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Abstract: Urban remnant vegetation is subject to varying degrees of disturbance that may or 10 

may not be proportional to the size of the patch. The impact of disturbance within patches on 11 

species with low mobility and dispersal capabilities was investigated in a survey targeting 12 

nemesiid species of the mygalomorph spider clade in the Perth metropolitan area, south-western 13 

Australia. Nemesiid presence was not influenced by patch size, but presence did negatively 14 

correlate with higher degrees of invasive grass and rabbit disturbance. Further, patch size was 15 

significantly positively correlated with degree of disturbance caused by rabbits. Compared to 16 

quadrats, patches were not as effective as sample units in determining the impact of disturbance 17 

on nemesiid presence.  18 
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Introduction 23 

Conservation biology focuses on identifying factors or patterns that pertain to biodiversity 24 

persistence and survival (Gilpin and Soulé 1986, Schulze and Mooney 1994); with higher quality 25 

environments increasing chances of survival (Thomas et al. 2001). Size of suitable habitat is 26 

important to support viable populations (Shaffer 1981, Gilpin and Soulé 1986). Measuring quality 27 

and size of habitats is especially important for conservation practises as it allows appropriate 28 

population or species management to be implemented (Shaffer 1981). Disturbance within patches 29 

can be influenced by surrounding land-use, patch size and patch shape (Pickett and White 1985). 30 

Maintenance of at least the minimum required size and quality of habitats will increase probability 31 

of persistence for viable populations (Shaffer 1981, Gilpin and Soulé 1986). Required habitat of 32 

native species within an urban matrix is usually confined to remnant patches, depending on species 33 

and degree of specialisation. Urbanisation is a relatively recent process in Australia. Therefore 34 

associated threats are novel for native species persisting in urban areas. Identifying factors or 35 

patterns important for conservation purposes allows implementation of more informed 36 

management practices (Olson et al. 2001). 37 

 38 

Informed conservation management is especially important in the South-west Australian Global 39 

Biodiversity Hotspot (SWA). The biota of SWA is therefore globally significant (Hopper and 40 

Gioia 2004, Rix et al. 2014), but also threatened (Klausmeyer and Shaw 2009, Wardell-Johnson 41 

et al. 2011). Though invertebrates were not included in Myers et al. (2000) criteria, evidence 42 



supports invertebrate biodiversity as also being proportionally high within SWA (Main 2001, 43 

Harvey et al. 2011). Many clades of invertebrates are locally endemic to the region (Rix et al. 44 

2014), likely attributable to shared life history characteristics. A species or clade may be 45 

considered a short-range endemic (SRE) if they have a distribution range of less than 10 000 km2, 46 

low fecundity, low dispersal and low mobility. Recently, recognising short-range endemism has 47 

allowed rapid synthesis of conservation protocols for a large group of previously unprotected 48 

species in SWA (Harvey 2002, EPA 2009, Harvey et al. 2011). 49 

 50 

Many species of mygalomorph spider are considered SREs. However, taxonomic impediment, 51 

taxonomic resolution and insufficient information means SRE status cannot be assigned for the 52 

entire mygalomorph clade, hindering conservation outcomes (Mace 2004). Population counts of 53 

mygalomorphs may be misleading as to the viability of some populations, due to slow maturation, 54 

cryptic mating systems and long lifespans (Main 1987, Abensperg-Traun et al. 2000). For 55 

example; Gaius villosus mature at approximately 5 years for females and 3 years for males (Main 56 

1984). Males die after their mating season. However, some females can live up to 30 years (Main 57 

1987, Abensperg-Traun et al. 2000). Persistence despite small population size has occurred after 58 

genetic bottlenecks (Main 1987, Abensperg-Traun et al. 2000). This implies that limited dispersal 59 

and longevity could enable mygalomorphs to persist in small, isolated populations indefinitely. 60 

This may also apply to other long-lived SRE taxa such as cossid moths (Cossidae) and some 61 

Coleoptera (e.g. Curculionidae)(Abensperg-Traun et al. 2000, Harvey 2002). Unfortunately, being 62 

long-lived also increases the likelihood of ghost populations; aging populations that can no longer 63 

recruit and are therefore not viable.  64 

 65 



Thomas (2000) concluded that species either with high or low mobility, are less impacted by 66 

habitat fragmentation than those with intermediate mobility. Mygalomorph spiders are generally 67 

sedentary, with the exception of roaming males. Their poor dispersal ability may mean they require 68 

less area in which to persist indefinitely (Main 1987, Abensperg-Traun et al. 2000). Thus 69 

persistence of mygalomorphs in urban areas may be more dependent on the quality rather than 70 

absolute size of the remaining habitat. This claim is further substantiated by work on mygalomorph 71 

populations persisting in remnant vegetation of less than 20 hectares in ‘the wheatbelt’, agricultural 72 

land near Tammin, WA (Main 1987). As low as twenty Gaius villosus matriarchs (females that 73 

have reproduced at least once) are thought to be capable of sustaining a viable population 74 

indefinitely, if they are in close proximity to one another (Main 1987). More than twenty 75 

matriarchs can occur in less than 10 000 m2 in these wheatbelt populations {Main, 1987 #233}.  76 

