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Abstract— In this paper, we propose a design scheme for
amplify-and-forward multiple-input multiple-output (AF MIMO)
relay system with direct link to minimize the mean-squared error
(MSE) of the signal estimation at the destination. In the proposed
design scheme, an optimal precoding matrix is derived with the
assumption that the full channel state information (CSI) of the
source-relay link and partial channel state information such as
channel covariance information (CCI) of the relay-destination
link are available at the relay. In practical cases, if the destination
is closer to the source, the source-destination link cannot be
ignored. Hence, in this paper, we assume that the relay knows
the partial channel state information of the source-destination
link. Based on this assumption, an iterative optimal covariance
algorithm is developed to achieve the minimum MSE of the
signal estimation at the destination. In order to reduce computa-
tional complexity of the proposed optimal covariance algorithm,
a suboptimal covariance algorithm is proposed. A numerical
example shows that the developed optimal covariance algorithm
outperforms the conventional CCI based MSE algorithms.

I. INTRODUCTION

Recently, cooperative wireless communications attract much

research interest. By deploying a wireless relay in cooperative

wireless communications, wireless networks coverage area can

be extended and reliable and cost effective wireless network

applications can be provided. In cooperative wireless commu-

nications, a relay can be deployed inside a building or tunnel

to mitigate the effects of shadowing.

Two types of relaying schemes, decode-and-forward (DF)

and amplify-and-forward (AF), have been proposed in [1]-[3].

In DF strategy, the relay decodes the information received from

source and forwards the re-encoded signal to the destination.

Whereas in AF strategy, the relay amplifies the received signal

from source and retransmits the signal to the destination. When

compared with the DF strategy, the AF strategy has a lower

computational complexity and is easy to implement in the

cooperative environment.

A relay precoding algorithm [4] and [5] for AF based

multiple-input multiple-output (AF MIMO) relay has been

developed to maximize the capacity of the source-destination

link. In this algorithm, a precoding matrix is multiplied with
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Fig. 1. AF MIMO relay system

the received signal at the relay for further signal processing.

Recently [6]-[10], the precoding matrix was proposed to min-

imize the receiver estimation error which is known as mean-

squared error (MSE) of the signal at the destination node. The

optimal precoding matrix design was investigated well in [9]-

[11] for AF MIMO relay system with the assumption that the

relay knows the full channel state information (CSI) of the

source-relay, source-destination and relay-destination links.

In practice, the environment is mostly surrounded by scat-

ters and shadowing effects. Due to the scattered and shadowing

environments, the received signal is uncorrelated at the desti-

nation. Hence, the full CSI of the relay-destination link and

the source-destination link is difficult to obtain at the relay

node. For this model, the channel covariance matrix is more

suitable than the instantaneous channel matrix.

In [12] and [13], optimal precoder is designed for maxi-

mizing the ergodic capacity of the AF MIMO relay system

with the assumption that the channel covariance information

(CCI) of the relay-destination link is available at the relay

node. Recently, minimum mean-squared error (MMSE) based

estimators are investigated in [14] and [15] with the assump-

tion that the relay knows the covariance channel information

of the relay-destination link. However, the optimal precoding

matrix with the direct link was not investigated in [14] and

[15]. In practice, the source-destination link provides valuable

spatial diversity to the AF MIMO relay system and should not

be ignored.

In this paper, an iterative based optimal covariance al-



gorithm is proposed to minimize the MSE of the signal

estimation at the destination in an AF MIMO relay system

with direct link. Considering that the computational complex-

ity of the developed optimal covariance algorithm may be

high for practical implementation of the relay system, we

propose a suboptimal covariance algorithm. In the proposed

two algorithms, we assume that the relay knows the full CSI

of the source-relay link and the CCI of the relay-destination

link and the direct source-destination link. Simulation results

verify the performance of the proposed optimal and suboptimal

covariance based MSE algorithms.

