NOTICE: this is the author's version of a work that was accepted for publication in Ocean & Coastal Management. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Ocean & Coastal Management, Vol. 86 (2013). DOI: 10.1016/j.ocecoaman.2013.02.009

Accepted Manuscript

Enhancing the Knowledge-Governance Interface: Coasts, Climate and Collaboration

Beverley Clarke, Laura Stocker, Brian Coffey, Peat Leith, Nick Harvey, Claudia Baldwin, Tom Baxter, Gonni Bruekers, Chiara Danese Galano, Meg Good, Marcus Haward, Carolyn Hofmeester, Debora Martins De Freitas, Taryn Mumford, Melissa Nursey-Bray, Lorne Kriwoken, Jenny Shaw, Janette Shaw, Tim Smith, Dana Thomsen, David Wood

PII: S0964-5691(13)00034-3

DOI: 10.1016/j.ocecoaman.2013.02.009

Reference: OCMA 3176

To appear in: Ocean and Coastal Management

Please cite this article as: Clarke B, Stocker L, Coffey B, Leith P, Harvey N, Baldwin C, Baxter T, Bruekers G, Galano CD, Good M, Haward M, Hofmeester C, De Freitas DM, Mumford T, Nursey-Bray M, Kriwoken L, Shaw J, Shaw J, Smith T, Thomsen D, Wood D, Enhancing the Knowledge-Governance Interface: Coasts, Climate and Collaboration, *Ocean and Coastal Management* (2013), doi: 10.1016/j.ocecoaman.2013.02.009.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1 Enhancing the Knowledge-Governance Interface: Coasts, Climate

2 and Collaboration

46

```
3
     Authors:
 4
     Beverley Clarke<sup>1</sup>
     <sup>1</sup>Faculty of Science and Engineering
 6
     Flinders University
 7
     GPO Box 2100, Adelaide, South Australia 5001
 8
     beverley.clarke@flinders.edu.au
 9
10
     Laura Stocker<sup>2</sup> CORRESPONDING AUTHOR
11
12
     <sup>2</sup>Curtin University Sustainability Policy Institute
     Curtin University
13
     GPO Box U1987
14
     Perth, Western Australia 6845
15
     Tel: +61 8 9266 9034
16
     Fax: +61 8 9266 9031
17
18
     Mobile: 0439 311 043
     L.Stocker@curtin.edu.au
19
20
     Brian Coffey<sup>3</sup>
21
     <sup>3</sup>School of Humanities and Social Sciences
22
     Deakin University
23
     Warrnambool Campus
24
     P O Box 423
25
     Warrnambool, Victoria, 3280
26
     brian.coffey@deakin.edu.au
27
28
29
     Peat Leith<sup>4</sup>
     <sup>4</sup>University of Tasmania
30
     Private Bag 78, Hobart, Tasmania 7001
31
     Peat.Leith@utas.edu.au
32
33
     Nick Harvey<sup>5</sup>
34
35
     <sup>5</sup>Humanities and Social Sciences
     The University of Adelaide
36
     South Australia 5005
37
38
     nick.harvey@adelaide.edu.au
39
     Claudia Baldwin<sup>6</sup>
40
41
     <sup>6</sup>Faculty of Arts and Business
     University of Sunshine Coast
42
     Locked Bag 4, Maroochydore DC
43
44
     Queensland 4558
      cbaldwin@usc.edu.au
45
```

1

47	Tom Baxter ⁷
48	⁷ School of Accounting & Corporate Governance
49	University of Tasmania
50	Private Bag 86, Hobart, Tasmania 7001
51	<u>Tom.Baxter@utas.edu.au</u>
52	
53	Gonni Bruekers ⁸
54	⁸ Curtin University Sustainability Policy Institute
55	Curtin University
56	GPO Box U1987
57	Perth, Western Australia 6845
58	gbruekers@bigpond.com
59	
60	Chiara Danese Galano ⁹
61	⁹ Curtin University Sustainability Policy Institute
62	Curtin University
63	GPO Box U1987
64	Perth, Western Australia 6845
65	chiara.danesegalano@postgrad.curtin.edu.au
66	
67	Meg Good ¹⁰
68	¹⁰ Faculty of Law
69	University of Tasmania
70	Private Bag 89, Hobart, Tasmania 7001
71	Meg.Good@utas.edu.au
72	
73	Marcus Haward ¹¹
74	¹¹ Institute for Marine and Antarctic Studies
75	University of Tasmania
76	Private Bag 129
77	Hobart, Tasmania 7001
78	2 1 1 2 2 2 2 2 2
79	Carolyn Hofmeester ¹²
80	¹² Curtin University Sustainability Policy Institute
81	Curtin University
82	GPO Box U1987
83	Perth, Western Australia 6845
84	carolyn.hofmeester@postgrad.curtin.edu.au
85	Debara Martine De Freitae ¹³
86	Debora Martins De Freitas ¹³
87	¹³ Australian National Centre for Ocean Resources and Security University
88	of Wollongong Wollongong NSW 2522
89	Wollongong, NSW 2522
90 91	debora@uow.edu.au
91 92	Taryn Mumford ¹⁴
92 93	14 Humanities and Social Sciences
7.1	HUHIUHUES AND SUCIAL SUCIALES

94	The University of Adelaide
95 06	South Australia 5005
96 97	taryn.mumford@adelaide.edu.au
98	Melissa Nursey-Bray ¹⁵
99	15 Humanities and Social Sciences
100	The University of Adelaide
101	South Australia 5005
102	Melissa.Nursey-Bray@adelaide.edu.au
103	<u></u>
104	Lorne Kriwoken ¹⁶
105	¹⁶ School of Geography and Environmental Studies
106	University of Tasmania
107	Private Bag 50, Hobart, Tasmania 7001
108	L.K.Kriwoken@utas.edu.au
109	
110	Jenny Shaw ¹⁷
111	¹⁷ Curtin University Sustainability Policy Institute
112	Curtin University
113	GPO Box U1987
114	Perth, Western Australia 6845
115	jenny.shaw@postgrad.curtin.edu.au
116	7 v 0 18
117	Janette Shaw ¹⁸
118	¹⁸ Australian Maritime College,
119	University of Tasmania
120	Locked Bag 1399
121	Launceston, Tasmania 7250
122123	jrshaw@amc.edu.au
123	Tim Smith ¹⁹
125	¹⁹ Sustainability Research Centre
126	University of Sunshine Coast
127	Locked Bag 4
128	Maroochydore DC, QLD 4558
129	tsmith5@usc.edu.au
130	
131	Dana Thomsen ²⁰
132	²⁰ Sustainability Research Centre
133	University of Sunshine Coast
134	Locked Bag 4
135	Maroochydore DC, QLD 4558
136	dthomsen@usc.edu.au
137	
138	David Wood ²¹
139	²¹ DVC International
140	Curtin University
141	GPO Box 111987

- Perth, Western Australia 6845 D.Wood@curtin.edu.au

Λ	h	ct	ra	ct
_	.,	•	_	

Conventional systems of government have not been very successful in resolving coastal management problems. This lack of progress is partially attributable to inadequate representation in governance processes of the variety of knowledges present on the coast. In particular there has been a struggle to engage effectively with climate science and its implications. There has also been a broader failure to capture the complexity of voices, interests, values, and discourses of coastal users. We argue here that coastal governance challenges are not likely to be resolved by singular solutions; rather, interaction and collaboration will generate improvements. We suggest that a corequisite for progress in coastal management is the development of institutions and processes that enable different knowledges to have a bearing on governance processes. This paper examines a selection of the many opportunities available to broaden and enhance the use of knowledge in decision-making for the coast. A description is provided of emerging elements of coastal governance from an Australian perspective, together with new types of institutions, processes, tools and techniques that may help to achieve an improved coastal knowledge-governance interaction.

174	
175	1. Introduction
176	
177	Despite considerable effort over several decades effective governance of
178	the coastal zone remains a considerable challenge in many parts of the
179	world (Sorenson 1997, Agardy and Alder 2005), including Australia
180	(Harvey and Caton 2003; State of the Environment 2011 Committee,
181	2011; Stocker et al., 2012b). Given the complexity and dynamism of the
182	biophysical processes shaping the coast, the variety of administrative
183	processes for managing the coast, and the diversity of stakeholders with
184	an interest in matters related to the coast (Green and Penning-Rowsell
185	1999, Cicin-Sain and Knecht 1998, Kay and Alder 2005) this should not be
186	a surprise. Under circumstances such as these it is clearly imperative, and
187	yet a considerable challenge, to make the best use of the rapidly
188	expanding information and knowledge that is available. However, as we
189	will explore, achieving effective knowledge uptake requires both receptive
190	governance processes and accessible knowledge systems. Accordingly, we
191	analyze Australia's coastal governance system in relation to knowledge
191	generation, exchange and uptake, and suggest foci for improvement
192	within an uncertain and complex coastal system, especially in the face of
193	climate change. Both formal and informal institutions of governance are
	considered within our discussion.
195	Considered within our discussion.
196	In Australia, as elsewhere, effective governance of coastal areas is
197	challenged by: complexity of natural coastal systems; diverse uses of
198	coastal areas; diverse jurisdictions (e.g. international, Commonwealth,
199	state, local) and administrative bodies with coastal responsibilities (e.g.,
200	shipping and ports, planning, biodiversity management, fishing,
001	

shipping and ports, planning, biodiversity management, fishing,
recreation); diverse ways of understanding and appreciating coasts
(Stocker and Kennedy, 2009); and diverse perspectives on how it should
be governed, managed, and used (Harvey and Caton, 2003; Stocker et
al., 2012a). Reliance on linear or 'loading dock' approaches to transferring

205	knowledge to governance is likely to be ineffective (Cash, Borck and Patt,
206	2006). Rather, there is much to be gained from bringing different
207	disciplinary perspectives to bear on coastal governance, expanding
208	institutional capacity and enabling varied stakeholder engagement
209	approaches, notwithstanding the considerable challenge that this
210	represents.
211	We argue here that:
212	 conventional systems of government have not adequately
213	responded to, or represented, the variety of voices and knowledges
214	present on the coast
215	 more collaborative approaches to governance that incorporate these
216	voices and knowledges are required
217	 processes, tools and techniques are available that can help support
218	the adoption of more collaborative approaches.
219	We expand upon these arguments by first considering some of the
220	conceptual underpinnings to enhanced knowledge uptake in coastal
221	governance. Second, we discuss aspects of Australian coastal government
222	and governance (and its shortcomings). Third, we consider some of key
223	challenges which limit the effective use of knowledge in coastal
224	governance, with a particular focus on knowledge uptake in relation to
225	climate change. Finally, emerging elements of Australian coastal
226	governance are described and some newer processes tools and
227	technologies for an improved knowledge-governance interface are
228	presented and illustrated through case examples. While the focus of our
229	analysis is on coastal governance in Australia, we expect that the insights
230	provided may have relevance for other jurisdictions.