 77 

The overall aim of this study was to determine the likelihood of persistence of mygalomorph 78 

populations in urban remnant vegetation of the SWA. We examined the effects of urbanisation on 79 

mygalomorph spiders, using nemesiids as indicator species, in remnant patches of native 80 

vegetation of the Perth Metropolitan Area, Swan Coastal Plain. Nemesiidae is a family of 81 

mygalomorphs, with ten genera and one hundred and four described species occurring in Australia 82 

{W Framenau, 2014 #338}. Nemesiids generally have an open (no lid) and conspicuous burrow. 83 

If size of remaining habitat was not a threat, then it becomes important to identify other threatening 84 

processes within remaining habitat. In particular: 85 

i) Does change of surrounding land-use correlate with disturbance variables in urban 86 

remnant vegetation patches? Based on low mobility, we expected surrounding land-87 

use to not correlate strongly with nemesiid presence or with disturbance variables.  88 



ii) Do disturbance variables correlate with patch size and/or nemesiid species presence? 89 

We expected disturbance variables to negatively correlate with presence of nemesiids 90 

and patch size. However, patch size was not expected to correlate with nemesiid 91 

presence. 92 

 93 

Methods 94 

 95 

Study site 96 

 97 

Perth experiences a Mediterranean climate, with a mean annual rainfall of 740 mm (Australian 98 

Bureau of Meteorology, 2011), although this has been trending lower since 1970 (Bates et al. 99 

2008). Approximately 80% of rainfall occurs in the winter months with only 4% occurring in 100 

summer (Australian Bureau of Meteorology, 2011). The soil of the Spearwood dune system is 101 

well-drained and highly leached pale yellow quartz sand, formed in the mid- to late Pleistocene 102 

(Kendrick et al. 1991). Major soil types were found to correlate with significant change in spider 103 

assemblages on the Swan Coastal Plain (Lacey 2012), so sites for this survey were selected to the 104 

west of the Bassendean dune system.  105 

 106 

Field survey 107 

 108 

Comprehensive surveying was required to confidently determine the distribution of nemesiid 109 

spider species. Earlier studies used pitfall traps (Harvey et al. 1997) that capture specimens not 110 

necessarily directly associated with a specific location. Typically, it is only the males that are 111 



trapped as they roam to find a mate once sexually mature, and perish shortly thereafter (Main 112 

1984). Due to the potentially high mobility of males, they may be trapped a considerable distance 113 

from where they left their burrow. We used a targeted survey approach to determine the number 114 

of known locations where nemesiids occur (Olson et al. 2007). This was considered the most 115 

effective method given the primarily sedentary lifestyle and poor dispersal of mygalomorph 116 

species (Harvey et al. 2011). Using a targeted approach by locating burrows, enabled more precise 117 

information on the distribution of nemesiid species and potential urbanisation threats to be 118 

gathered.  119 

 120 

A stratified random approach was used whereby a mosaic of habitats was targeted and surveyed, 121 

but the transect grid is otherwise random. Sampling was designed by nesting one hundred and 122 

thirty-six 100 x 100 meter quadrats divided into ten 100 m transects spaced 10 m apart (Figure 1) 123 

within forty-one patches of remnant native vegetation (Figure 2). Randomisation was achieved 124 

using the ‘Random points’ function in the program QGIS v2.8.1 Wein, where each point was the 125 

centre of the quadrat. If the point was too close to the boundary, it was shifted in until the quadrat 126 

fit within remnant vegetation. Similarly, if points were so close that quadrats overlapped, they 127 

were moved apart to the shortest distance to where they would no longer be overlapping. Quadrats 128 

were uploaded onto a Garmin handheld GPS and surveyors recorded burrows within 5 m either 129 

side of the transect line they were traversing. Due to health and safety risk, surveying was always 130 

completed with at least one other person. Quadrats in dense, impenetrable vegetation (e.g. stands 131 

of prickly moses; Acacia pulchella) were replaced by alternative random sites in the interests of 132 

volunteer safety.  133 

 134 Figure 1 

here 

Figure 2 

here 



 135 

 136 

 137 

Nemesiid observations 138 

 139 

Nemesiid spider (Figure 3a) burrows (Figure 3b) were directly observed, identified, and measured 140 