The rest of the paper is organized as follows. The system

model for the proposed precoding matrix design for an AF

MIMO relay system is introduced in Section II. The optimal

precoder design schemes are proposed in Section III. In

Section IV, we present some numerical examples. Section V

concludes the paper.

II. SYSTEM MODEL

Let us consider a typical three node AF MIMO relay system

as shown in Fig.1, where NS , NR and ND denote the number

of antennas at the source, relay and destination, respectively.

It is assumed that there is a direct link between the source

and destination. The data transmission between the source-

destination link is completed in two time slots. During the

first time slot, the source transmits x. The received signal at

the destination and the relay during the first time slot is given

by

y0 =H0x+ n0

y1 =H1x+ n1 (1)

where H0 ∈ CND×NS is the channel matrix of the direct

source-destination link, x ∈ CNS×1 the transmitted vector

with covariance matrix E{xxH} = σ2
xINS

, n0 ∈ CND×1 the

circularly symmetric complex Gaussian noise vector with zero

mean and unit variance matrix, H1 ∈ C
NR×NS the channel

matrix of the source-relay link, n1 ∈ CNR×1 the circularly

symmetric complex Gaussian noise vector with zero mean and

covariance matrix E{n1n
H
1 } = σ2

1INR
. Here E[.] denotes the

statistical expectation.

The received signal at the destination in the second time

slot is given by

y2 = H2GH1x+H2Gn1 + n2 (2)

where H2 ∈ C
ND×NR is the channel matrix of the relay-

destination link, G ∈ CNR×NR a precoding matrix of the

relay, n2 ∈ CND×1 the circularly symmetric complex Gaus-

sian noise vector with zero mean and covariance matrix

E{n2n
H
2 } = σ2

2IND
. In a more compact way, the signal

models (1) and (2) for the AF MIMO relay system can be

written as

y,

[
y2

y0

]

=

[
H2GH1

H0

]
x+

[
H2Gn1 + n2

n0

]
. (3)

We assume that the relay knows the full CSI of the source-

relay link and CCI of the relay-destination link and the direct

source-destination link. However, the channel information is

unavailable to the source. Let us introduce

H ,

[
H2GH1

H0

]
(4)

and

n =

[
H2Gn1 + n2

n0

]
(5)

where H ∈ C
2ND×NS is the equivalent MIMO channel matrix,

and n ∈ C2ND×1 represents the equivalent noise vector.

Inserting (4) and (5) into (3), the signal model for the AF

MIMO relay system can be written as

y = Hx+ n. (6)

Consider a scenario that the destination node is moving

rapidly [13], so the channel is correlated at the transmitter and

is uncorrelated at the receiver for the relay-destination link and

the direct source-destination link. This model is appropriate for

an environment where the destinations is fully surrounded by

local scatters [16]. With this assumption, the channel matrices

H0 and H2 can be modeled as [13] and [15]

H0 =Hω0
Σ

1/2
0

H2 =Hω2
Σ

1/2
2 (7)

where Hω0
∈ CND×NS and Hω2

∈ CND×NR are Gaussian

matrices having i.i.d. circularly symmetric complex entries, Σ0

an NS×NS covariance matrix of H0 and Σ2 an NR×NR co-

variance matrix of H2 at the relay side. Here, we assume that

the destination node feedbacks the two covariances matrices,

Σ0 and Σ2, to the relay node.

A linear receiver W is applied at the destination to reduce

implementation complexity. The estimated signal at the desti-

nation link can be written as

x̃ = Wy = WHx+Wn. (8)

Since the transmitted signal from the relay is Gy1 =
GH1x + Gn1, the power constraint on the relay can be

expressed as [4]

p(G) = tr
{
G(σ2

xH1H
H
1 + σ2

1INR
)GH

}
≤ Pr (9)

where tr{.} denotes the trace of a matrix and Pr is the upper

bounded average power used by the relay. Now, our goal is

to obtain G and W to minimize the MSE of the estimated

signal at the destination node. Using the precoder matrix G

and the linear receiver W, the MSE function of the estimated

signal can be written as [17]

