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Abstract 

       Shear wave velocity associated with compressional wave velocity can 

provide the accurate data for geophysical study of a reservoir. These so 

called petroacoustic studies have important role in reservoir 

characterization such as lithology determination, identifying pore fluid type, 

and geophysical interpretation.  

       In this study, a fuzzy logic, a neuro-fuzzy and an artificial neural 

network approaches were used as intelligent tools to predict shear wave 

velocity from petrophysical data. The petrophysical data of two wells were 

used for constructing intelligent models in a sandstone reservoir of 

Carnarvon Basin, NW Shelf of Australia. A third well of the field was used 

to evaluate the reliability of the models. 

       The results show that intelligent models have been successful for 

prediction of shear wave velocity from conventional well log data.  
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1. Introduction 

       Reservoir characterization is a prerequisite study for oil and gas field 

development. Shear velocity is as an important parameter for reservoir 

characterization studies. Due to several reasons such as high costs of 

measuring and lack of shear wave data in old wells, some intervals of 

reservoirs may not have those data. Therefore, it will be useful to predict 

shear velocity from well log data without direct measuring. For this purpose, 

several studies have been carried out up to now. Pickett (1963), Krief et al., 

(1990), Greenberg and Castagna (1992), Castagna et al., (1993), Bastos et 

al., (1998), Domenico (1984), Han (1986), Gassmann (1951) and Murphy et 

al., (1993) have developed empirical relationships for the prediction of shear 

velocity. In recent years, intelligent systems have been used for modeling 

and prediction in many petroleum related sciences. In this study, intelligent 

systems including fuzzy logic (FL), neuro-fuzzy (NF) and artificial neural 

network (ANN) have been used for prediction of shear velocity from well 

log data in a sandstone reservoir of Carnarvon Basin, NW Shelf, Australia.  

 

2. Methods used 

2.1 Fuzzy logic 

       The basic concept of fuzzy logic or more generally fuzzy set theory was 

first introduced by Zadeh in 1965. Unlike crisp logic (CL), which a value 

may or may not belong to one class, fuzzy sets allow partial membership. 

The membership or non-membership of an element x in crisp set C is 

described by a characteristic function μC(x), where: 

                1            if x C 
μC(x)=  
                0            otherwise 

Fuzzy set theory extends this concept by defining partial membership which 

can take values ranging from 0 to 1: 

                                  μF(x): X            [0,1] 
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Where X refers to the universal set defined in specific problem and F is a 

fuzzy set (Yagar and Zadeh, 1992). Fig. 1 shows the membership functions 

for a crisp set C and fuzzy set F.  

 

2.1.1 Fuzzy inference system (FIS) 

       Fuzzy inference is the process of formulating from a given input to an 

output using fuzzy logic (Matlab user’s guide, 2001). There are two types of 

fuzzy inference systems: Mamdani (1975) and Takagi-Sugeno (1985). 

Mamdani’s method attempts to control a system by synthesizing a set of 

linguistic control rules obtained from experienced human operators. The 

Takagi-Sugeno method is similar to the Mamdani FIS. The main difference 

between them is that the output membership functions are only constant or 

linear for Sugeno-type FIS (Matlab user’s guide, 2001). In the Takagi-

Sugeno FIS, membership functions are defined by a clustering process. 

Assuming a smaller cluster radius will usually yield many small clusters and 

specifying a large cluster radius yield a few large clusters in the data (Chiu, 

1994). Each of these clusters referred to a membership function (MF).  

These MFs will generate a set of fuzzy if-then rule for formulating inputs to 

output. A simple fuzzy if-then rule is described as below: 

If  Vp is high then Vs is high  

       This rule is composed of two parts: Antecedent (if part) and consequent 

(then part). If there are multiple parts to the antecedent, fuzzy logic 

operators make the relationship between them. The most common fuzzy 

operators are “and”, “or” and “not”. For example in the following rule 

“and” operator has been used: 

If Vp is low and NPHI is high then Vs is low  

Fig. 2 shows a comparison between these operators in FL and CL 

approaches. The closer a given input is to the “if” part of the rule; the more 

the "then" part will be influenced. Finally fuzzy system adds up all of the 

"then" parts and uses a defuzzification method to give the final output 

(Kosko, 1991). 
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2.1.2 Why to use fuzzy sets? 

       Geosciences are not completely precise and most of the time, are 

associated with uncertainty. Regarding to imprecise nature of fuzzy sets it 

will be better to use fuzzy reasoning for solving problems which accompany 

vagueness and imperfection. Here, we show a simple petrophysical example 

to clarify the problem: 

The cutoff value of porosity for oil reservoirs generally is about 5%. It 

means if an interval has more than 5% porosity, it will be considered as net 

pay. Fig. 3 shows the membership functions for porosity cutoff in CL and 

FL approaches respectively. According to CL approach (Fig. 3a); the 

porosity value of 4% will not be economic. However, FL proposes that it 

will be economic up to the degree of 0.7 (Fig. 3b).   