(diameter, diagnostic features; silk lines, number entrances, sand mounds). Burrow locations were 141 

recorded using a GPS, accurate to within 5 m. Although other mygalomorph burrows were 142 

recorded, statistical analysis was restricted to nemesiids, due to potential for bias arising from the 143 

unobserved highly camouflaged burrows in other families. Surveying was also not undertaken 144 

during heavy rains. This was because we found that some species of nemesiid pull their burrow 145 

opening in on itself during heavy rain. No doubt this enables avoidance of flooding to open-holed 146 

burrows but also make burrows more difficult to observe after heavy rain. 147 

 148 

Past records from the Western Australian Museum (WAM) indicate a previously uniform 149 

distribution of nemesiids throughout the Perth urban area. They have also been recorded 150 

throughout the study area since 1922. Museum records were not used for analysis as very few 151 

included locations that were specific enough to compare to present distributions. All sites in a 152 

bushland survey conducted by WAM during 1996-1997 where mygalomorphs were found 153 

contained nemesiids as the dominant group collected (Harvey et al. 1997). We concluded that 154 

nemesiids were appropriate indicator species for a group subject to taxonomic impediment 155 

(Harvey et al. 2011). It is apparent that more nemesiid species were observed in this survey than 156 



have been recorded by the Museum. As such, analysis was here limited to presence and absence 157 

until species can be verified by subsequent study. 158 

 159 

Variables 160 

 161 

Disturbance factors such as; invasive grass cover, rubbish and rabbit presence were recorded for 162 

each quadrat. Invasive grass (Figure 3c, d) was estimated as a proportion of quadrat covered where 163 

number of 100 m2 (n) covered was estimated over the 10000 m2 quadrat (see equation below).  164 

𝐼𝑛𝑣𝑎𝑠𝑖𝑣𝑒 𝑔𝑟𝑎𝑠𝑠 = ( 
𝑛(100)

10000
 ) 165 

Rabbit presence was calculated as a proportion (< 1) equal to the number of evidence (n), such as 166 

droppings or diggings found per 10 m over 100 m transects (t) and warrens (w) adding 0.5 final 167 

score (see equation below). 168 

 𝑅𝑎𝑏𝑏𝑖𝑡 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒 = ( 
𝑛(10)

𝑡100
 ) + (0.5𝑤) 169 

Rubbish was used as a proxy for human activity within patches. Rubbish proportion (< 1) was 170 

calculated in a similar fashion, with evidence of active bunkers (b, +0.5) and dumping of industrial 171 

waste (i, +0.3) heavily influencing calculations (see equation below).  172 

𝑅𝑢𝑏𝑏𝑖𝑠ℎ 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒 = ( 
𝑛(10)

𝑡100
 ) + (0.5𝑏) +  (0.3𝑖) 173 

 174 

To account for the possibility of ghost populations in an area of rapid urban expansion (Figure 2), 175 

change of surrounding land-use was incorporated over a timeframe of fifty years between 1965 176 

and 2015. Surrounding land-use area was measured by generating shapefile layers (buildings [B], 177 

roads [R], parkland [PL] and other remnant vegetation [RV]) within 250 m, 150 m and 50 m 178 



buffers. Buffers were measured for both patch and quadrats in the open source program Quantum 179 

Geographic Information System (QGIS 2014). The Nearmap plugin was used to determine the 180 

proportion of different land-use within each buffer area. The same methodology was performed 181 

for surrounding land-use in 1965 using maps available through SLIP (Shared Land Information 182 

Platform) Interrogator+.  183 

 184 

 185 

Statistical analysis 186 

 187 

PATN v. 3.0 (Belbin 2013) was used to analyse patches based on the twenty-four surrounding 188 

land-use variables as intrinsic in multivariate analysis. We derived groups of patches with similar 189 

measures of surrounding land-use proportions using the range standardized values of the 10 190 

measures described earlier (called ‘intrinsic variables’, following Belbin (2013)) in numerical 191 

taxonomic or pattern analysis approaches (Belbin 2013). The key steps were (1) use cluster 192 

analysis to identify groups of patches (row groups) that, on the basis of the twenty-four intrinsic 193 

variables, are more similar to other members of their groups than to members of other groups, (2) 194 

superimpose groups based on the variables (column groups) over the patch groups to identify 195 

which variable groups are strongly or weakly represented in different patch groups, and (3) validate 196 

the patch groupings by applying different methodologies (MDS ordination and network analysis), 197 

to assess congruence between the ordination (for trends), network analysis (for nearest neighbours) 198 

and the cluster analysis (for groups). All analyses described below used PATN (Belbin 2013). 199 

 200 

Figure 3 

here 



The Gower metric was used to determine degree of association between different patches based 201 

on surrounding land-use composition to generate groups using unweighted pair group arithmetic 202 

averaging (UPGMA) with Beta set at -0.1 (see Belbin 2013). To determine the influence of 203 

particular intrinsic variables on patch groupings, we classified the intrinsic variables using the 204 