J(G,W) = tr
{
E
[
(x̃− x)(x̃ − x)H

]}
. (10)

Mathematically, the design problem to be considered in the

paper can be formulated as

(G,W) = argmin
(G,W)

J(G,W), s.t. p(G) ≤ Pr. (11)



After substituting (8) into (10), the MSE function (10) is

simplified to

J(G,W) = tr
{
σ2
x

(
WH− INS

)(
WH− INS

)H

+WRnW
H
}

(12)

where Rn is the equivalent noise covariance matrix, given by

Rn = E
[
nnH

]
. (13)

Substituting (5) into (13), the noise covariance matrix Rn is

given by

Rn =E

[ [
H2Gn1 + n2

n0

] [
H2Gn1 + n2

n0

]H ]

=

[
σ2
1H2GGHHH

2 + σ2
2IND

0ND×ND

0ND×ND
IND

]
. (14)

Note that the constrained optimization problem (11) is not

easy to solve directly due to the fact that the optimization

function J(G,W) is a non-linear and non-convex function of

G and W and the power constraint is non-linear function

of G. In the following sections an iterative based optimal

covariance algorithm and suboptimal covariance algorithm will

be proposed to solve the constrained non-linear optimization

problem.

III. OPTIMAL PRECODER DESIGN

For any given precoding matrix G which satisfies the power

constraint (9), the optimal linear receiver W that minimizes

the MSE function J(G,W) is the MMSE (Wiener) receiver

[17], which is given by

W = σ2
xH

H(σ2
xHHH +Rn)

−1. (15)

After substituting (15) into (12), the MSE function is obtained

as

J(G) = σ2
xtr
{
INS

− σ2
xH

H(σ2
xHHH +Rn)

−1H
}
. (16)

Using the following matrix inversion lemma [17]

(A+BCD)−1 =A−1 −A−1B

×(DA−1B+C−1)−1DA−1, (17)

the MSE function (16) can be written as

J(G) = σ2
xtr
{[

INS
+ σ2

xH
HR−1

n H
]−1}

. (18)

Substituting (4) and (14) into (18), the MSE function can be

expressed as

J(G) = σ2
xtr
{[

INS
+ σ2

xH
H
0 H0 + σ2

xH
H
1 GHHH

2

×
(
σ2
1H2GGHHH

2 +σ2
2IND

)−1
H2GH1

]−1
}
. (19)

Using the matrix inversion lemma (17), the MSE function (19)

can be written as

J(G) = σ2
xtr
{[

INS
+ σ2

xH
H
0 H0 +

σ2
x

σ2
1

HH
1

[
INR

−
(
INR

+
σ2
1

σ2
2

GHHH
2 H2G

)−1]
H1

]−1}
. (20)

Now the problem is reduced to find the optimal G that

minimize J(G) subject to the power constraint (9). We

introduce the eigenvalue decomposition of Σ0 as

Σ0 = VΣ0
ΛΣ0

VH
Σ0

(21)

where ΛΣ0
= diag{ΛΣ0,1 · · ·ΛΣ0,NS

} with ΛΣ0,1 ≥ · · · ≥
ΛΣ0,NS

. The columns of VΣ0
are the eigenvectors of Σ0 for

the corresponding eigenvalues. Substituting (21) into (7), the

channel matrix H0 can be written as

H0 , H̃ω0
Λ

1/2
Σ0

VH
Σ0

(22)

where H̃ω0
, Hω0

VΣ0
has the same distribution as Hω0

,

because the unitary matrix VΣ0
does not change the statistical

distribution of Hω0
. The singular value decomposition (SVD)

of H1 can be expressed as

H1 = U1Λ
1/2
1 VH

1 (23)

where Λ1 = diag{Λ1,1 · · ·Λ1,R1
} is a diagonal matrix with

Λ1,1 ≥ · · · ≥ Λ1,R1
, R1 = min(NS , NR), and the dimensions

of U1 and V1 are NR ×R1, NS ×R1, respectively. Now we

introduce the eigenvalue decomposition of Σ2 as

Σ2 = VΣ2
ΛΣ2

VH
Σ2

(24)