Therefore, fuzzy reasoning is very close to reality and it will be better to use 

this system for solving reservoir problems such as prediction of shear 

velocity form well log data 

 

2.2 Neuro-fuzzy 

       In recent years, considerable attention has been devoted to the use of 

hybrid neural network and fuzzy logic techniques. It has been shown that 

neural network models can be used to construct internal models that 

recognize fuzzy rules. Neuro-fuzzy modeling is a technique for describing 

the behavior of a system using fuzzy inference rules within a neural network 

structure (Nikravesh and Aminzadeh, 2003).  

Fig. 4 shows a NF system using the following fuzzy rules (Kamali & 

Mirshady, 2005) 

Rule 1: If x1 is A1 and x2 is B1, then class is 1 

Rule 2: If x1 is A2 and x2 is B2, then class is 2 

Rule 3: If x1 is A1 and x2 is B2, then class is 1 

Layer 3. Combination of firing strengths: If several fuzzy rules have the 

same consequence class, this layer combines their firing strengths. Usually, 

the maximum connective (or operator) is used. 
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Layer 4. Fuzzy outputs: In this layer, the fuzzy values of the classes are 

available. The values describe how well the input of the system matches to 

the classes.  

Layer 5. Defuzzification: If the crisp classification is needed, the best-

matching class for the input is chosen as output. 

 

2.3 Back-propagation neural network 

      ANN is a recently new tool for solving complex problems in petroleum 

industry. A back propagation artificial neural network (BP-ANN) is a 

supervised training technique that sends the input values forward through 

the network then computes the difference between the calculated output and 

the corresponding desired output from the training dataset. This error is then 

propagated backward through the net and the weights are adjusted during a 

number of iterations. The training stops when the calculated output values 

best approximate the desired values (Bhatt and Helle, 1999). 

The major application area for ANN in the petroleum industry is to predict 

various reservoir properties. This ultimately is used a decision tool for 

exploration and development of the oil and gas fields. 

 

3. Shear and compressional waves 

       Body waves are categorized to compressional and shear waves. Shear 

or S-waves do not propagate through the fluids and associated with 

compressional waves can provide useful information for hydrocarbon 

reservoirs characterization. There are many factors that affect on seismic 

velocities which were shown in Table 1. However investigations show that 

shear velocity is strongly controlled by compressional velocities, type of 

pore fluid, clay content, and bulk density of the rock (Rezaee, 2001). 

There are many applications for S-waves in petrophysical, seismic and 

geomechanical studies. For example the ratio of Vp to Vs can be used as an 

index to characterize important reservoir properties; some of them are listed 

below: 
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 Lithology determination (Vp/Vs differs by lithology type, in dolomite=1.9, 

limestone=1.8, shaly sand=1.7, and clean sand=1.6). 

 Determining degree of consolidation (for example to predict sanding 

problem). 

 Identifying pore fluid type 

 Geophysical studies such as AVO and VSP  

Compressional wave velocity is obtained directly from sonic transit time. 

But S-wave velocity is measured at the laboratory on core samples or by 

means of Dipole Shear Sonic Imager tool (DSI). Most wells (especially old 

wells), do not have DSI, as well as it will be expensive and time consuming 

to measure S-wave velocity on core samples. Recently new tools have been 

developed for this purpose. However, they are unconventional and 

expensive. 

Empirical relationships are useful for this purpose but they have limitations 

and disadvantages that some of them are listed below: 

 Although this case study is a sandstone reservoir, most of the empirical 

methods have been developed for clean sandstone reservoirs and are not 

efficient for all lithologies. 

 All the available empirical models developed for Vs prediction are 

mathematical models, and their used petrophysical parameters are limited, 

so they miss the generalization capability (Eskandari, et al., 2004). 

 It is necessary to use a model with its all hypothesizes. When a theory is 

used out of related all hypothesizes, it will not be reliable (Koesomadinata 

and Mc Mechan, 2001). 

So, it will be efficient and useful to predict Vs utilizing fast and robust 

intelligent systems from well log data. 

 

4. Modeling and prediction of shear velocity 

4.1 Fuzzy logic: In this study, a Takagi-Sugeno fuzzy inference system (TS-

FIS) was applied to estimate S-wave velocity from petrophysical data using 

Matlab software. For this purpose, the intervals of wells Bay#1 and 
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Emperor#1 which had both the shear velocity and well log data were chosen 

to construct TS-FIS model (Table 2). Five logs including compressional 

velocity (Vp), gamma ray (GR), deep laterolog resistivity (Rlld), formation 

density compensate (FDC) and neutron porosity (NPHI) were considered as 

inputs and Vs as output of TS-FIS. For the studied wells, Vs data had been 

measured utilizing DSI tool and Vp was calculated from sonic transit time 

data. The relationship between used input data and shear velocity in well 

Bay#1 has been shown in Fig. 5. A comparison among provided crossplots 

in Fig. 5 shows that the best correlation exists between Vs and 

compressional velocity (Vp). 