231	2. Conceptual background
232	This section considers some of the conceptual underpinnings associated
233	with the use of knowledge in coastal governance, and how knowledge
234	uptake may be enhanced.
225	
235236	2.1. Epistemological bases The challenges for coastal governance presented by issues such as climate
237	change require epistemologies capable of dealing with complex social
238	ecological systems and ramifying relationships. First, Funtowicz and
239	Ravetz (1993), in their work on post-normal science, highlight that
240	particular kinds of research may be appropriate for answering particular
241	questions in particular situations, and not others. For example, in the case
242	of coastal adaptation to climate change, where decision stakes are high
243	and system uncertainty great, applied science and technical consultancies
244	alone may be of limited value. By contrast, research that is participatory,
245	acknowledges local knowledge and recognizes the importance of values
246	may be more effective, or may complement any technical studies. Second,
247	a broader perspective on coastal knowledge and the practice of science is
248	evident in the guiding principles of sustainability science, which
249	emphasizes: an issue-driven agenda; co-production of knowledge;
250	interdisciplinary and transdisciplinary approaches; acknowledging earth
251	system complexity; focusing communication and research activities at the
252	local level; and focusing on social learning rather than definitive answers
253	(Cummins and McKenna, 2010). Third, in contrast to the traditional
254	'science-first model' approach which elevates 'science' above other
255	knowledge systems (Kelsey, 2003), there is benefit to be gained by
256	adopting broad and more engaged and interactive forms of coastal inquiry
257	(Leith et al., 2012) producing outputs from a variety of sources and
258	perspectives. This approach can also lead to better sharing and
259	communication of lay, managerial, Indigenous and scientific knowledge
260	about the coast.

261	2.2. Cognitive and psychological bases
262	Transformation of coastal governance systems to account for knowledges
263	such as climate science will require a greater awareness of how this
264	knowledge is received, interpreted and socially constructed. From a
265	transactional psychology perspective (Altman and Rogoff, 1987; Gergen,
266	2009; Harré and van Langenhove, 1999), any interaction between coastal
267	knowledge-makers and decision-makers will be situated in a particular
268	social context: it will be guided by the cognitive and affective states of the
269	stakeholders, and will reflect the rules and norms of social behaviour. As
270	such these interactions are dynamic, emergent and unique (Altman and
271	Rogoff, 1987 p.28). They are in turn shaped by deeper social-cultural
272	forces including worldviews, as defined above (Clayton and Myers, 2009;
273	Dunlap et al., 2000; Koltko-Rivera, 2004).
274	2.3. Cultural bases
274 275	Thus, society's consideration of issues like coastal adaptation does not
276	arise simply from the scientific evidence of its urgency. Rather,
277	consideration is influenced by phenomena such as worldviews, cultural
278	symbols and metaphors of coasts and climate change, and the historical,
279	cultural and political context that determines which particular account is
280	considered as the 'truth' (Hajer and Versteeg, 2005). Cultural meaning
281	and context are therefore central to the discourse and narratives ¹ that
282	develop around coastal adaptation. Discourse in turn has important
283	implications for governance. The discourse around coastal adaptation
284	should encourage the ability, indeed the responsibility, to reflect critically
285	on itself and consider other discourses inviting a sustainable governance

·

Kennedy, 2009).

286

287

model that is reflexive and open to new ideas and 'truths' (Stocker and

¹ For our purposes, a discourse is the envelope of possible truths and acceptable terms within which coastal adaptation occurs. Narratives are considered a specific category of discourse. Narratives involve a sequenced account of connected events, often in story form. Discourse is broader and can include conversations, issuing instructions, arguments, persuasions and expressive activities such as song (Harré et al. 1999).

288	2.4. Indigenous knowledge bases
289	A specific example of the impact of worldviews on knowledge production
290	and application can be found in a comparison between Indigenous and
291	Western perspectives. Western knowledge systems tend to be linear,
292	sequential, and scientific, whereas Indigenous people's knowledge is more
293	circular; their knowledge systems operate concurrently and loop/feed
294	back to the community (Sillitoe et al., 2002). In the Western world,
295	science is a 'common pool' resource open to all (Ostrom, 1999); by
296	contrast, in an Indigenous context, knowledge is distributed, held and
297	maintained by different members of society, strictly adhering to various
298	delineations that prescribe specific responsibilities in relation to that
299	knowledge. For example, within fisheries, certain Indigenous people have
300	knowledge of specific fish, rules and norms for which they are partly
301	responsible (Haggan et al., 2007).
302	2.5 New modes of coastal governance: collaboration and networks
303	We noted above the complexity of coastal systems and the benefits of
304	considering diverse information sources and perspectives. However, a
305	challenge of considering complexity (in issues such as coastal adaptation)
306	is that associated knowledge tends to be emergent, dispersed,
307	fragmentary, diverse, uncertain and with unexpected interactions (Dryzek,
308	2005; Duit and Galaz, 2008; Snowdon, 2002).
309	An effective governance model for responding to this knowledge is likely
310	to require, in combination with institutional stability, capacities for
311	flexibility, collaborative action and learning (Duit and Galaz, 2008). These
312	capacities may be achieved through 'networked governance' which
313	features multiple nodes and complex pathways of participant interactions
314	including private-public-partnerships and voluntary collaborations between
315	government, businesses and not for profit organizations (Dryzek, 2005
316	pp. 108-109).
317	Effective knowledge exchange and information flows within a governance
318	network require a high diversity of competencies in communication, policy

319	analysis and subject knowledge, and high connectivity among actors in
320	the network (Snowdon, 2002). When governance networks function
321	effectively the collaborative development of policy between diverse and
322	dispersed participants is possible. Deliberative processes leading to
323	adaptive learning can support such policy development (see below). This
324	approach involves 'a dynamic interplay of problem solving and relational
325	activities' within the network (Bouwen and Taillieu (2004, p.142).
326	Although there is some scepticism about the level of critical analysis and
327	empirical support for collaborative modes of governance (Backstrand et
328	al., 2010), there are examples from natural resource management in
329	Australia where collaborative governance is becoming the norm, often
330	involving several government agencies, community groups and industry in
331	decision-making (Head 2009).
332	3. Coastal governance in Australia
333	The 36,000 km of the mainland Australian coast makes it one of the
334	longest in the world (Short and Woodroofe, 2009); it spans temperate and
335	tropical waters and gives rise to a vast array of coastal landscapes,
336	habitats and unique life forms. The coast also signifies Australian culture
337	(Lazarow et al., 2008); the majority of the population (85%) lives in
338	coastal cities and towns, most of it heavily concentrated along the east
339	and south-east of the continent. Australia's population will grow in coastal
340	settlements, especially in high amenity locations (ABS, 2010). The
341	Australian coast is also vital for the economy. Commercial fishing and
342	coastal tourism contribute significantly to the country's income; estuaries
343	of Australia's major river systems and their surrounds support port
344	facilities serving industry and trade, and a productive agricultural sector
345	(State of the Environment 2011 Committee, 2011).
346	The pressures placed upon Australia's coastal environment correspond to
347	broad international trends. Continued urban development in the coastal
348	zone and agricultural expansion in water catchments bring many
349	threatening processes. For example, there is a reduction and decline of

350	habitat in settled coastal areas as a consequence of vegetation clearance,
351	near-shore water pollution, and engineering works; and fluvial
352	introduction of chemicals and sediments. Australian coasts are also
353	vulnerable to invasive pests, introduced by the ballast water of visiting
354	vessels. Climate change is an emerging threat for Australia's coasts and
355	sea level rise is on the agenda for planning around the country.
356	Dealing effectively with these existing and emerging pressures is
357	paramount because this response will shape the future of Australia's
358	coast.
359	3.1 Australia's coastal governance system
360	This section outlines Australia's coastal governance system, in order to
361	provide a context for later sections. A multi-level system of governance
362	has emerged in Australia to manage competing interests and enduring
363	challenges on the coast (Lazarow et al., 2008; Stocker et al., 2012b). This
364	coastal governance system comprises a diverse array of formal and
365	informal institutions, organisations and stakeholders, but as we shall
366	argue below, has not proved to be effective.
367	Legislation is the most formal of the institutions shaping coastal
368	governance processes, authoritatively codifying rules which legally bind all
369	stakeholders. Australian coastal legislation includes statutes governing:
370	coastal policy and planning; development assessment and approval
371	mechanisms; and the statutory bodies entrusted with these, and other,
372	coastal management tasks (see Baird, 2011 for an overview of Australian
373	coastal legislation).
374	Responsibility for governing the coast is shared unevenly across three
375	tiers of government (Commonwealth, state and local) involving multiple
376	interacting government agencies and other stakeholders. Governance of
377	coasts and seas in Australia is in accordance with the <i>United Nations</i>
378	Convention on the Law of the Sea (UNCLOS). Following the development
379	of the law of the sea, Australia needed to align its international law

380	obligations with its Constitution (Commonwealth of Australia, 2002;
381	Harvey et al., 2012; Kenchington et al., 2012). The alignment was
382	achieved through the Seas and Submerged Lands Act 1973, followed by
383	the Offshore Constitutional Settlement in 1979 and the related legislation
384	that implemented it ² (Commonwealth of Australia, 2002). This Settlement
385	surrendered to the States jurisdiction over the sea and seabed within 3
386	nautical miles of the shoreline. The Commonwealth retains sole
387	responsibility for Australia's Exclusive Economic Zone (EEZ) from three to
388	200 nautical miles off the mainland coast (Commonwealth of Australia,
389	2002; Harvey et al., 2012; Kenchington et al., 2012).
390	The Commonwealth's Environment Protection and Biodiversity
391	Conservation Act 1999 also provides substantial powers with respect to
392	matters that affect Commonwealth waters (Harvey et al., 2012b;
393	Kenchington et al., 2012), imposing an environmental assessment and
394	approval regime on actions with national environmental significance,
395	which includes impacts on Commonwealth marine areas; it also
396	establishes regimes for marine protected areas in its waters
397	(Commonwealth of Australia, 2002).
398	The Commonwealth exerts its influence on coastal management
399	principally through indirect funding powers, policy development and
400	research. The Commonwealth has funded important environmental
401	initiatives (the Natural Heritage Trust and Caring for Our Country); some
402	of these funds have been divested to coasts. The Commonwealth has not
403	produced a dedicated coastal policy since 1995 (Commonwealth of
404	Australia 1995). A National Framework for Integrated Coastal Zone
405	Management followed in 2006 but it is described as a 'policy without
406	implementation' (Wescott, 2011).
407	Coastal lands and waters (including the seabed) out to three nautical
408	miles in Australia are the responsibility of state and territory governments