where ΛΣ2
= diag{ΛΣ2,1 · · ·ΛΣ2,NR

} with ΛΣ2,1 ≥ · · · ≥
ΛΣ2,NR

. The columns of VΣ2
are the eigenvectors of Σ2 for

the corresponding eigenvalues. Substituting (24) into (7), the

channel matrix H2 can be rewritten as

H2 , H̃ω2
Λ

1/2
Σ2

VH
Σ2

(25)

where H̃ω2
, Hω2

VΣ2
has the same distribution as Hω2

.

Let’s assume that the optimal precoding matrix G which

minimizes (20) can be expressed as

G = VΣ2
G̃UH

1 . (26)

Substituting (22)-(26) into (20), now the MSE function is given

by

J(G̃) = σ2
xtr
{[

INS
+ σ2

xVΣ0
Λ

1/2
Σ0

H̃H
ω0
H̃ω0

Λ
1/2
Σ0

VH
Σ0

+
σ2
x

σ2
1

V1Λ
1/2
1 UH

1

[
INR

−D1

]
U1Λ

1/2
1 VH

1

]−1}
(27)

where

D1 =
(
INR

+
σ2
1

σ2
2

U1G̃
HΛ

1/2
Σ2

H̃H
ω2
H̃ω2

Λ
1/2
Σ2

G̃UH
1

)−1

.

Since UH
1 U1 = IR1

, the MSE function (27) can be simplified

to

J(G̃) = σ2
xtr
{[

INS
+ σ2

xVΣ0
Λ

1/2
Σ0

H̃H
ω0
H̃ω0

Λ
1/2
Σ0

VH
Σ0

+
σ2
x

σ2
1

(
V1Λ1V

H
1 −V1Λ

1/2
1 D2Λ

1/2
1 VH

1

)]−1}
(28)

where

D2 =
(
IR1

+
σ2
1

σ2
2

G̃HΛ
1/2
Σ2

H̃H
ω2
H̃ω2

Λ
1/2
Σ2

G̃
)−1

.



It can be seen from (28) that J(G̃) depends on H̃ω0
and

H̃ω2
, which are random and unknown. In the following, we

optimize EHω0,2
[J(G̃)], where EHω0,2

[.] indicates that the

expectation is taken with respect to the random matrices H̃ω0

and H̃ω2
. Now EHω0,2

[J(G̃)] can be expressed as

EHω0,2
[J(G̃)] = σ2

xσ
2
1EHω0,2

[
tr
{[

σ2
1INS

+ σ2
xσ

2
1VΣ0

Λ
1/2
Σ0

×H̃H
ω0
H̃ω0

Λ
1/2
Σ0

VH
Σ0

+ σ2
xV1Λ1V

H
1

−σ2
xV1Λ

1/2
1 D2Λ

1/2
1 VH

1

]−1}]
. (29)

Now the work is left to determine G̃ of precoder matrix

G. The optimal precoder allocates power according to the

eigenmodes of H1H
H
1 , Σ0 and Σ2.

Direct minimization of (29) for the optimal power allocation

is difficult. In the following, the lower bound of the MSE

is used together with the power constraint (9) to derive the

optimal power allocation for the precoder matrix G. Since

J(G̃) is convex in H̃H
ω0
H̃ω0

and H̃H
ω2
H̃ω2

, which is proved

in Appendix, we use Jensen’s inequality [18] to derive the

following lower bound

JL(G̃) = σ2
xσ

2
1tr
{[

σ2
1INS

+σ2
xσ

2
1VΣ0

Λ
1/2
Σ0

EHω0
[H̃H

ω0
H̃ω0

]

×Λ
1/2
Σ0

VH
Σ0

+ σ2
xV1Λ1V

H
1 − σ2

xV1Λ
1/2
1 D3Λ

1/2
1 VH

1

]−1}

where

D3 =
(
IR1

+
σ2
1

σ2
2

G̃HΛ
1/2
Σ2

EHω2

[
H̃H

ω2
H̃ω2

]
Λ

1/2
Σ2

G̃
)−1

.