Input and output membership functions and their parameters were extracted 

by subtractive clustering method and using 0.5 for clustering radius.  Input 

membership functions were shown in Fig. 6 and all of them are Gaussian 

type. Output membership functions are constant values. The generated  

TS-FIS is consist of four Gaussian membership functions for each of the 

inputs and outputs that entitled by low, moderate, high and very high 

captions. 

These membership functions formulated well log data including Vp, GR, 

Rlld, FDC and NPHI to Vs using following fuzzy if-then rules (Figs. 7&8): 

1- If Vp is very high and GR is high and Rlld is Moderate and FDC is high 

and NPHI is moderate then Vs is very high.  

2- If Vp is moderate and GR is low and Rlld is high and FDC is low and 

NPHI is low then Vs is moderate. 

3-  If Vp is high and GR is very high and Rlld is low and FDC is very high 

and NPHI is very high then Vs is high. 

4- If Vp is low and GR is moderate and Rlld is very high and FDC is 

moderate and NPHI is high then Vs is low. 

The well East_Spar#4 AST1 was chosen as a pilot well of the field to 

evaluate the reliability of constructed fuzzy models. However in the 

East_Spar#4 AST1 Vs data only exist for the Barrow Group and the Mardie 

Greensand. The hole condition for the Mardie Greensand is bad due to 

washout. Therefore, Barrow Group was used to evaluate TS fuzzy models.  
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According to Fig. 9 the correlation coefficient between real and FL 

predicted Vs in this well is 0.946.  

 

4.2 Neuro-fuzzy: In NF approach, an adaptive neuro-fuzzy inference 

system (ANFIS) was used to verify TS-FIS models. Three Gaussian 

membership functions for each of data were extracted by grid partitioning 

method and an error-back propagation algorithm was used to adjust their 

parameters. Fig. 10 shows ANFIS structure for formulating well log data 

include Vp form sonic log, GR, Rlld, FDC and NPHI to Vs (802 data 

points). After 25 training Epochs, 524 nodes and 243 rules were generated 

and MSE performance function was fixed in 0.001. As mentioned the 

Barrow Group has been used to test constructed NF model. The correlation 

coefficient between predicted and measured Vs values for the mentioned 

test well with 637 data points is 0.942 (Fig. 11).  

 

4.3 Artificial neural network: In this section we used a three layered BP-

ANN to verify fuzzy and neuro-fuzzy results. Similar to TS-FIS and ANFIS, 

five inputs including Vp, GR, Rlld, FDC and NPHI data from wells Bay#1 

and Emperor#1 which had both the shear velocity and well log data were 

considered in first layer. Number of neurons in hidden layer are 7, and 

output layer includes one neuron for Vs data. Levenberg-Marquardt training 

function associated with MSE performance function was used to optimize 

weights and default bias values. Used transfer function from layer one to 

two is TANSIG and from layer two to layer three is PURELIN. After 20 

epochs of training MSE performance function was set to 0.001 (Fig. 12). 

According to Fig. 13 the Vs predicted values for the test well East-Spar#4 

AST1 are similar to results of FL and NF, so ANN verifies their reliability. 

 

6. Conclusion 

       The results of this study show that TS-FIS has been successful for 

prediction of Vs form petrophysical data including Vp from sonic log, GR, 

Rlld, FDC and NPHI respectively, in studied sandstone reservoir of 
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Carnarvon basin. Also ANFIS and BP-ANN techniques confirm the 

reliability of fuzzy models. The MSE performance function was fixed in 

0.001 for all of the constructed intelligent models and they are able to 

successful prediction of Vs for other wells of studied basin which has no Vs 

data. A Comparison between measured and predicted Vs versus depth 

shows a good agreement for the three techniques (Fig. 14). Measured error 

using MSE function is about 0.001. 

These techniques are easy, fast, and powerful tools for intelligent reservoir 

characterization and solving complicated problems which are difficult, time 

consuming and expensive.  
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Table 1. Three main factors control on seismic velocities (Wang, 2001). 

Environment Fluid Rock 

Reservoir Pressure Saturation Pore Shape 

Geometry of Layer Gas to Oil Ratio Porosity 

Production History Fluid Type Fracturing 

Reservoir Processes Hydrophilic Isotropy 

Temperature Fluid phase Clay Content 

Stress History Viscosity Bulk Density 

Frequency Texture 

Cementation 

Lithificatioin History 

Compaction 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2 . Wells and intervals that have shear velocity (Vs) data in the studied area. 

