 10

3
N/m

2
) Panel (i) Panel (ii) Panel (iii)

0k+
2.5 mm 8.0 mm 6.35 mm

(standard) (standard) (standard)

6k+
1.7 mm 7.0 mm 5.6 mm

(31%) (13%) (12%)

15k+
1.4 mm 6.1 mm 4.9 mm

(46%) (24%) (22%)

Table 2:

Spring L/h

constant 533 406 366

(k+ = 8500 N/m

2
) (L = 2.135 m, h = 4 mm) (L = 2.440 m, h = 6 mm) (L = 3.66 m, h = 10 mm)

0k+ 126 km/h 189 km/h 219 km/h

0.05k+ 139 km/h 200 km/h 230 km/h

0.5k+ 224 km/h 266 km/h 287 km/h

Table 3:

1

Table(s)