 2 Coastal Waters (State Title) Act 1980 (Cth) and Coastal Waters (State Powers) Act 1980 (Cth)

409	which have legislation, policies and agencies to regulate use of this zone.
410	Table 1 provides a summary of the various legislation, policies and
411	agencies for each of the states and the Northern Territory.
412	Local government is broadly responsible for strategic land use planning,
413	development approval, management of public land, coastal protection and
414	preparation of plans for specific coastal areas (Harvey and Caton, 2003).
415	There are many other stakeholders, besides government, who influence
416	decisions that affect coasts. For example, advocacy groups serve to
417	agitate a wider community of interest, raising awareness and promoting
418	coastal health (Wescott and Fitzsimons 2010). Such groups have the
419	potential to use knowledge and information in powerful and targeted
420	ways to influence political agenda and disseminate ideas. Advocacy groups
421	therefore play an important intermediary role between formal institutions
422	and a wider public. Two important examples of such groups presently
423	active in Australia include: the National Seachange Taskforce, a national
424	body representing the interests of coastal councils and communities
425	experiencing the effects of rapid population and tourism growth; and, the
426	Australian Coastal Society, another national body seeking to: promote
427	knowledge and understanding of the values of Australian coast; provide a
428	forum for discussion and debate; and build capacity of coastal managers.
429	Both of these groups effectively lobby and contribute ideas and solutions
430	to existing contemporary coastal management challenges (Wescott,
431	2011).
432	Universities, whilst without formal responsibility for governing coastal
433	areas, often contain coastal scientists and policy analysts who influence
434	coastal governance, sometimes through their formal individual roles on
435	planning commissions or boards.

Table 1: State Coastal Governance Comparison

436

437

State	Lead Agency or Body	Coastal Act	Coastal Responsibility (non Coastal Act)	Specific Coastal Zone Policy	State or Territory Department and Minister
VIC	Victorian Coastal Council (VCC) Independent peak body specialising in coastal matters.	Coastal Management Act (CMA) 1995	Planning and Environment Act1987 Local Government Act 1989 Crown Land (reserves) Act 1978 Catchment and Land Protection Act 1994	(Victorian Coastal Strategy 2008) Additional Policies/Guides/Plans Future Coasts Program Victoria Planning Provisions State Planning Policy Framework (SPPF) Coastal Spaces	Department of Sustainability and Environment (DSE) Minister for Environment and Climate Change Department of Planning and Community Development (DPCD) Minister for Planning
NSW	Department of Environment, Climate Change and Water (DECCW) No co-coordinating body for coastal matters since the dissolution of the NSW Coastal Council in 2003.	Coastal Protection Act 1979 (Currently under revision)	Environmental Planning and Assessment Act 1979 Local Government Act 1993	(NSW Coastal Policy 1997) Additional Policies/Guides/Plans Coastal Protection Package (2010) State Environmental Planning Policy Number 71: Coastal Protection (SEPP 71) Coastal Lands Protection Scheme (CLPS) Sea Level Rise Policy Statement Draft Coastal Risk Management Guide 2009 Draft Flood Risk Management Guide 2009 Coastal Design Guidelines for NSW	Department of Environment, Climate Change and Water (DECCW) Department of Planning Minister for Planning
QLD	Department of Environment and Resource Management (DERM)	Coastal Protection and Management Act 1995 (Currently under revision)	Sustainable Planning Act 2009 (repeals the Integrated Planning Act (IPA) 1997)	(Queensland State Coastal Management Plan 2002 and Regional Coastal Management Plans). SE QLD Healthy Waterways partnership GBR Intergovernmental Agreement Reef Water Quality Protection Plan	Department of Environment and Resource Management (DERM) The Minister for Natural Resources, Mines and Energy The Minister for Climate Change and Sustainability
SA	SA Coast Protection Board (CPB) Primary authority on managing coast protection issues and providing advice on coastal development	Coast Protection Act 1972 (This Act was to be replaced by a Coast and Marine Act)	Development Act 1993 Natural Resources Management (NRM) Act 2004	(Policy on coast protection and new coastal development 1991) (CBP Policy Document 2002) (South Australia's Living Coast Strategy 2004)	Department of Environment and Natural Resources) (DENR) Minister for Environment and Conservation Department of Planning and Local Government (for planning) Minister for Urban Development and Planning
WA	Western Australian Planning Commission (WAPC) the peak body for land use, planning and development in WA. Coastal Planning Coordinating Committee is the statutory sub- committee WAPC.	No dedicated legislation particular to management of the Coast or Marine Environment	Planning and Development Act 2005	(WA Draft coastal policy 2001)	Department of Planning and Infrastructure is responsible for planning and development of coastal infrastructure Minister for Planning and Minister for Transport Minister for Regional Development; Lands; Minister Assisting Minister for State Development; Minister Assisting the Minister for Transport
TAS	Number of lead agencies (Integrated system) State Costal Advisory Committee formed in 1997/98 but since 2002 there has been no effective coordinating body	No dedicated legislation particular to management of the Coast or Marine Environment	State Policies and Projects Act 1993 Land Use Policy and Approvals Act 1993 Climate Change (State Action) Act 2008	(Tasmanian State Coastal Policy 1996). Binding on all spheres of government	Dept Primary Industries, Parks, Water and Environment (DPIPWE) Minister for Environment, Parks, Heritage and the Arts
NT	85% coastline under Aboriginal ownership No co-coordinating body for coastal matters	No dedicated legislation particular to management of the Coast or Marine Environment	Planning Act 2009. NT Local Government Act	(Northern Territory Coastal Policy 2001) Main objective to enable integrated approach to management of coastal and marine zones but never endorsed.	The Department of Infrastructure, Planning and Environment (DIPE) Landcare Council of NT

(Source: Clarke, 2010)

438	Indigenous Australians have rights over some coastal lands and
439	are often directly involved in coastal management: 90% of the
440	Northern Territory coast is owned by Indigenous peoples.
441	Indigenous Land and Sea Councils typically work on natural
442	resource management projects, often in close cooperation with
443	catchment councils and coastal community groups. Traditional
444	owners more generally have special rights and responsibilities in
445	relation to the coast, including the maintenance and transmission of
446	intangible cultural heritage, such as language, stories and
447	ceremonies about the coast (Stocker and Kennedy, 2009).
448	The media have the potential to increase public and political
449	understanding and acceptance of coastal management issues.
450	However, largely inadequate or biased media commentaries shape
451	Australia's unwillingness to act on critical information about, for
452	example, sea level rise (Lambert, 2011; Manne, 2011).
453	Some individuals have attained high public profile through their
454	effective communication of coastal knowledge to decision-makers.
455	Such 'champions' are variously referred to as agents of change,
456	advocates, emergent leaders or opinion leaders (Markham et al.,
457	1991; Ottaway, 1983; Schon, 1963). Champions possess a high
458	level of innovativeness, use their networks and powers of
459	persuasion to informally exert influence on the activities conducted
460	within organizations, aiding their success in promoting causes
461	(Thompson et al., 2006). Two 'Ministerial' champions are identified
462	by Wescott (2011): Senator Robert Hill who progressed Australia's
463	National Oceans Policy in a short time frame in the late 1990s and
464	David Kemp who achieved a 'sixfold increase in 'no-take' marine
465	zones in the Great Barrier Reef marine park in early 2000s.
466	The activities of coastal volunteers have been inspirational, and
467	therefore, significant in raising awareness and contributing to
468	knowledge of the coast (see Clarke, 2008 who analyses Coastcare,

469	a high profile Australian coastal volunteer program, and Harvey and
470	Caton, 2003 pp.240-243). Volunteer groups and individuals have
471	shown their capacity to raise the profile and maintain the focus on
472	coastal matters of local significance when these might otherwise fall
473	away from organizational interests which are diverted by competing
474	pressures (such as budgets and other political agenda).
475	Individuals within their own locales and communities arguably
476	have a heightened awareness of and affinity for their coast, i.e. a
477	sense of place, and are therefore able to provide important insights
478	(local knowledge and values) otherwise absent from policy
479	development (Lazarow et al., 2008).
480	Informal networks exist among many of the above stakeholders,
481	where channels of communication often depend on personal
482	relationships involving trust, reciprocity and a shared history in the
483	field. Significantly, some voices have greater sway on decision-
484	making than others, such as the coastal scientist Professor Bruce
485	Thom in Australia who, through his informal networking and roles
486	on the think-tank Wentworth Group of Concerned Scientists and the
487	Coasts and Climate Change Council which advises the federal
488	government, has exerted significant influence (Stocker et al.,
489	2012b).
490	Within the gamut of institutions and organisations described above,
491	many forms of knowledge exist such as lay, Indigenous and
492	managerial knowledge, that can constructively complement
493	traditional 'scientific' knowledge as a basis for decision-making. The
494	different worldviews held by the various coastal stakeholders within
495	the coastal governance system and the ways that knowledge is
496	generated, constructed and transmitted have profound implications
497	for coastal management. In this context a worldview can be thought
498	of as "An integrated set of beliefs about what is real, what is
499	knowable, what is valuable, and what it means to be human"

500	(Clayton and Myers, 2009 p.20). One of Australia's challenges as a
501	coastal society is to develop skills and processes that enable the
502	better understanding of diverse worldviews, and to enhance the
503	democratization of coastal decision-making and knowledge co-
504	production through an expanded approach to governance.
505	3.2 Governance rather than government for Australia's coasts
506	Australia's coasts face continued environmental, cultural, economic
507	and social challenges (Stocker et al., 2012a) and governments have
508	not been able to solve enduring, well-documented problems
509	(Stocker et al., 2012b). This lack of progress is argued here to be
510	partially attributable to inadequate representation in governance
511	processes of the variety of voices and knowledges present on the
512	coast. This paper therefore recognizes and supports a shift in focus
513	from a hierarchical, government-based style of governance to a
514	more collaborative or networked approach to governance which
515	recognizes that decisions affecting the coast are often a reflection of
516	the shared, collective effort of networks of government, private
517	business, civic organizations, communities, political parties,
518	universities, the media and the general public operating (Ansell and
519	Gash, 2008; Bouwen and Taillieu, 2004; Hofmeester et al., 2012). A
520	collaborative or networked approach to governance can also include
521	the deliberation and determination of goals, including the values,
522	norms and principles underpinning them (Jentoft and Chuenpadgee,
523	2009, p. 554). Thus the concept of collaborative or networked
524	governance offers a more holistic and dynamic approach to
525	decision-making than is provided by reliance on government alone
526	(see section 4.5 below for further details). However, to date,
527	although the movement from hierarchical government to a more
528	broad-based approach to coastal governance has begun, Australia's
529	current system is far from fully collaborative.