Well Formation 
Tops 

MDRT 
(m) 

Lithology Vs 
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BAY-1 Sealevel 27.84   
 Seabed 57.0   
 Toolonga Calcilutite ? Calcareous claystone  
 Gearle Siltstone 827.0 Silty claystone  
 Windalia Radiolarite 982.0 Interbedded siltstone, claystone  
 Windalia Sand 1554.0   
 Muderong Shale 1610.0 Massive claystone  
 Mardie Greensand 1633.0 Glauconitic siltstone, claystone  
 Barrow Group 1788.0 Interbedded sandstone, siltstone, 

claystone 
 

 Dupuy Formation 1809.0 Claystone, arg. sandstone, 
siltstone 

 

 Bay Sandstone 3255.0 sandstone, argillaceous 
sandstone 

 

 Dingo Shale 3537.5 Claystone  
 Total Depth 3710.0   

Emperor-1 Sealevel 27.70   
 Seabed 45.50   
 Toolonga Calcilutite 474.0   
 Gearle Siltstone 734.0 Claystone  
 Windalia Radiolarite 1290.0 Claystone  
 Windalia Sand 1352.0 Claystone  
 Muderong Shale 1406.0 Claystone  
 Mardie Greensand 1504.5 claystone/glauconitic siltstone 

and sandstone 
 

 Barrow Group 1530.5 Sandstone, claystone, 
argillaceous sandstone 

 

 Top Foresets 1748.0 dominantly argillaceous 
sandstone 

 

 Primary Objective 2209.0 Sandstone, argillaceous 
sandstone 

 

 Total Depth 2360.0   

East Spar 
4AST1 

Sealevel 123.0   

 Undifferentiated 123.0 Calcarenite, sandstone, 
Claystone 

 

 Withnell Formation 1318.0 Calcareous Claystone and 
siltstone 

 

 Toolonga Calcilutite 1344.0 Calcareous Claystone and 
siltstone 

 

 Gearle Siltstone 1749.0 Claystone  
 Windalia Radiolarite 2226.0 Claystone  
 Muderong Shale 2244.0 Claystone  
 Mardie Greensand 2507.0 Greensand and siltstone  
 Barrow Group 2520.1 Sandstone, siltstone  
 Total Depth 2750.0   

 
 

Figures captions 
 
 

Fig. 1 -  Membership functions for a crisp set C and a fuzzy set F. 
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Fig. 2 - A comparison of “and”, “or” and “not” operators in FL (multi-valued 
logic) and CL (two-valued logic) approaches. 

 
Fig. 3 -  Membership functions for porosity cutoff in CL (a) and FL (b) 

approaches. 
 
Fig. 4 - Schematic structure of a neuro-fuzzy system (From (Kamali & Mirshady, 

2005) 
 
Fig. 5 - Crossplots between petrophysical data including NPHI(a), Vp(b), GR(c), 

FDC(d), Rlld(e) versus shear velocity. According to these crossplots, Vp has 
stronger relationship with Vs. 

 
Fig. 6 - Extracted membership functions using subtractive clustering (cluster 

radius=0.5) for Vp (a), GR (b), Rlld (c), FDC (d), NPHI (e). 
 
Fig. 7 -  Formulation between well log data (inputs) to Vs (output) using the TS-

FIS. 
 
Fig. 8 - ANFIS structure for formulating well log data to shear wave velocity. 
 
Fig. 9 - Crossplot showing correlation coefficient between measured and 

predicted Vs using FL for the test well East Spar#4 AST1. 
 
Fig. 10 - Schematic diagram of constructed model based on FL for predicting Vs 

from petrophysical data.  
 
Fig. 11 - Crossplot showing correlation coefficient between measured and 

predicted Vs using NF for the test well East Spar#4 AST1. 
 
Fig. 12 -  Graph of Mean Squared Error (MSE) versus training epochs for training 

(blue), validation (green) and test data (red).   
 
Fig. 13 - Crossplot showing correlation coefficient between measured and 

predicted Vs using ANN for the test well East Spar#4 AST1. 
 
Figure 14 - A comparison between measured and predicted Vs using FL(a), 

NF(b) and ANN(c) for the test well East Spar#4 AST1. Real values were 
shown by solid lines and predicted values by points. 
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Fig. 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 17

 

 

 

 

 

 
 

Fig. 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 18

 

 

 

 

 

 
 

Fig.3 
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Fig. 4 
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Fig. 5 
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 Fig. 6 
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Fig. 7 
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Fig. 8 
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Fig. 10 
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Fig. 11 
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Fig. 12 
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Fig. 13 
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