Two-Step association measure with Beta set at -0.1. A two-way table was used to visualise the 205 

influence of particular variable groups on the different patch groups, where each cell corresponds 206 

to a particular patch score on a particular land-use variable. Shading in the two-way table indicates 207 

strength of association between patch and land-use variable. Dark shaded blocks indicate strong 208 

associations between groups of patches (sites) and groups of variables, and light or clear blocks 209 

indicate weak association.  210 

 211 

We presented our original distance matrix visually through semi-strong hybrid multi-dimensional 212 

scaling ordination (SSH MDS with dissimilarity cut level at 0.6) (Belbin 2013). MDS ordination 213 

seeks to provide, in few dimensions, an accurate representation of the similarity between samples, 214 

in this case patches, on the basis of the surrounding land-use variables. Stress (the difference 215 

between the input distances and the output distances) determined in how many dimensions the 216 

ordination can be reliably assessed. Here, low stress enabled assessment in two dimensions. The 217 

Minimum Spanning Tree (MST, Belbin 2013) was used together with SSH MDS to assess 218 

congruence between ordination (trends), cluster analysis (groups) and network analysis (nearest 219 

neighbour). The three approaches were inspected visually in one diagram. The greater the 220 

congruence between them (i.e., all approaches giving similar results), the greater the validity of 221 

the derived patterns. 222 

 223 



Mygalomorph presence and the disturbance variables; rabbit, weed and rubbish were used as 224 

extrinsic factors. Relationships of extrinsic variables to the ordination axes were explored using 225 

principal axis correlation (PCC procedure in PATN, Belbin 2013). Significance of the correlation 226 

of variables to the axes of the two-dimensional ordination derived from the matrix was assessed 227 

using randomization tests (with 1000 permutations) and the MCAO procedure of PATN (Belbin 228 

2013). Vectors of variables correlated significantly with the ordination axes were plotted. Extrinsic 229 

factors were superimposed on a two dimensional semi-strong hybrid multidimensional scaling 230 

ordination (2D; stress 0.16, SSH MDS; dissimilarity cut off level 0.6) to visualise influence of 231 

groups on those factors.  232 

 233 

ANOVA were used to determine correlations between disturbance variables and presence of 234 

nemesiids for both quadrat and patch scale in the Microsoft Excel plugin StatistiXL 1.8 (Withers 235 

and Roberts 2007). As multiple quadrats were in many of the patches surveyed, the factors 236 

gathered for each quadrat were averaged for each patch. Quadrat and patch factors were analysed 237 

separately and then compared to determine which may be the more useful unit of measurement.  238 

 239 

Limitations 240 

 241 

The number of burrows located within a quadrat varied markedly depending on species. Species 242 

naturally vary in population density and abundance. Using total number of burrows was not logical 243 

when species status is not yet verified; this was another reason to limit analysis to presence and 244 

absence of all nemesiid species. Vegetation type and structure is likely to have an effect on 245 

nemesiid presence (Schut et al. 2014) and visibility. Degree of vegetation heterogeneity, even 246 



within quadrats, was too high to account for in this study. Degree of heterogeneity between patches 247 

may be similar, as has been found in agricultural landscapes (Thorbek and Topping 2005), and 248 

thus not impact on the findings. As noted by Stenhouse (2004), the management of remnant 249 

vegetation is difficult to analyse due to the many different authorities responsible for land 250 

management in the Perth metropolitan area. We therefore excluded from analysis the potential 251 

impact of different management authorities on disturbance variables. 252 

 253 

Quadrat data was not useful in analysis of surrounding land-use as groups were too ill-defined. 254 

This may be explained by many of the quadrats, in larger patches especially, having high 255 

proportions of remnant vegetation within the buffer zone. Sampling bias for nemesiid species in 256 

patch scale analysis meant that this could not be used as an extrinsic factor. As such, surrounding 257 

land-use analysis was limited to using disturbance variables as extrinsic factors. 258 

 259 

Results 260 

 261 

Presence of nemesiid burrows was recorded in nineteen of the forty-one patches, and sixty of one-262 

hundred and thirty-five quadrats. Density of adults (as determined by size of burrow) greatly varied 263 

between quadrats, from one to 42 burrows. Recruitment was apparent in the smallest patches 264 

examined (Figure 2: #4, < 2 ha) with spiderlings and varying age groups present in all but one of 265 

the patches (Figure 2: #21) where nemesiids were found. Change of surrounding land-use since 266 