530	4. Challenges to knowledge use in current coastal governance
531	Having outlined Australia's approach to coastal governance, we now
532	consider some challenges raised in light of the issues discussed in
533	Section 2. We do so through exploring several of the challenges for
534	coastal governance related specifically to knowledge uptake with
535	regards to climate change. This is because existing coastal issues
536	are compounded by climate change; as a result, super-wicked
537	problems and social messes are emerging (Stocker et al., 2012b),
538	and central to responding to such challenges is the ability to uptake
539	diverse knowledges including climate science, into coastal decisions.
540	4.1 Timing of decision making and knowledge making
541	One of the most confounding challenges to coastal governance
542	relates to time. Physical coastlines are affected by natural processes
543	on time scales ranging from minutes (wave movements) to
544	centuries (sea level). Management responses might be reactive, for
545	example, the repair of localized storm damage; or responses might
546	be proactive, such as planning for long-term sea level rise. Coastal
547	governance is therefore necessarily predicated upon varying
548	timescales. There is an additional challenge for timeliness and
549	governance: the mismatch between first, the processes of
550	government, which by following formal rules and patterns, need
551	timely information through which to inform decisions affecting the
552	coast (through policy making); and second, the generation of
553	detailed knowledge about natural systems (through scientific
554	research). Scientific monitoring of coastal environments frequently
555	takes longer than most political cycles which are fixed to a regular,
556	half-decadal rhythm. Widespread engagement and consequent
557	decision-making for the coast requires long-term, visionary thinking
558	(Lazarow et al., 2008). Collaborative governance, discussed above,
559	is not straightforward or cheap, and requires (among other things)

560	commitment to long-term engaged dialogue and development of
561	trusting relationships among those involved.
562	These requirements do not match the immediacy of governments'
563	needs to demonstrate tangible outputs and quick solutions that will
564	influence electorates at the right point in the election cycle.
565	4.2 Agency policy and planning
566	Common processes used to enhance understanding between
567	knowledge-makers and decision-makers in agency policy and
568	planning are through workshops and committees. Advisory
569	committees such as the Coastal Climate Change Advisory
570	Committee (Victoria) or the Great Barrier Reef Marine Park
571	Authority's Catchment and Reef Advisory Committee are key
572	examples here. A common form of knowledge transfer is through
573	"sector representation" on such committees. While this approach
574	can draw together various perspectives, a key challenge is to
575	manage sectoral interests in the context of longer term priorities
576	such as coastal environmental health, adaptation to climate change
577	and community wellbeing. There is a requirement for better
578	knowledge solutions that give clear options and associated risks
579	(Cross et al., 1994; Evans and Shaw, 1986; Shaw, 2008; Shaw,
580	2010).
581	Another challenge to informed decision-making is the lack of explicit
582	environmental objectives found in coastal plans and policy (e.g. see
583	Shaw, 2010 for an Eastern Victorian case study). Glazewski and
584	Haward (2005) highlight the tension between local government's
585	desire to increase overall rate revenue consistent with coastal
586	development and environmental management. Explicitly addressing
587	environmental objectives and increasing agency expertise in
588	relation to assessment of such objectives can help resolve this
589	tension.

590	4.3 Litigation and case law
591	Most responsibility for planning and developmental control is
592	delegated to local government authorities who are becoming
593	increasingly exposed to litigation in cases where they have
594	approved poorly planned developments, including with respect to
595	climate change impacts on the coast. The courts in Australia have
596	become de facto policy makers in relation to coastal adaptation,
597	where controversy exists around climate change risks to the coast.
598	This trend has created high levels of certainty for decision-making
599	on new coastal development in specific cases, but has created
600	uncertainty in general because of the diverse outcomes of cases.
601	Harvey et al. (2012a) illustrate this with case studies showing how
602	council decisions can be either upheld as in Marion Bay, South
603	Australia or overturned, as in Gippsland Lakes, Victoria depending
604	on the extent to which the scientific knowledge on climate change
605	and coastal erosion has been taken into account. Elsewhere, it has
606	proved difficult to reject private coastal protection works initiated in
607	response erosion and climate change, as in Byron Bay, New South
608	Wales, where previous council actions confounded the application of
609	climate science. The courts' role in filling the vacuum where
610	uncertainty exists in the knowledge-governance interface illustrates
611	the need for climate-related policies such as planned retreat to be
612	enshrined in legislation (Harvey et al., 2012a).
613	4.4 Insurance industry
614	Risk levels for existing and new coastal development are only partly
615	incorporated into the knowledge-governance interface by
616	government zoning regulations, planning guidelines and decisions.
617	Scientific knowledge on climate change and coastal erosion is also
618	needed by the insurance industry for risk assessment of potential
619	damage to coastal properties and facilities. The Insurance Council of
620	Australia (ICA) commissioned its own risk study for Australian

621	properties (Chen and McAneney, 2006) the results of which have
622	become incorporated into the knowledge-governance interface at
623	the intergovernmental level (Hennessy et al., 2007) and the
624	national level (HORSCCCWEA, 2009) where the ICA estimated the
625	number of coastal addresses at risk of coastal damage. The
626	insurance industry has thus taken action to fill perceived gaps in the
627	knowledge-governance interface. The Insurance Australia Group
628	(IAG) has also expressed concern about potential climate-change
629	related changes to insurance cover in coastal areas noting that land
630	value which is not currently insured, forms a high proportion of the
631	overall property value at the coast (IAG, 2008).
632	The four examples above, by no means an exclusive list, serve to
633	illustrate how there are significant challenges in the availability and
634	application of appropriate knowledge to coastal decision-making,
635	and how these challenges or gaps are sometimes bridged by ad hoc
636	or make-do processes. There are opportunities for new approaches
637	to governance that may address the challenges of short-term
638	versus futuristic thinking by improving engagement at the
639	knowledge-governance interface. The following section introduces a
640	range of possibilities.
641	5. Towards an improved coastal governance in Australia
642	This section outlines some of the practical possibilities and
643	processes designed to support the enhanced knowledge-governance
644	interface suggested by this paper as necessary for progressing
645	decision making at the coast. Tools and techniques that offer means
646	of putting theory into practice are also described.
647	5.1 Linking knowledge systems and new governance
648	Organizations and individuals can be effective agents (go-betweens)
649	in creating dialogue, negotiating, mediating, and representing
650	viewpoints working between knowledge-makers and decision-

651	makers. Organizations and individuals use a range of processes to
652	enhance understanding between knowledge-makers and decision-
653	makers.
654	5.1.1 Boundary organizations
655	Over the past two decades, interest has grown in boundary
656	organizations as a way of dealing with wicked problems such as
657	climate change adaptation that necessarily transcend scientific
658	responses. Boundary organizations play an intermediary role
659	between knowledge production and decision-making (in different
660	domains and levels), with a view to achieving co-operation in
661	relation to a shared objective (Lorenzoni et al., 2007; Guston,
662	2001; Cash et al., 2004). They can be organizations specifically
663	created to provide this function or can exist within larger
664	organizations (Cash et al., 2004).
665	Successful boundary organizations are institutionally set up to be
666	accountable to at least two groups of stakeholders and are thus are
667	able to maintain a bridging position, despite external pressures, and
668	meet the requirements of the various parties (Guston, 2001). The
669	boundary will, however, be continually renegotiated and will shape
670	the organization itself (Guston, 2001). According to Cash, Borck
671	and Patt (2006), boundary organizations can help increase the
672	salience, credibility and legitimacy across boundaries through four
673	institutional processes, set out below.
674	Convening connotes the process of bringing parties together for
675	face-to-face contact. Translation can be literal and/or metaphorical
676	in order to provide information across boundaries of culture,
677	language, assumptions and experiences for example. Collaboration
678	is the process of co-producing knowledge by experts and decision-
679	makers. Mediation represents and evaluates the different interests
680	in such a way that the parties involved perceive fairness and
681	procedural justice. These functions will be present in different mixes

682	in different systems. With the appropriate institutional design,
683	leadership and capacity, universities and NGOs can play the role of
684	boundary organizations whether intentionally designed in the first
685	instance or not.
686	An example of a successful boundary organization in Australia is the
687	National Sea Change Taskforce (NSCT), a body representing the
688	interests of coastal councils and communities experiencing the
689	effects of rapid population and tourism growth (NSCT, 2010). This
690	coalition involves over 68 councils with the aim of providing
691	leadership and influencing policy development for coastal
692	areas(NSCT, 2010). The NSCT engages with three tiers of
693	government, industry, community groups, and research institutions.
694	The NSTC's aim of collaboration and direct linkages between
695	research and governance institutions helps enable sustainability
696	learning and build adaptive capacity. As a part of a very well
697	attended annual conference convened by the Taskforce, the Coastal
698	Research Forum brings together coastal researchers and coastal
699	decision-makers to share insights and strengthen communication
700	and networking. The Taskforce supports the roles of convening,
701	translating, mediating and collaborating to create more informed
702	decision-making for local governments in coastal Australia. The
703	efforts of the NSCT also inform other strategic planning processes.
704	5.1.2 Boundary agents
705	Boundary agents, or knowledge brokers, play a central role
706	operating in the knowledge-governance space by developing
707	influential relationships, building trust, communicating information
708	needs and facilitating bridging the gaps among various stakeholders
709	(McNie et al., 2008).
710	Boundary agents, or knowledge brokers, can be found within a
711	variety of contexts, and their roles may be formal or informal
712	(Pettitt et al., 2011). An example of an effective boundary agent in