Now the MSE function is simplified to

JL(G̃) = σ2
xσ

2
1tr
{[

σ2
1INS

+ σ2
xσ

2
1NDVΣ0

ΛΣ0
VH

Σ0

+σ2
xV1Λ1V

H
1 −σ2

xV1Λ
1/2
1 D4Λ

1/2
1 VH

1

]−1}
(30)

where

D4 =
(
IR1

+
σ2
1ND

σ2
2

G̃HΛΣ2
G̃
)−1

.

Here we used EHω0

[
H̃H

ω0
H̃ω0

]
= EHω2

[
H̃H

ω2
H̃ω2

]
=

NDINR
. Substituting (23) and (26) into (9), the power con-

straint for the relay node can be expressed as

p(G̃) = tr
{
VΣ2

G̃UH
1

(
σ2
xU1Λ1U

H
1 + σ2

1INR

)

×U1G̃
HVH

Σ2

}
≤ Pr. (31)

Using the SVD and trace properties, the power constraint (31)

can be simplified to

p(G̃) = tr
{
G̃
(
σ2
xΛ1 + σ2

1IR1

)
G̃H

}
≤ Pr. (32)

The remaining task is to optimize G̃. From (30) and (32), we

have the following constrained optimization problem.

min JL(G̃) = σ2
xσ

2
1tr
{[

σ2
1INS

+ σ2
xσ

2
1NDVΣ0

ΛΣ0
VH

Σ0

+σ2
xV1Λ1V

H
1 − σ2

xV1Λ
1/2
1 D4Λ

1/2
1 VH

1

]−1}
(33)

s.t. p(G̃) = tr
{
G̃
(
σ2
xΛ1 + σ2

1IR1

)
G̃H

}
≤ Pr. (34)

A. Optimal Covariance Algorithm

The constrained optimization problem (33)-(34) does not

have a closed-form solution due to the presence of the direct

link channel H0. The problem (33)-(34) can be solved by

resorting to numerical methods, such as the projected gradient

algorithm [19].

The relay precoding matrix G̃ is optimized by solving the

following constrained optimization problem

min JL(G̃) = σ2
xσ

2
1tr
{[

B−CD4C
H
]−1}

(35)

s.t. p(G̃) = tr
{
G̃MG̃H

}
≤ Pr (36)

where

B= σ2
1INS

+ σ2
xσ

2
1NDVΣ0

ΛΣ0
VH

Σ0
+ σ2

xV1Λ1V
H
1

C= σxV1Λ
1/2
1

M= σ2
xΛ1 + σ2

1IR1

The gradient of (35) is given by

∇JL(G̃) =
−2σ2

1ND

σ2
2

[
D4C

H
(
B−CD4C

H
)−2

×CD4G̃
HΛΣ2

]H
(37)

where the derivatives of ∂tr(ΘX−1)/∂X = −(X−1ΘX−1)T

and ∂tr(ΘX)/∂X = ΘT are used to obtain (37). The

problem (35)-(36) can be solved by the projected gradient

algorithm to optimize the matrix elements of G̃.

B. Suboptimal Covariance Algorithm

Now we propose a relay matrix design algorithm which

is suboptimal, but has a significant computational complexity

reduction compared with the gradient projection-based optimal

design. Similar to [6]-[15], let us assume that the matrix G̃ =

[Λ
1/2
G ,0R1×(NR−R1)]

T , where ΛG = diag{ΛG,1 · · ·ΛG,R1
}.

Hence, the equation (26) can be rewritten as

G = V̄Σ2
Λ

1/2
G UH

1 (38)

where V̄Σ2
is a matrix taking the first R1 columns of VΣ2

.