1965 did not correlate with nemesiid presence (Table 1). Hence, patches that were previously 267 

surrounded by intact vegetation did not correlate with nemesiid presence, as would be expected if 268 

species were occurring as ghost populations.  269 



 270 

Change of surrounding land-use affect disturbance and nemesiids 271 

 272 

Intrinsic factors formed distinct groups, and two extrinsic factors were found to be significant: size 273 

of patch and rubbish (Figure 4 and 5). 274 

 275 

 276 

 277 

 278 

Six groups emerged in cluster analysis based on surrounding land use (Figure 4). Groups one and 279 

three are characterised by patches that were previously surrounded by remnant vegetation in 1965 280 

that has since been cleared. Group two had higher proportion of parklands as surrounding land-281 

use in 1965 than groups one and three. Groups four, five and six represent patches in long 282 

established areas, that is, much of the remnant vegetation was cleared prior to 1965. Group four 283 

had a higher proportion of parklands in 2015 than five and six, whereas group six had a higher 284 

proportion of parklands in 1965 than groups four and five. 285 

 286 

Disturbance variables affect patch size and nemesiids  287 

 288 

There was only one significant result when using patch as a unit of measurement. Thus, rubbish 289 

intensity was negatively correlated with patch size (p = 0.029, F stat: 5.126). Using quadrats as a 290 

unit of measurement, there was a highly significant negative correlation between rubbish and patch 291 

size (p < 0.0001) (Table 2). However, rubbish had no significant impact on mygalomorph presence 292 

or absence (Table 2). 293 

 294 

Figure 

4here 

Figure 

5here 

Table 2 

here 

Table 1 

here 



The presence of rabbits was found to be negatively correlated with presence of mygalomorphs (p 295 

= 0.008) and positively correlated with size of patch (p < 0.001). Invasive grass was significantly 296 

negatively correlated with nemesiid presence (p = 0.004), but was not significantly correlated with 297 

patch size (Table 2).  298 

 299 

Discussion 300 

 301 

Urbanisation is a relatively recent process in the region with Perth being established in 1829, but 302 

with rapid and extensive clearing after the 1950s (Figure 2). Long-term effects of clearing, 303 

changing land-use, disturbances and conservation practises may not yet be apparent due to the 304 

relatively short time frame. However, attempting to identify threatening processes at early stages 305 

is imperative for effective conservation management, especially in terms of mitigating cost both 306 

to the environment and to the economy.  307 

 308 

Change of surrounding land-use affect disturbance and nemesiids 309 

 310 

Correlation between size of patch and surrounding land use groups is reflective of recent 311 

developments in urban planning, as smaller patches are more common in more recently established 312 

areas. Commonly, patches of remnant vegetation are adjacent to or surrounded by parkland. 313 

Rubbish was also more common in more recently established areas. Rubbish, penetrates smaller 314 

patches more readily in a form of edge effect. Since rubbish was not found to influence nemesiid 315 

presence, this was an inconsequential finding for this study but was included as potentially 316 

important in future studies.  317 



 318 

Surrounding land-use may be a major driver of disturbance factors. One of the initial reasons 319 

change in land-use was incorporated in this study was the speculated high mobility of male 320 

mygalomorphs. There have been many incidences where males were collected that had been 321 

caught walking against fences and walls, presumably attempting to traverse between patches. If 322 

reproductive rates were subsequently reduced due to higher male mortalities since 1965, then ghost 323 

populations could have occurred. Although ghost populations were not found in this study, the 324 

effects of change in surrounding land use are an important parameter to be incorporated in future 325 

studies of mobility relating to threatening processes. This may be especially important for species 326 

with medium to high dispersal and/or mobility capabilities that are long-lived, for example Red-327 

tailed and Carnaby Cockatoos (Saunders 1990, Joseph et al. 1991) or pollinators (Kremen et al. 328 

2007). For more mobile species, visitation or nesting could be mapped within or between patches 329 

then compared to cluster analysis of change in land-use variables, for example comparing Figure 330 

2 with Figure 4 and 5. We suggest that distribution mapping, in conjunction with cluster analysis, 331 

be implemented in future studies to assess if change of land-use impacts on long lived species.  332 

 333 

Disturbance variables affect patch size and nemesiid presence  334 

 335 

Disturbance of habitat due to invasive species (rabbits and invasive grass) has a significant impact 336 

on nemesiid species. However, patch size does correlate with some disturbance variables (rubbish 337 

and rabbits, but not invasive grass) with greater impact being seen in smaller patches than larger 338 

patches. Greater disturbance in smaller patches has been noted in other studies in Perth remnants 339 

(Stenhouse 2004) and may be attributed to edge effect (Saunders et al. 1991). Nevertheless the 340 



direct impact of these phenomena on arthropods remains unclear (Bolger et al. 2000). Intuitively 341 

any impact would be applicable to other mygalomorphs in the Perth metropolitan area. 342 