713	the Australian coastal scene is the Executive Director of the Nationa
714	Sea Change Taskforce, Alan Stokes. His goal and capacity to enable
715	communication and build relationships among a wide range of
716	decision-makers, researchers and other stakeholders make him
717	highly credible and respected as a boundary agent.
718	Consultants can also play the role of boundary agent, commonly in
719	relation to the representation of expert information. The format of
720	scientific information is not always suitable for policy-makers and
721	planners, so boundary spanning consultants are often employed by
722	government to collect, collate and translate scientific information
723	into an accessible locally relevant form, typically working with their
724	existing relationships and networks. Consultants who play this
725	boundary agent role advising local or state governments include
726	lawyers, coastal scientists or coastal engineers. However, by no
727	means are all consultants genuine boundary agents in the relational
728	sense; some play purely technical role as intermediaries.
729	Complex scientific knowledge can be 're-presented' to be broadly
730	appealing or better understood through the use of visualizations,
731	graphics, informatics and the many other visual interactive media
732	now available. The role of a designer in this context is to ensure
733	that science communication is accurate and has integrity (Tufte,
734	2006 p. 9). As such designers can function as boundary agents,
735	although this role is poorly understood (but see Fernandez et al.,
736	2009). Innovative visuals require careful design because of their
737	power to affect consequent behaviors of the target audience (Jude,
738	2008). The relational role of the designer, as boundary agent, in
739	understanding and drawing out the intent of the scientist is as
740	important as the designer's technical skills.
741	5.1.3 Deliberation
742	Deliberation is a term that implies deep and careful consideration,
743	often of scientific information and societal values together. In the

744	context of community and stakeholder engagement it emphasizes
745	"participation, cooperation, and discourse characterized by reason-
746	giving" (Hartz-Karp and Briand, 2009 p.4). If well facilitated, it can
747	enable a group to span boundaries, learn in a social and trusting
748	setting and respond adaptively to emerging challenges and
749	phenomena. Deliberation can employ a wide variety of techniques
750	and approaches, including many of those described in the sections
751	below. Quality deliberation aims to build new relationships among
752	stakeholders and even between citizens and democratic political
753	institutions (Hartz Karp and Stocker, in press). Deliberative
754	techniques aim to "bring together a wide range of perspectives and
755	demographics in "an egalitarian environment that encourages
756	mutual understanding and trust, carefully considering options and
757	producing decisions and actions that are broadly supported and
758	perceived to be legitimate" (Hartz Karp and Stocker, in press).
759	Participatory mapping (5.2.2.2 below) is one example of a tool that
760	can be used to support deliberations.
761	5.1.4 Adaptive learning
762	Typically, iterations of coastal policies, programs and projects have
763	been ineffective in transferring learning from one phase to the next.
764	Evaluation cycles have not been reflexive (Smith and Smith, 2006).
765	This can be partly attributed to the mismatch of the needs of
766	political versus environmental decision-making time cycles.
767	Adaptive learning is a contemporary concept offering a vision for
768	improved transference of knowledge towards improved
769	management practice. For adaptive learning to be applied in a
770	coastal management context there is a requirement for coastal
771	practitioners and their organizations to be intimately connected with
772	the dynamic social and ecological dimensions of coastal systems
773	(Smith et al., 2009). Adaptive learning follows a process that is
774	cyclic and incremental, with each stage providing the foundation for
	cyclic and meremental, with each stage providing the roundation for

776	goals, strategies and activities; reflection on goals and strategies;
777	and networking and ideas generation). Detecting and responding to
778	socio-ecological change must also facilitate broader system goals.
779	This requires knowledge, creativity and vision. It also requires that
780	organizations facilitate learning networks across various scales of
781	learning and action (e.g., from individual to societal or local to
782	global). By taking an approach that facilitates adaptive learning and
783	adaptive practice, the knowledge interface between science, society
784	and governance systems is enhanced (Smith et al., 2009). The
785	South East Queensland 'Healthy Waterways' partnership (2001 –
786	current) bases itself on an adaptive learning philosophy. It is a
787	network of over 113 member organizations (including government,
788	industry, research and the community) responsible for managing
789	the water cycle from catchment to coast (SEQ Healthy Waterways,
790	2009). The Partnership implements five programs including
791	monitoring, science and innovation, capacity building, education,
792	and strategy coordination. It has won numerous awards and is
793	recognized as a national leader for adaptive management along the
794	catchment to coast continuum.
795	5.2 Tools and techniques
796	The sections above highlight the roles that can be taken by
797	individuals or organizations and the processes they might employ in
798	trying to enhance the knowledge-policy dialogue. In each of the
799	situations described above, there is an opportunity to use specific
800	communication, negotiation and decision-support tools. Practical
801	examples are set out below.
802	5.2.1 Communication support
803	'Communication support' provides opportunities to share
804	information and raise awareness. The information may or may not
805	have immediate application.

5.2.1.1. Coastal research web portal

806

807	The CSIRO's coastal research web portal is an open access Internet
808	resource for local councils (decision-makers), other stakeholders
809	(agents) and researchers (knowledge-makers). The portal enhances
810	the ability of decision-makers and stakeholders to access scientific
811	knowledge in a form that is readily understandable. It uses a spatial
812	visualization technique to locate Australian coastal research
813	projects. Topic based icons on Google maps are viewable at a range
814	of scales and include topics such as mangroves, wetlands, pollution,
815	water quality, and iconic species. Summary information for each
816	research project is available and links are provided to various data
817	repositories; researchers may also provide links to data directly
818	related to the project.
819	5.2.1.2. Coastal conversations
820	According to Preston et al. (2011) sharing knowledge about the
821	risks posed by climate change to coastal communities is considered
822	essential for the development of robust management solutions.
823	Identifying and implementing solutions to complex problems where
824	uncertainty is high has been shown to require conscious and active
825	learning among multiple stakeholders (Walters and Holling, 1990).
826	In recognition of an increasing trend in participatory approaches to
827	strategic planning (Brownill, 2009) the Northern Agricultural
828	Catchments Council (NACC) in Western Australia commenced a
829	series of communication support initiatives titled: 'the Coastal
830	Conversation' in 2009 and 2011. The series represented an
831	opportunity for local communities, land managers, and other key
832	stakeholders in a regional area of Western Australia, to discuss the
833	future management of their coastlines with experts in the field of
834	coastal management, shoreline monitoring and coastal protection.
835	5.2.1.3. Art and community cultural development
836	Art and community cultural development have the potential engage
837	the public and possibly even decision-makers in the interpretation
838	and representation of complex ideas about coastal adaptation. While

839	scientific texts, figures and statistics are regarded as the most
840	legitimate form of knowledge for policy and management of the
841	coasts and seas, shifts in mind-sets are not always achievable by
842	cognitive, scientific or didactic methods. Emotional and affective
843	responses to the environmental threats can be more powerful than
844	government reports or scientific data (Miles, 2010). Exposure to
845	both the power of cognitive scientific evidence and imaginative
846	representations together in a variety of projects and conditions may
847	have a cumulative effect that leads to awareness and personal
848	action (Miles, 2010; Stocker and Kennedy, 2011).
849	5.2.2. Negotiation support
850	'Negotiation support' provides opportunities through a purpose-
851	designed deliberative process for participants to collectively shape
852	and apply information to their individual and shared purposes. It
853	includes the negotiated co-production of knowledge for immediate
854	or future application.
855	5.2.2.1. Participatory modelling
856	Participatory modeling is a technique for improving social and policy
857	learning about social ecological systems. It draws together a
858	variety of stakeholder perspectives into a single visual object to
859	enable collaborative description, negotiation and analysis.
860	Participatory modeling can be agent-based (Perez, 2009), numerical
861	(Jones et al., 2011), qualitative (Dambacher, 2007) or mixed
862	(Fulton et al., 2011). The Coastal Collaboration Cluster used
863	qualitative modelling (Dambacher et al., 2007) to investigate the
864	extent to which current coastal planning arrangements can respond
865	to climate change impacts such as coastal erosion and recession in
866	the southwest of Western Australia. The workshop drew ideas from
867	70 participants from diverse backgrounds. The modeller used a
868	whiteboard in real time, encouraging discussion and translation
869	across the science-governance interface, and entering both

870	scientific and governance variables and processes into the model
871	(Stocker et al., 2011).
872	5.2.2.2. Participatory Google Earth mapping
873	Participatory GIS enables participants to analyze land and resource
874	use issues, raises awareness and knowledge of sustainability and
875	fosters good governance incorporating the principles of
876	participation, equity and transparency (McCall, 2003).
877	Participatory Google Earth Mapping has been used by the Coastal
878	Collaboration Cluster in workshops for the City of Fremantle, City of
879	Mandurah, and Rottnest Island Authority (Hartz Karp and Stocker,
880	in press). The mapping collaboratively identifies sustainability and
881	climate change pathways for coastal areas. Knowledge experts
882	present critical information on coastal and climate issues orally and
883	in map format. In small groups, participants deliberate on and
884	document: coastal places of importance, management hotspots,
885	concerns about these hotspots, and proposed adaptive pathways.
886	The method enhances dialogue through its spatially explicit
887	platform, its ability to engage knowledge- and decision-makers
888	simultaneously, its ability to map qualitative and quantitative
889	information and community values, and its ability to consider social,
890	cultural, ecological and economic values without giving primacy to
891	any set.
892	5.2.2.3. Scenario planning
893	Scenario analysis is a process of 'future-casting' designed to assist
894	decision-making for problems where there is considerable
895	uncertainty and where decisions have the capacity to affect a great
896	many people. Stakeholders are required to think through an array
897	of different futures that may come to pass. The act of creating
898	scenarios forces participants to challenge assumptions about the
899	future. Decisions are shaped on the most likely scenarios.