Then, the constrained optimization problem is reduced to

min JL(ΛG) = σ2
xσ

2
1tr
{[

σ2
1INS

+ σ2
xσ

2
1NDVΣ0

ΛΣ0
VH

Σ0

+σ2
xV1Λ1

[
IR1

−
(
IR1

+
σ2
1ND

σ2
2

ΛGΛ̄Σ2

)−1]
VH

1

]−1}
(39)

s.t. p(ΛG) = tr
{(

σ2
xΛ1 + σ2

1IR1

)
ΛG

}
≤ Pr (40)

where Λ̄Σ2
= diag{ΛΣ2,1 · · ·ΛΣ2,R1

}.

To proceed further, let us use the matrix inversion lemma

(17) to rewrite the MSE function (39) as

JL(ΛG) = σ2
xtr
{[

INS
+ σ2

xNDVΣ0
ΛΣ0

VH
Σ0

+
σ2
xND

σ2
2

V1Λ1

×ΛGΛ̄Σ2

(
IR1

+
σ2
1ND

σ2
2

Λ̄Σ2
ΛG

)−1

VH
1

]−1}
.(41)



We consider an upper-bound of (41) as follows. By intro-

ducing E1 =
σ2

xND

σ2

2

Λ1ΛGΛ̄Σ2

(
IR1

+
σ2

1
ND

σ2

2

Λ̄Σ2
ΛG

)−1

, the

MSE function (41) can be written as

JL(ΛG) = σ2
xtr
{[

INS
+V1E1V

H
1 +σ2

xNDVΣ0
ΛΣ0

VH
Σ0

]−1}
.

(42)

Let us introduce V̄1 = [V1,V
⊥
1 ] such that V̄1 is an Ns×Ns

unitary matrix. Obviously, if R1 = Ns, V̄1 = V1. Then (42)

can be equivalently rewritten as

JL(ΛG) = σ2
xtr
{[

A+σ2
xNDV̄H

1 VΣ0
ΛΣ0

VH
Σ0

V̄1

]−1}
(43)

where

A= INS
+
[
IR1

,0R1×(Ns−R1)

]T
E1

[
IR1

,0R1×(Ns−R1)

]
.

Applying the matrix inversion lemma (17), the MSE function

(43) can be rewritten as

JL(ΛG) = σ2
x

[
tr(A−1)− tr

(
A−1

(
C+A−1

)−1
A−1

)]
(44)

where C = σ2
xND(V̄H

1 VΣ0
ΛΣ0

VH
Σ0

V̄1)
−1. By using the

following inequality from [11]

tr
(
A−1

(
C+A−1

)−1
A−1

)

≥ tr
(
A−1

(
diag

(
C
)
+A−1

)−1
A−1

)
, (45)

an upper-bound of JL(ΛG) is given by

JU (ΛG) = σ2
x

[
tr(A−1)− tr

(
A−1

(
diag(C)+A−1

)−1
A−1

)]
.

(46)

From (46), the diagonal elements of ΛG can be obtained

by solving the following optimization problem with scalar

variables

min
{ΛG,i}

R1∑

i=1

(
σ2
1NDΛΣ2,iΛG,i + σ2

2

)
σ2
xλc,i

D5ΛG,i + σ2
2λc,i + σ2

2

(47)

s.t.

R1∑

i=1

(σ2
xΛ1,i + σ2

1)ΛG,i ≤ Pr (48)

where

D5 = (σ2
1λc,i + σ2

xΛ1,iλc,i + σ2
1)NDΛΣ2,i,

λc,i = σ2
xNDdiag

(
(V̄H

1 VΣ0
ΛΣ0

VH
Σ0

V̄1)
−1
)
.

Using the Karush-Kuhn-Tucker (KKT) conditions [19], the

optimal diagonal elements of ΛG,i are obtained as

ΛG,i =
1

D5

(√
σ4
xσ

2
2NDΛ1,iΛΣ2,iλ

2
c,i

µ(σ2
xΛ1,i + σ2

1)
−σ2

2λc,i−σ2
2

)+

(49)

where (x)+ = max(x, 0) and µ should be chosen to meet the

power constraint (48).
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Fig. 2. BER versus SNR1 while fixing NS = NR = ND = 4, △0 =

1o, △2 = 30o, SNR2 = 20dB, SNR0 = SNR1 − 10dB.