 343 

Invasive grass may be more concerning as a threatening process for all mygalomorph species as it 344 

considerably alters ground-level strata. It may seem that high degree of invasive grass may obscure 345 

visibility of burrows. However, those that were persisting in areas of high weed invasion tended 346 

to be highly visible as they were exhibiting mounding behaviour; a bare, raised area mound of 347 

sand that surrounded approximately 20 cm around the burrow entrance. It was concluded that 348 

visibility was not compromised and is not considered a limitation. 349 

 350 

Invasive grass would impact not only on the foraging behaviour of other mygalomorph species, 351 

but the presence of invertebrate species that serve as prey. Invasive grass is cause for concern for 352 

not only the choking effect it may have on mygalomorphs and native vegetation (Stenhouse 2004) 353 

but also adding to fuel loads during summer die-off, and increasing the likelihood of damaging 354 

fire{Anderson, 1982 #339}{Rossiter, 2003 #340}. Invasive weed management through regular 355 

herbicide regimes and community involvement is highly recommended.  356 

 357 

Rabbit diggings potentially disturb mygalomorph burrows to the point that they are no longer 358 

found in areas of rabbit disturbance. During the survey, many burrows of non-nemesiid 359 

mygalomorphs were pulled from the ground by rabbit diggings. Though it was primarily rabbits 360 

that seemed to be disturbing mygalomorph burrows, this disturbance was also occurring where 361 

bandicoots had been re-introduced (Figure 2, #34). Mygalomorphs may be experiencing less 362 

disturbance from digging presently (in areas where rabbits are not present) than in the past. Prior 363 



to European settlement in 1829, bandicoots and other small mammals were prevalent throughout 364 

the region. Therefore, in areas without rabbits, mygalomorphs may be experiencing fewer 365 

disturbances from digging than in the past. This lack of disturbance may explain the especially 366 

high density of mygalomorphs in some areas with low rabbit presence. Alternatively, a higher 367 

abundance of prey species benefiting from human influence in these patches may allow greater 368 

numbers of mygalomorph spiders to be supported, as has been seen in golden-orb spiders (Lowe 369 

et al. 2014). Mitigating the intensity of rabbits through practises such as fumigation of active 370 

warrens is recommended to all organisations in Perth that assist in management of remnant 371 

bushland.  372 

 373 

Rubbish was not an effective variable to gauge human disturbance, as rubbish was accumulating 374 

around the edges of patches, paths and fencing. Quadrat results were more predictive of presence 375 

and absence than patch data for disturbance variables. Unsurprisingly, this means patches are not 376 

exhibiting uniform processes and should not be analysed as such. Patch is likely at too large a scale 377 

and may present false negatives (Type 2 error) when analysed.  378 

 379 

Mobility and dispersal capabilities affects conservation 380 

 381 

Fahrig (2013) proposed the habitat quantity hypothesis; to challenge the use of habitat patches as 382 

natural units of measurement. In support, using quadrats as a unit of measurement was far more 383 

insightful into the effects of disturbances; likely due to the low dispersal and mobility of the 384 

species. Fragmentation and isolation may have varied effects with species mobility capabilities 385 

(Thomas 2000). (Fahrig 2013) 386 



 387 

Traditionally, criteria for conservation priorities are based primarily on distribution range. As 388 

Runge (2014, 2015) suggests this may be detrimental to mobile species that may be experiencing 389 

threatening processes that occur over a large scale. Arguably, protection of ranges could be 390 

applicable for some endangered species that receive extensive funding for protection. For most 391 

cases though, this is not an economic use of resources to protect most species (Harvey et al. 2011). 392 

Categorising conservation status based on mobility and dispersion of species and associated threats 393 

may be a more effective approach, as has been recently done with ‘nomadic’ (Runge et al. 2015) 394 

species. Mobility capabilities would also be useful for distinguishing between local and landscape 395 

effects, as they would have varying impacts (Melles et al. 2003).  396 

 397 

Considering the impact of invasive species demonstrated in this study, threatening processes 398 

should be further prioritised in management in SWA. Harvey et al. (2007) also concluded that 399 

small patches should be conserved for non-passerine bird species and reptiles in Perth, a conclusion 400 

likely related to dispersion and mobility capabilities. In the case of mygalomorph spiders, 401 

phenology varies between clades (Ferretti et al. 2012). Life history events in SWA seem to be 402 

triggered by seasonal events of high humidity (perhaps relating to their vulnerability to 403 

desiccation;(Mason et al. 2013). 404 

 405 

Significant gradients of rainfall, temperature and vegetation types occur along in SWA hotspot 406 

(Sander and Wardell‐Johnson 2011). In mygalomorphs, this may allow for greater genetic 407 

diversity through both adaptive variation and natural divergence caused by isolation (Moritz 2002, 408 