900	Scenarios have become a ubiquitous feature of climate change
901	science and dialogue and are central to the science communication
902	strategy of the IPCC (2007). In the last few years they have been
903	used for climate adaptation planning (Dessai et al., 2005) as a way
904	to engage stakeholders (Tompkins et al., 2008). A recent workshop
905	carried out by the Coastal Collaboration Cluster for Western
906	Australian Department of Sports and Recreation aimed to develop
907	shared understandings within that agency about the implications of
908	sea level rise, more extreme events, water shortages, temperature
909	increase, and fossil fuel shortages to the future and present
910	management of their core business - coastal sport and recreation in
911	Western Australia. The workshop presented purpose-written
912	creative stories and narrative scenarios about coastal sports and
913	recreation under three clearly-defined climate futures. These were
914	based explicitly on IPCC(2007) storylines, including embedded
915	governance arrangements and social-economic structures, and used
916	CSIRO climate projections for the region (Supplah et al., 2007).
917	Small groups of participants deliberated on these to develop
918	strategic responses and practical projects (Hartz-Karp and Stocker,
919	in press).
920	5.2.2.4. Visualizations
921	Visualizations are a factually accurate, graphical representation of
922	numerical data that may include changes over time (animation).
923	The most useful kinds of visualization enable an understanding of
924	large, multivariate and interdisciplinary datasets (Ellis and Dix,
925	2007; Matthies et al., 2007). These visualizations in turn help
926	provide mutual understanding between the researcher and the
927	stakeholders affected by the research results. Visualizations can
928	help enable novel insights for both researchers and decision-makers
929	by providing alternative representations and consequent
930	interpretations of the data, for example through presenting different
931	scenarios. In relation to coastal adaptation, 3D visualizations have

932	proved useful in demonstrating the consequences of environmental
933	change and fostering action (Sheppard, 2005; Paar et al., 2008).
934	The Coastal Collaboration Cluster has worked closely with CSIRO
935	Mathematics and Informational Sciences to produce an animation
936	based on fluid dynamic modeling that shows the interactions among
937	sea level rise, storm surge and catchment flooding on a hypothetical
938	Australian estuary and adjacent coast, for use by coastal decision-
939	makers. A proof of concept has been trialed in two workshops.
940	5.2.2.5. PhotoVoice
941	PhotoVoice involves participants taking photos according to a theme
942	and discussing their photos in a group to reach a consensus about
943	the message they wish to convey to decision-makers, using a
944	selection of their photos and storyline or captions. As a result, it is
945	a thoroughly engaging approach that fosters deliberation and
946	learning, capacity building and empowerment. PhotoVoice has been
947	used by a range of disciplines to understand community values and
948	perspectives and to give the community a 'voice' - health,
949	community development (Wang and Burris, 1997; Baker and Wang,
950	2006), resource management (Baldwin, 2008), and climate change
951	(Baldwin and Chandler, 2010). It has also been used with diverse
952	communities: youth, children, minority groups (Carlson et al.,
953	2006; Castleden et al., 2008; Strack et al., 2004), and seniors
954	(Baldwin et al., 2011). Such 'participant elicited data' in a visual
955	form elicits a deeper insight into complex issues and puts
956	participants in control of the responses. The Coastal Collaboration
957	Cluster is using PhotoVoice to engage commercial rock lobster
958	fishers at the Abrolhos Islands in considering the likely impacts of
959	climate change on their industry and lifestyle.
960	5.2.3. Decision support
961	'Decision support' provides necessary and sufficient information and
962	feedback to enhance the reliability and accuracy of decisions made

963	by managers. Management Strategy Evaluation (MSE) is a decision
964	support mechanism that was originally used in individual sectors
965	e.g., fisheries and forestry (Walters, 1986) and more recently in
966	coastal zone management. MSE involves feedback mechanisms and
967	is referred to as 'adaptive management'.
968	In South-East Queensland, CSIRO worked with Healthy Waterways
969	Partnership to develop integrated computer simulation MSE to
970	compare the impacts of different management strategies on
971	environmental, social and economic performance indicators related
972	to water quality. Management actions to improve water quality
973	resulted in proportional changes on indicators such as total nitrogen
974	and turbidity (de la Mare et al., 2012). The costs of management
975	actions (indicative capital and annual operating costs) are viewed
976	alongside willingness to pay based household benefits due to and
977	resulting from these actions, as are the environmental report cards
978	scores and quantification of social values. The participatory
979	workshop in which the MSE found that the process assisted
980	decision-makers and stakeholders in not only direct knowledge but
981	also implicit understanding of the environmental, economic and
982	social outcomes of particular suites of management actions to
983	improve water quality.
984	Earlier in this paper the wide array of voices contributing to coastal
985	management decisions were identified. Accordingly, a final
986	important decision-support tool for consideration is multi-
987	stakeholder analysis. This offers a criteria-based and systematic
988	method by which to select a sample of people, or organizations
989	likely to be affected by a decision. It allows for the sorting of
990	stakeholders both for their likely impact on an action and for the
991	impact an action might have on them. This purpose of the process
992	is to developing cooperation between the various parties engaged
993	towards an agreed goal.

994	6. Conclusion: Towards more integrated coastal knowledge-
995	governance relations
996	This paper has explored issues associated with knowledge—
997	governance relations for the coastal zone and suggested enabling
998	pathways and associated tools and technology for enhancing
999	knowledge uptake. Conventional modes of decision-making at the
1000	coast have had limited success in terms of sustainable coastal
1001	management, experiencing numerous inhibitors such as short-term
1002	decision cycles, the uncertainty of climate change, and poor
1003	knowledge-governance interaction.
1004	Effective coastal governance is clearly a substantial challenge,
1005	requiring action across several arenas, via a wide variety of
1006	institutions, processes, tools and techniques. It is also the case that
1007	integrated coastal knowledge-governance interactions will not
1008	happen suddenly: they may develop over time as a consequence of
1009	both conscious action and as emergent practice. Therefore, while
1010	deliberate actions can be undertaken to enhance the interactivity of
1011	coastal knowledge and governance, more collaborative coastal
1012	governance may also be supported through a more open, outward
1013	looking and collaborative culture.
1014	Conceptually, the complexity of coastal environments and the
1015	diversity of interests, worldviews and stakeholder knowledge means
1016	that there will never be one right way in which coastal governance
1017	should occur. Furthermore, coastal governance is an ongoing
1018	process, rather than one where issues may be solved once and for
1019	all. What emerges from such a perspective is that real progress can
1020	only be made through the adoption of more interactive and
1021	collaborative forms of knowledge-governance relations: solutions
1022	will emerge from engagement and interaction rather than through
1023	imposition. Importantly, this means that the processes will never be

1024	easy or formulaic; however, over the longer term it is possible to
1025	develop a more robust and resilient system.
1026	A key element in progressing such an approach is the development
1027	of appropriate institutions and processes that enable different forms
1028	of knowledge to have a bearing on decision making. Awareness of
1029	the boundaries, which may be cultural, social, epistemological
1030	boundaries, is integral to enabling such processes, and is a
1031	necessary precondition to working more effectively. The research
1032	being undertaken within the Coastal Collaboration Cluster
1033	represents a modest yet significant contribution to improving
1034	understanding of the challenges and pathways associated with
1035	exploring how and why appropriate institutional and governance
1036	arrangements can be developed, implemented and sustained.
1037	Acknowledgements
1038	This research is undertaken by the CSIRO Flagship Coastal
1039	Collaboration Cluster with funding from the CSIRO Flagship
1040	Collaboration Fund. The Coastal Collaboration Cluster is an
1041	Australian research program designed to enable more effective
1042	dialogue between knowledge-makers and decision-makers in
1043	Australia's coastal zone, and to thereby contribute to coastal
1044	sustainability in Australia. The Cluster is composed of seven
1045	Australian universities working with the CSIRO's Wealth from
1046	Oceans Flagship and Climate Adaptation Flagship.
1047	References
1048	ABS, 2010, Oceans and estuaries. Measures of Australia's progress,
1049	2010. Australian Bureau of Statistics. 1370.0. Canberra.
1050	
1051	Agardy, T., and Alder, J., 2005. Coastal systems, in: Hassan, R.,
1052	Scholes, R., Ash, N. (Eds.), Ecosystem and human wellbeing:

- current state and trends. Island Press, Washington, DC, pp. 513—
- 1054 549.
- Altman, I., Rogoff, B., 1987. World views in psychology: trait,
- interactional, organismic, and transactional perspectives, in Stokols,
- 1057 D., Altman, I. (Eds.), Handbook of environmental psychology. John
- 1058 Wiley & Sons, New York, pp. 7—40.
- Ansell, C., Gash, A., 2008. Collaborative governance in theory and
- 1060 practice. J Publ Adm Res Theor. 18 (4), 543-571.
- 1061 Backstrand, B., Khan, J., Kronsell, A., Lovbrand, E., 2010.
- 1062 Environmental politics and deliberative democracy: examining the
- promise of new modes of governance. Edward Elgar, Cheltenham
- 1064 UK, Northampton MA, USA.
- Baird, R., 2011. The national legal framework, in: Baird, R.,
- 1066 Rothwell, D.R. (Eds.), Australian coastal and marine law. The
- 1067 Federation Press, Annandale, NSW, pp. 44-66.
- Baker, T., Wang, C., 2006. Photovoice: use of a participatory action
- research method to explore the chronic pain experience, in older
- 1070 adults, Qual Health Res. 16, 1405—1413.
- 1071 Baldwin, C., 2008. Integrating values and interests in water
- planning using a consensus-building approach. PhD thesis,
- 1073 University of Queensland, Brisbane.
- Baldwin, C., Chandler, L., 2010. At the water's edge: community
- voices on climate change, Local Environment: the International
- 1076 Journal of Justice and Sustainability. Special issue on local peoples
- 1077 and climate change. 15(7), 637—649.
- 1078 Baldwin, C., Buys, L., Osborne, C., 2011. Voices of older Australians
- 1079 on infill development: using participant action research methods to

- understand home and neighbourhood for planning purposes, State
- of Australian Cities Conference, 28 Nov—2 Dec 2011, Melbourne.
- Bouwen, R., Taillieu, T., 2004. Multi-party collaboration as social
- learning for interdependence: Developing relational knowing for
- 1084 sustainable natural resource management. J Community Appl Soc.
- 1085 14, 137—153.
- Brownill, S., 2009. The dynamics of participation: modes of
- governance and increasing participation in planning. Urban Policy
- 1088 and Research. 27(4), 357—375.
- 1089 Carlson, E, Engebretson, J., Chamberlain, R., 2006. Photovoice as a
- social process of critical consciousness. Qual Health Res. 16(6),
- 1091 836-852.
- 1092 Cash, D., Adger, N., Berkes, F., Garden, P., Lebel, L., Olsson, P.,
- 1093 Pritchard, L., Young, O., 2004. Scale and cross-scale dynamics:
- 1094 governance and information in a multi-level world. Millennium
- 1095 Ecosystem Assessment Bridging Scales and Epistemologies
- 1096 Conference, 17—20 March 2004, Alexandria.
- 1097 Cash, D., Borck, J., Patt, A., 2006. Countering the loading-dock
- approach to linking science and decision making: comparative
- analysis of El Niño/Southern Oscillation (ENSO) forecasting
- 1100 systems. Sci Technol Hum Val. 31(4), 465–494.
- 1101 Castleden, H., Garvin, T., Huu-ay-aht First Nation, 2008. Modifying
- 1102 photovoice for community-based participatory Indigenous research.
- 1103 Soc Sci Med. 66(6), 1393—1405.
- 1104 Chen, K., McAneney, J., 2006. High resolution estimates of
- 1105 Australia's coastal population with validations of global population:
- shoreline and elevation datasets. Geophys. Res. Lett, 33, L16601.