IV. SIMULATION RESULTS

In this section, we illustrate the performance of the proposed

schemes by numerical examples. We simulate the AF MIMO

relay system with NS = NR = ND = 4. The entries of

channel matrices Hω0
, H1 and Hω2

are generated as complex

Gaussian variables with zero mean and unit variances and the

symbols are generated from QPSK constellation.

The elements of covariance matrices Σ0 of H0 and Σ2

of H2 are generated by Σi,j = j0(△π|i − j|) [16], where

j0(.) is the zeroth order Bessel function of the first kind,

△ the angle of fading spread. We consider the angle spread

as △0 = 1o for the direct source-destination link and △2 =

30o for the relay-destination link. The SNRs for the direct

source-destination, the source-relay and relay-destination links

are defined as follows SNR0 =
σ2

x

σ2

0

, SNR1 =
σ2

x

σ2

1

, SNR2 =
Pr

NRσ2

2

. We consider a scenario as assumed in section II that

the destination node is moving rapidly. Hence, to implement

the assumption in simulation, we set the distance between the

relay to destination link is fixed, where the source to relay and

source to destination distances are varying. For establishing the

scenario, we set SNR2 = 20dB, SNR0 = SNR1 − 10dB.

We compare the performance of the proposed OPT-COV

algorithm with the naive amplify-and-forward (NAF) algo-

rithm [5], the pseudo match-and-forward (PMF) algorithm

[5], SUB algorithm [9], the JMMSE-COV algorithm [15],

OPT algorithm [9] and the suboptimal covariance (SUB-COV)

algorithm. The full CSI scheme, also known as OPT algorithm

[9] provides the lower-bound of the proposed scheme. For the

proposed OPT-COV algorithm, the projected gradient method

is applied to optimize G̃ in (35)-(36).

Fig. 2 shows the performance of MSE algorithms in terms of

BER versus SNR1. It can be seen from the simulation results

that the PMF algorithm has worst performance than all other

MSE algorithms. The proposed SUB-COV algorithm perfor-

mance is similar to the JMMSE-COV and SUB algorithms. At

high SNR1, the proposed OPT-COV algorithm shows better



BER performance than the NAF, PMF, SUB, JMMSE-COV

and SUB-COV algorithms.

V. CONCLUSION

We derived the optimal structure of the AF MIMO relay pre-

coder matrix to minimize the MSE of the symbol estimation at

the destination in the presence of the direct source-destination

link. We assumed that the relay knows the full CSI of the

source-relay link and the partial CSI (covariance feedback)

of the direct source-destination link and the relay-destination

link. Simulation results demonstrate that the proposed iterative

based optimal covariance algorithm has better performance in

terms of BER as compared to the conventional covariance

feedback based MSE algorithms.

APPENDIX

Regarding the convexity of (29) for H̃H
ω0
H̃ω0

and H̃H
ω2
H̃ω2

,

please note that by using the matrix inversion lemma (17), the

MSE function (29) can be rewritten as

EHω0,2
[J(G̃)]=σ2

xσ
2
1EHω0,2

[
tr
{[

σ2
1INS

+ σ2
xσ

2
1VΣ0

Λ
1/2
Σ0

×
[
H̃H

ω0
H̃ω0

]
Λ

1/2
Σ0

VH
Σ0

+ σ2
xV1Λ

1/2
1 G̃HΛ

1/2
Σ2

×
(
Λ

1/2
Σ2

G̃G̃HΛ
1/2
Σ2

+
σ2
2

σ2
1

[
H̃H

ω2
H̃ω2

]−1
)−1

×Λ
1/2
Σ2

G̃Λ
1/2
1 VH

1

]−1}]
.

From [20], f(X) = X−1 is a matrix-convex function of

X. Hence, the MSE function (29) is a convex function for

H̃H
ω0
H̃ω0

and H̃H
ω2
H̃ω2

.
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