Main 2003). Exceptionally high biodiversity and endemism in SWA are explained by climate 409 



stability, landscape age and fire predictability (Mucina and Wardell-Johnson 2011). In 410 

conjunction, poor dispersal and poor mobility capabilities, while speculative, may contribute to 411 

speciation (Harvey et al. 2011), especially in-situ speciation (Rix et al. 2014). 412 

 413 

Conservation management implications 414 

 415 

Habitat clearance is the first and foremost threat to mygalomorphs as they will not be able to 416 

readily disperse back into rehabilitated areas from adjoining uncleared land {Yen, 1995 #341}. 417 

There has been no record of nemesiid burrows occurring outside uncleared remnant vegetation. 418 

Continued habitat clearance occurs at an alarming rate in urban areas of Perth due to urban sprawl. 419 

The Perth urban area has more than doubled since the 1970s due to large-scale land clearing 420 

(WWF-Australia 2010). Thus 6 812 ha of natural bush, (average 851.5 ha per year) was cleared in 421 

the Perth metropolitan area from 2001-2009, (WA Local Government Association’s Perth 422 

Biodiversity Project). To put this sprawl into perspective, Perth population density (310 people 423 

/km2, is 0.05% that of London (5490 /km2) and 0.03% that of New York City (10756 /km2). Urban 424 

sprawl is not only a foremost cost to natural environments, but is also a major economic concern 425 

as low density living makes public services less effective and more expensive (Nechyba and Walsh 426 

2004). 427 

 428 

Clearing is especially problematic for smaller patches, being allocated less value despite being 429 

able to retain high biodiversity over time (Stenhouse 2004, Guénard et al. 2014). This study has 430 

demonstrated the value of small patches for nemesiids, and most likely other mygalomorphs, with 431 

viable populations being confirmed from a 10 000 m2 quadrat, within a 2.7 hectare patch (#4, 432 



Figure 1). It should also be noted that due to landscape effects there may be some species that 433 

remain only in small, isolated patches. As many species are yet to be discovered, described and 434 

requirements understood (Harvey et al. 1997){Yen, 1995 #341}, the clearance of even small, 435 

isolated patches could potentially destroy the last remaining population of a species. The high 436 

biodiversity consequences of deforestation in this global biodiversity hotspot suggests a need for 437 

a ban on further clearing of remnant vegetation within the Perth Metropolitan Area. This would 438 

need to be enforced by the EPA and would have wide significance for urban planning in the region.  439 

 440 

The current guidelines for short-range endemic sampling (EPA 2009) make it very difficult for 441 

status and associated protection for potential species to be assigned. It has been established that 442 

there are clades with low dispersal, fecundity and mobility capabilities and that this makes them 443 

more vulnerable. It would be appropriate to list them as vulnerable immediately rather than wait 444 

for distribution maps of species with low taxonomic resolution. Considering the impact of 445 

threatening processes outlined in this study, a conservation status of ‘vulnerable’ for all 446 

mygalomorph species, and other clades considered potential SREs, occurring in Perth is 447 

recommended. 448 

 449 

 450 

Conclusion 451 

 452 

Very low dispersal and mobility capabilities seem to allow for ongoing persistence in high quality 453 

urban remnant native vegetation patches for mygalomorphs over time. However, management 454 

practices to limit the impact caused by rabbits and invasive grass should be prioritised in future 455 



management. Protection of clades that exhibit any short-range endemism traits should be 456 

implemented immediately and enforcement of no further clearing of remnant bushland in this 457 

biodiversity hotspot. We predict that if high quality habitats are maintained, there will be ongoing 458 

persistence of mygalomorph populations, even in small patches. If management suggestions are 459 

adhered to, there seems no reason mygalomorphs, and other species with poor mobility and 460 

dispersal, could not persist indefinitely within urban remnants.  461 
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 587 

Figure 1: Sampling design of mygalomorph targeted survey. Ten transects (1-10, circled), 588 

spaced 10 m apart within 100 m x 100 m quadrats. One hundred and thirty-six quadrats were 589 



nested, using a randomising mapping function, throughout 41 remnant vegetation patches 590 

within urban areas of Perth, Western Australia.   591 

 592 

 593 

Figure 2: Perth metropolitan urban extent (light yellow), and extent in 1965 (grey hashing), with native remnant 594 

vegetation (green) patches surveyed (red border) ordered (Site #) from smallest area (1) to largest area in 595 

hectares (41). Cities of Perth and Fremantle are also marked (black dots). 596 



597 

 598 

Figure 3: a) Nemesiid mygalomorph spider, 55 mm in body length. b) Nemesiid mygalomorph spider burrow, 599 
22 mm in diameter. c) Habitat with low weed invasion; understorey predominantly native species. d) Habitat 600 
with high weed invasion; predominantly veldt grass. 601 

 602 
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 605 
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 609 