- 1107 Cicin-Sain, B., Knecht, R.W., 1998. Integrated coastal and ocean
- 1108 management, concepts and practices. Island Press, Washington DC.
- 1109 Clarke, B., 2008. Seeking the grail: evaluating whether Australia's
- 1110 Coastcare program achieved 'meaningful' community participation.
- 1111 Soc Natur Resour. 21(10), 891—907.
- 1112 Clarke, B., 2010. Analysis of coastal policies of Australian state and
- territory governments. Report Prepared for the South Australian
- 1114 Coast Protection Board, Department of Environment and Natural
- 1115 Resources, Adelaide.
- 1116 Clayton S., Myers G., 2009. Conservation psychology.
- 1117 Understanding and promoting human care for nature. Wiley-
- 1118 Blackwell, Chichester.
- 1119 Commonwealth of Australia, 1995. Living on the coast, the
- 1120 Commonwealth coastal policy. Department of Environment, Sport
- and Territories (DEST), Canberra.
- 1122 Commonwealth of Australia, 2002. Ocean management-the legal
- framework. The South-east Regional Marine Plan Assessment
- 1124 Report. National Oceans Office, Hobart.
- 1125 Cross, H., Ardill, S., Shaw, J., 1994. Management of environmental
- flow in NSW. A review of techniques, in: proceedings of
- 1127 Environmental Flows Seminar. Australian Water and Wastewater
- 1128 Association, 25-26 August 1994, Canberra, pp. 70—75.
- 1129 Cummins, V., McKenna, J., 2010. The potential of sustainability
- science in coastal zone management. Ocean Coast Manage. 53,
- 1131 796—804.
- Dambacher, J.M., Brewer, D.T., Dennis, D.M., Macintyre, M., Foale,
- 1133 S., 2007. Qualitative modelling of gold mine impacts on Lihir

- 1134 Island's socioeconomic system and reef-edge fish community. Envir
- 1135 Sci Tech. 41, 555-562.
- de la Mare, W.K., Ellis, N., Pascual, R., Tickell, S., 2012. An
- empirical model of water quality for use in rapid management
- strategy evaluation in Southeast Queensland, Australia. Mar Pollut
- 1139 Bull.64(4), 704—11.
- Dessai, S., Lua, X., Risbey, J., 2005. On the role of climate
- scenarios for adaptation planning. Global Environ Chang. 15, 87—
- 1142 97.
- Dryzek, J.S., 2005. The politics of the earth, environmental
- 1144 discourses. Oxford University Press, Oxford.
- Dui, A., Galaz, V., 2008. Governance and complexity, emerging
- issues for governance theory. Governance. 21(3), 311—335.
- 1147 Dunlap, R., Van Liere, K., Mertig, A., Jones, R., 2000. Measuring
- endorsement of the new ecological paradigm: a revised NEP scale. J
- 1149 Soc Issues. 56(3), 425–442.
- Ellis, G., Dix, A., 2007. A taxonomy of clutter reduction for
- information visualisation. IEEE T Vis Comput Gr. 13 (6), 1216—
- 1152 1223.
- Evans, D., Shaw, J., 1986. Conflicts between in-stream and off-
- stream uses of rivers, in: Hydrology and Water Resources
- 1155 Symposium 1986, River Basin Management; Preprints of Papers.
- 1156 Institution of Engineers, Barton, ACT, pp. 238—244.
- 1157 Fernandez, W., Bergvall-Kåreborn, B., Djordjevic, M., Lovegrove,
- 1158 K., Nayar, S., 2009. Using design as boundary spanner object in
- 1159 climate change mitigation projects. Aust J Information Systems,
- 1160 16(2), 51-69.

- 1161 Fulton, E., Randall, G., Sporcic, M., Scott, R., Hepburn, M., Gorton,
- 1162 B., Hatfield, B., Fuller, M., Jones, T., De la Mare, W., Boschetti, F.,
- 1163 Chapman, K., Dzidic, P., Syme, G., Dambacher, J.M., McDonald, D.,
- 1164 2011. Adaptive futures for Ningaloo. Ningaloo Collaboration Cluster.
- 1165 CSIRO, Perth.
- 1166 Funtowicz, S., Ravetz, J., 1993. Science for the post-normal age.
- 1167 Futures. 25(7), 739—755.
- 1168 Gergen, K., 2009. Relational being, beyond self and community.
- 1169 Oxford University Press, New York.
- 1170 Glazewski, J., Haward, M., 2005. Towards integrated coastal area
- management: a case study in co-operative governance in South
- 1172 Africa and Australia. The International Journal of Marine and Coastal
- 1173 Law. 20(1), 65-84.
- 1174 Green, C., Penning-Rowsell, E. 1999. Inherent conflicts at the coast.
- 1175 J Coastal Conservation. 5(2), 153–62.
- 1176 Guston, D.H., 2001. Boundary organisations in environmental policy
- and science: an introduction. Science, Technology and Human
- 1178 Values. 26(4), 399-408.
- Haggan, N., Neis, B., Baird, I., 2007. Fishers' knowledge in fisheries
- science and management. UNESCO, Paris.
- Hajer, M., Versteeg, W., 2005. A decade of discourse analysis of
- environmental politics: achievements, challenges, perspectives. J
- 1183 Env Pol Plann. 7(3), 175—184.
- Harré, R., van Langenhove, L., 1999. The dynamics of social
- episodes, in: Harré, R., and van Langenhove, L. (Eds.), Positioning
- theory. Blackwell Publishers Ltd., Oxford.

- 1187 Harré, R., Brockmeier, J., Mühlhäusler, P., 1999. Greenspeak: a
- study of environmental discourse. Sage Publications Inc., Thousand
- 1189 Oaks.
- Hartz-Karp, J., Briand, M., 2009. Institutionalizing deliberative
- 1191 democracy. J Publ Affairs. 10(1), 125—141.
- Hartz-Karp, J., Stocker, L., (In Press). Deliberative democracy, a
- 1193 collaborative action oriented learning process for a more sustainable
- future, in: Shultz, L., Kajner, T. (Eds.), Education and the political
- project of engagement and disengagement. Sense Publishers,
- 1196 Boston.
- Harvey, N., Caton, B., 2003. Coastal management in Australia.
- 1198 Oxford University Press, Melbourne.
- Harvey, N., Clarke, B., Nursey-Bray, M., 2012a. Australian coastal
- management and climate change. Geogr Res. 50(4), 356—367.
- 1201 Harvey, N., Clarke, B., Pelton, N., Mumford, T., 2012b. Evolution of
- sustainable coastal management and coastal adaptation to climate
- change in Australia, in: Kenchington, R., Stocker, L., Wood, D.,
- 1204 (Eds.), Sustainable coastal management and climate adaptation:
- lessons from regional Australia. CSIRO Publishing, Collingwood,
- 1206 Victoria, pp. 75—96.
- 1207 Head, B., 2009. From government to governance: explaining and
- assessing new approaches to NRM, in: Lane, M., Robinson, C.,
- 1209 Taylor, B. (Eds.), Contested country: Local and regional natural
- resources management in Australia. CSIRO Publishing, Collingwood,
- 1211 Victoria, pp. 15—28.
- Hennessy, K., Fitzharris, B., Bates, B., Harvey, N., Hughes, L.,
- Howden, M., Salinger, J., Warrick, R., 2007. Australia and New
- 1214 Zealand climate change 2007: impacts, adaptation and
- vulnerability. Contribution of Working Group II to the fourth

- 1216 assessment report of the Intergovernmental Panel on Climate
- 1217 Change. Cambridge University Press, Cambridge, UK.
- Hofmeester, C., Bishop, B., Stocker, L., Syme, G., 2012. Social
- cultural influences on current and future coastal governance.
- 1220 Futures. 44, 719—729.
- HORSCCCWEA, 2009. Managing our coastal zone in a changing
- 1222 climate: the time to act is now. House of Representatives Standing
- 1223 Committee on Climate Change, Water, Environment and the Arts
- 1224 (HORSCCCWEA), Canberra.
- 1225 IAG, 2008. Insurance Australia Group (IAG) submission to the
- inquiry into climate change and environmental impacts on coastal
- 1227 communities. Insurance Australia Group, Sydney.
- 1228 IPCC, 2007. Summary for policymakers. Climate change 2007: the
- physical science basis. Contribution of Working Group I to the fourth
- 1230 assessment report of the Intergovernmental Panel on Climate
- 1231 Change. Cambridge University Press, Cambridge, UK.
- 1232 Jentoft, S., Chuenpagdee, R., 2009. Fisheries and coastal
- governance as a wicked problem. Marine Policy. 33, 553—560.
- Jones, T., Glasson, J., Wood, D., Fulton, B., 2011. Regional planning
- and resilient futures: destination modelling and tourism
- development—the case of the Ningaloo coastal region in Western
- 1237 Australia. Planning Practice and Research. 26(4), 393—415.
- 1238 Jude, S., 2008. Investigating the potential role of visualization
- techniques in participatory coastal management, Coastal
- 1240 Management. 36(4), 331—349.
- 1241 Kay, R., Alder, J., 2005. Coastal planning and management. Taylor
- 1242 & Francis, London.

- Kelsey, E., 2003. Integrating multiple knowledge systems into
- 1244 environmental decision making: two case studies of participatory
- biodiversity initiatives in Canada and the implications for
- 1246 conceptions of education and public involvement. Environmental
- 1247 Values 12, 1–16.
- 1248 Kenchington, R., Stocker, L., Wood, D., 2012. Lessons from regional
- approaches to coastal management in Australia: a synthesis, in:
- 1250 Kenchington, R., Stocker, L., Wood, D., (Eds.), Sustainable coastal
- management and climate adaptation: Lessons from regional
- 1252 Australia, CSIRO Publishing, Collingwood, Victoria, pp.193—208.
- 1253 Koltko-Rivera, M., 2004. The psychology of worldviews. Rev Gen
- 1254 Psychol. 8(1), 3—58.
- Lambert, T., 2011. Bad tidings: reporting on sea level rise in
- 1256 Australia is all washed up. The Conversation. Melbourne.
- 1257 http://theconversation.edu.au/bad-tidings-reporting-on-sea-level-
- rise-in-australia-is-all-washed-up-2639. 1st September 2011.
- Lazarow, N., Smith, T., Clarke, B., 2008. Coasts, in: Lindenmayer,
- 1260 D. Dovers, S. Harriss-Olson, M., Morton, S. (Eds.), Ten
- 1261 commitments, reshaping the lucky country's environment. CSIRO
- 1262 Publishing, Collingwood, Victoria, pp. 87—94.
- 1263 Leith, P., Coffey, B., Haward, M., O'Toole, K., Allen, S., 2012.
- 1264 Improving science uptake in coastal zone management: principles
- 1265 for science engagement and their application in South East
- 1266 Tasmania, in: Kenchington, R., Stocker, L., Wood, D., (Eds.),
- 1267 Sustainable coastal management and climate adaptation: Lessons
- 1268 from regional Australia, CSIRO Publishing, Collingwood, Victoria,
- 1269 pp.135—154.