 610 
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Table 1: Twenty-four land-use variables used as intrinsic factors in PATN (Belbin 2013) analysis. Code used in 611 
Figure 3, is described by Year, Land-use and Buffer size. Minimum, maximum, mean and standard error (SE) 612 
of proportions surrounding patches are listed for each variable. 613 
 614 

 615 

 616 

 617 

 618 

 619 

Code Year Land-use Buffer size Minimum Maximum Mean  SE 

2015.B.50 2015 Building 50 0 0.58 0.23 ± 0.06 

2015.B.150 2015 Building 150 0 0.65 0.28 ± 0.06 

2015.B.250 2015 Building 250 0.06 0.74 0.43 ± 0.07 

2015.R.50 2015 Road 50 0.04 0.91 0.30 ± 0.06 

2015.R.150 2015 Road 150 0.05 0.41 0.14 ± 0.04 

2015.R.250 2015 Road 250 0.08 0.37 0.25 ± 0.04 

2015.PL.50 2015 Parkland 50 0 0.69 0.19 ± 0.06 

2015.PL.150 2015 Parkland 150 0 0.45 0.13 ± 0.05 

2015.PL.250 2015 Parkland 250 0 0.52 0.17 ± 0.06 

2015.RV.50 2015 Remnant vegetation 50 0 0.61 0.05 ± 0.06 

2015.RV.150 2015 Remnant vegetation 150 0 0.67 0.07 ± 0.06 

2015.RV.250 2015 Remnant vegetation 250 0 0.34 0.07 ± 0.05 

1965.B.50 1965 Building 50 0 0.33 0.03 ± 0.04 

1965.B.150 1965 Building 150 0 0.48 0.05 ± 0.05 

1965.B.250 1965 Building 250 0 0.48 0.05 ± 0.05 

1965.R.50 1965 Road 50 0 0.47 0.07 ± 0.05 

1965.R.150 1965 Road 150 0 0.48 0.04 ± 0.05 

1965.R.250 1965 Road 250 0 0.26 0.04 ± 0.04 

1965.PL.50 1965 Parkland 50 0 1 0.09 ± 0.08 

1965.PL.150 1965 Parkland 150 0 1 0.08 ± 0.05 

1965.PL.250 1965 Parkland 250 0 1 0.08 ± 0.04 

1965.RV.50 1965 Remnant vegetation 50 0 1 0.72 ± 0.10 

1965.RV.150 1965 Remnant vegetation 150 0 1 0.75 ± 0.10 

1965.RV.250 1965 Remnant vegetation 250 0 1 0.79 ± 0.09 



 620 

Figure 4: (a) Dendrogram showing line along which groups are formed as dark dashed line that corresponds 621 
to groups shown in two-way table. (b) Two-way table showing 6 groupings of 41 patches during 2015 and 1965 622 
using proportion of land-use variables (R: Road, PL: Parkland, B: Buildings and RV: Remnant Vegetation) at 623 
buffers of 250, 150 and 50 m. Dark shaded blocks indicate strong associations between groups of patches and 624 
groups of variables, and light or clear indicate weak association. Codes for land-use variables columns in (b) 625 
correspond to Table 1. Gower (rows), Two-step (columns), UPGMA. Group symbols and numbers (c) 626 
correspond to Figure 4 and numbers in text whereas patch numbers (1-41) correspond to patches shown in 627 
Figure 1.  628 



 629 

Figure 5: a) Two dimensional ordination (SSH MDS, Stress = 0.1596, Cut-off value: 0.6, 1000 random starts) of 630 
41 patches of remnant urban bushland, based on 24 surrounding land-use variables. Groupings derived 631 
through cluster analysis (Fig. 4) are also shown. b) Centroids with Monte-Carlos Attributes in Ordination 632 
extrinsic variables rubbish and patch size statistically significantly correlated with ordination axes. 633 

 634 

Table 2: ANOVA output from StatistXL Microsoft Excel plugin package. Analysis at quadrat level to determine 635 
any significant relationships between disturbance variables (Grass, rabbits and litter) and whether this 636 
correlates presences/absences of nemesiids (PR_AB) with patch remnant vegetation (PRV) as a covariate in 637 
urban extent of Swan Coastal Plain, Western Australia. * indicates significant p-values. 638 

Y Variable Source Type III SS Df Mean Sq. F Prob. 

RABBIT PRV 1.782 1 1.782 27.692 0.000* 

  PR_AB 0.641 2 0.321 4.982 0.008* 

GRASS PRV 0.011 1 0.011 0.100 0.752 

  PR_AB 1.323 2 0.661 5.794 0.004* 

LITTER PRV 1.469 1 1.469 51.402 0.000* 

  PR_AB 0.051 2 0.026 0.894 0.411 

 639 

(Harvey et al. 1997, Runge et al. 2014) 640 

a) b) 