- 1270 Lorenzoni, I., Jones, M., Turnpenny, J.R., 2007. Climate change,
- human genetics, and post-normality in the U.K. Futures. 39(1),
- 1272 65-82.
- 1273 Manne, R., 2011. Bad news: Murdoch's Australian and the shaping
- of the nation. Quarterly Essay. 43, 1-142.
- 1275 Markham, S., Green, S., Basu, R., 1991. Champions and
- 1276 antagonists: Relationships with RandD project characteristics and
- management. J Eng Technol Manage. 8(3-4), 217—242.
- 1278 Matthies, M., Giupponi, C., Ostendorf, B., 2007. Environmental
- decision support systems: current issues, methods and tools.
- 1280 Environ Modell Softw. 22, 123—127.
- McCall, M., 2003. Seeking good governance in participatory—GIS: a
- review of processes and governance dimensions in applying GIS to
- participatory spatial planning. Habitat Int. 27, 549—573.
- 1284 McNie, E., van Noordwijk, M., Clark, W., Dickson, N.,
- 1285 Sakuntaladewi, N., Suyanto, N., Joshi, L., Leimona, B., Hairiah, K.,
- 1286 Khususiyah, N., 2008. Boundary organizations, objects and agents:
- 1287 Linking knowledge with action in agroforestry watersheds. Center
- 1288 for International Development, Graduate Student and Postdoctoral
- 1289 Fellow Working Paper No. 34, Harvard University.
- 1290 Miles, M., 2010. Representing nature: art and climate change. Cult
- 1291 Geogr. 17(1), 19—35.
- 1292 NSCT, 2010. Home. National Sea Change Taskforce.
- http://www.seachangetaskforce.org.au/Home.html, 12th December
- 1294 2012.
- 1295 Ostrom, E., 1999. Coping with the tragedy of the commons. Annu
- 1296 Rev Polit Sci. 2, 493—535.

- Ottaway, R.N., 1983. The change agent: a taxonomy in relation to
- the change process. Hum Relat. 36(4), 361.
- Paar, P., Appleton, K., Clasen, M., Gensel, M., Jude, S., Lovett, A.,
- 1300 2008. Interactive visual simulation of coastal landscape change, in:
- 1301 Digital Earth Summit on geoinformatics 2008: tools for global
- change research. Wichmann, Heidelberg, pp. 153—159.
- 1303 Perez, P., Dray, A., Cleland, D., Arias-Gonzalez, J., 2009. SimReef:
- an agent-based model to address coastal management issues in the
- 1305 Yucatan Peninsula, in: Anderssen, R.S., Braddock, R.D., Newham,
- 1306 L.T.H (Eds.), 18th World IMACS Congress and MODSIM09
- 1307 International Congress on Modelling and Simulation, Cairns,
- 1308 Queensland, pp. 72—79.
- 1309 Pettitt, C., Ewing, S., Coffey, B., Geraghty, P., Hocking, G., Meyers,
- N., Butters, S., Weston, M., 2011. Exploring the potential of
- 1311 knowledge brokering in natural resource management. Aust J Env
- 1312 Management. 18(4), 233—247.
- 1313 Preston, B., Danese, C., Yuen, E., 2011. Embedding climate change
- 1314 risk assessment within a governance context. Presented at the
- 1315 Colorado Conference on Earth System Governance, Crossing
- Boundaries and Building Bridges, Colorado State University, 17—20
- 1317 May 2011, Colorado, USA.
- 1318 Schon, DA., 1963. Champions for radical new inventions. Harvard
- 1319 Bus Rev. 41(2), 77-86.
- 1320 SEQ Healthy Waterways, 2009. South East Queensland healthy
- 1321 waterways partnership annual report, July 2008—December 2009.
- 1322 South East Queensland Healthy Waterways Partnership, Brisbane.
- 1323 Shaw, J., 2008. Coastal planning and conservation: what next for
- 1324 Victoria's eastern coastline?, in: Clarkson, B., Kurian, P., Nachowitz,

- 1325 T., Rennie, H. (Eds.) Conserv-Vision Conference Proceedings. The
- 1326 University of Waikato, 2—4 July 2007. Waikato, New Zealand.
- 1327 Shaw, J., 2010. The sustainability of coastal planning: an Australian
- example. The International Journal of Environmental, Cultural,
- 1329 Economic and Social Sustainability. 6(2), 43—54.
- 1330 Sheppard, S.R.J., 2005. Landscape visualisation and climate
- change: the potential for influencing perceptions and behaviour.
- 1332 Environ Sci Policy. 8, 637—654.
- 1333 Short, A. and Woodroofe, C.D., 2009. The coast of Australia.
- 1334 Cambridge University Press, Port Melbourne.
- 1335 Sillitoe, P., Bicker, A., Pottier, J., 2002. Participating in
- 1336 development: approaches to indigenous knowledge. Routledge,
- 1337 London and New York.
- 1338 Smith, T., Smith, D., 2006. Institutional adaptive learning for
- coastal management. in Lazarow, N., Fearon, R., Souter, R.,
- Dovers, S. (Eds.), Coastal management in Australia: key
- institutional governance issues for coastal natural resource
- management and planning. Cooperative Research Centre for
- 1343 Coastal Zone Estuary and Waterway Management, Indooroopilly
- 1344 Queensland, pp.55—60.
- 1345 Smith, T.F., Carter, R.W., Thomsen, D.C., Mayes, G., Nursey-Bray,
- 1346 M., Whisson, G., Jones, R. Dovers, S., O'Toole, K., 2009. Enhancing
- 1347 science impact in the coastal zone through adaptive learning, J
- 1348 Coastal Res. 56, 1306—1310.
- 1349 Snowdon, D., 2002. Complex acts of knowing: paradoxes and
- descriptive self-awareness. Journal of Knowledge Management.
- 1351 6(2), 100—111.

- Sorenson, J., 1997. National and international efforts at integrated
- coastal zone management: definitions, achievements, and lessons.
- 1354 Coastal Management. 25, 3—41.
- 1355 State of the Environment 2011 Committee, 2011. Australia state of
- the environment 2011. Independent Report to the Australian
- 1357 Government Minister for Sustainability, Environment, Water,
- 1358 Population and Communities, DSEWPC, Canberra.
- 1359 Stocker, L., Kennedy, D., 2009. Cultural models of the coast in
- 1360 Australia: Towards sustainability. Coastal Management. 37(5),
- 1361 387-404.
- 1362 Stocker, L., Kennedy, D., 2011. Artistic representations of the sea
- and coast: Implications for sustainability. Landscapes. 4(2), 97—
- 1364 123.
- 1365 Stocker, L., Kennedy, D., Metcalf, S., Dambacher, J., Middle, G.,
- Wood, D., 2011. Modelling coastal governance in the south west of
- 1367 Western Australia: complexity, collaboration and climate adaptation,
- in: Chan, F., Marinova, D., Anderssen, R.S. (Eds.), MODSIM2011:
- 1369 19th International Congress on Modelling and Simulation, Modelling
- and Simulation Society of Australia and New Zealand. 12—16 Dec
- 1371 2011, Perth, Western Australia.
- 1372 Stocker L., Kenchington, R., Kennedy, D., Steven, A., 2012a.
- 1373 Introduction to Australian coasts and human influences, in:
- 1374 Kenchington, R., Stocker, L., Wood, D., (Eds.), Sustainable coastal
- management and climate adaptation: Lessons from regional
- 1376 Australia, CSIRO Publishing, Collingwood, Victoria, pp. 1—27.
- 1377 Stocker L., Kennedy, D., Kenchington, R., Merrick, K. 2012b.
- 1378 Sustainable Coastal Management? in: Kenchington, R., Stocker, L.,
- 1379 Wood, D., (Eds.), Sustainable coastal management and climate

- adaptation: Lessons from regional Australia, CSIRO Publishing,
- 1381 Collingwood, Victoria, pp.29—50.
- 1382 Strack, R., Macgill, C., McDonagh, K., 2004. Engaging youth
- through photovoice. Health Promot Practice. 5(1), 49—58.
- 1384 Suppiah, R., Hennessy, K.J., Whetton, P.H., McInnes, K., Macadam,
- 1385 I., Bathols, J., Ricketts, J., Page, C.M., 2007. Australian climate
- change projections derived from simulations performed for the IPCC
- 1387 4th Assessment Report. Australian Meteorological Magazine. 56(3),
- 1388 131**-**152.
- 1389 Thompson, G.N., Estabrooks, C.A., Degner, L.F., 2006. Clarifying
- the concepts in knowledge transfer: a literature review. J Adv Nurs.
- 1391 53(6), 691-701.
- 1392 Tompkins, E., Few, R., Brown, K., 2008. Scenario-based
- 1393 stakeholder engagement: incorporating stakeholders preferences
- into coastal planning for climate change. J Environmental
- 1395 Management. 88, 1580—1592.
- 1396 Tufte, E., 2006. Beautiful evidence. Graphics Press LLC,
- 1397 Connecticut, USA.
- 1398 Walters, C. J., 1986. Adaptive management of renewable resources.
- 1399 Macmillan Press, New York.
- Walters, C. J., & Holling, C. S., 1990. Large-scale management
- experiments and learning by doing. Ecology, 71(6), 2060-2068.
- 1402 Wang, C., Burris, M., 1997. Photovoice: concept, methodology, and
- use for participatory needs assessment. Health Educ Behav. 24(3),
- 1404 369-387.
- 1405 Wescott, G., 2011. Disintegration or disinterest? Coastal and marine
- policy in Australia, in: Crowley, K., Walker, K. (Eds.), Environmental
- 1407 policy failure. Tilde University Press, Melbourne, pp. 88—102.

1408	Wescott, G., Fitzsimons J., 2010. Stakeholder involvement and
1409	interplay in coastal zone management and marine protected area
1410	planning, in: Gullett, W., Schofield, C., Vince, J. (Eds.) Marine
1411	resources management. LexisNexis, Chatswood, Victoria, pp. 225—
1412	238.

Enhancing the Knowledge-Governance Interface: Coasts, Climate and Collaboration

Highlights

- We research the interface between knowledge- and decisionmaking in Australia's coastal zone
- Good dialogue requires both a receptive governance process and accessible knowledge systems
- Traditional systems of government do not reflect the variety of coastal perspectives and knowledges
- More collaborative approaches to governance using diverse knowledges are required
- We present processes and tools that support these approaches