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Abstract. The merging of a gravimetric quasigeoid model \BiRS-levelling data using second-generation
wavelets is considered so as to provide bettestoamation of GPS ellipsoidal heights to normalghés.
Since GPS-levelling data are irregular in the sp@#mmain and the classical wavelet transform redies
Fourier theory, which is unable to deal with irrieguwata sets without prior gridding, the classigalelet
transform is not directly applicable to this prohle Instead, second-generation wavelets and their
associated lifting scheme, which do not requireulady spaced data, are used to combine gravimetric
guasigeoid models and GPS-levelling data over Npravel Australia, and the results are cross valitlate
Cross validation means that GPS-levelling pointsusad in the merging are used to assess the gesult
where one point is omitted from the merging andlusetest the merged surface, which is repeatedlfor
points in the dataset. The wavelet-based restdtslao compared to those from least squares editoc

(LSC) merging. This comparison shows that the isé-@®neration wavelet method can be used instead of



LSC with similar results, but the assumption otistzarity for LSC is not required in the wavelet tinad.
Specifically, it is not necessary to [somewhat taabily] remove trends from the data before appyihe
wavelet method, as is the case for LSC. It is slsmwvn that the wavelet method is better at detrgdise

maximum and minimum differences between the meggeid and the cross-validating GPS-levelling data.

Keywords. Quasigeoid, geoid, GPS-levelling, second-generatiavelets, lifting scheme, cross validation,

least-squares collocation (LSC)

1. Introduction

The relation among geoid\j, ellipsoidal fi) and orthometric height$] is

h-H-N=e (1a)
Likewise, the relation among quasigeaifl €llipsoidal ) and normal heightdH*) is

h—-H*-{=¢ (1b)
whereh are usually obtained from GPS observations, lar@hdH* are derived from geodetic levelling.
Acknowledging plumbline curvature and neglectingdata errors, the values efande' should be zero,
but rarely are zero due to various errors, suclorgwavelength geoid or quasigeoid errors, systiema
errors in levelling networks, and geodynamic efelite post-glacial rebound (e.g., Ekman 1989). As
such, there are always discrepancies between argrtmic (quasi)geoid model and the heights from GPS

levelling.

Therefore, using a gravimetric quasigeoid/geoid ehdd transform GPS ellipsoidal heights to
normal/orthometric heights does not always yieklhs that are compatible with the local verticatusn
(e.g., Featherstone 1998, Nahavandchi and Soltanp005). To improve this transformation, the

gravimetric (quasi)geoid model can be fitted to tBBS-levelling data. The new combined surface



(importantly which is no longer the classical (Gigeoid) can then be used to give a more diregjHtei

transformation.

For many years, GPS-levelling was used almost eikally for testing gravimetric (quasi)geoid
models on land, but as geoid computation techniguesove, these reveal discrepancies (i.e., noo-ger
ande). As such, numerous studies have been deditatemimbining a gravimetric (quasi)geoid and GPS-
levelling data. For example, Heiskanen and Mdii@67), Sideris et al. (1992) and Sideris (199&dus
trigonometric four-parameter surface to minimizadais and very long-wavelength differences between

geoid and GPS-levelling data.

More recently, a wide variety of higher order paeéime and non-parametric surfaces have been
used for this purpose, such as artificial neuralvoeks (Kavzoglu and Saka 2005), spline interpotati
(e.g., Featherstone 2000), least squares collocéti®C) (e.g., lliffe et al. 2003, Featherstone &pdoule
2006), Kriging (e.g., Duquenne et al. 2004, Nahdeahand Soltanpour 2004), combined least squares
adjustments (e.g., Jiang and Duquenne 1996, Katsakil Sideris 1999, Marti et al. 2002, Fotopoulos
2005), and various other surfaces. Suffice itay shere are numerous surface-fitting optionshesgith

their own advantages and disadvantages, whichnadlbe discussed nor debated here.

This paper adds to the above list of fitting opsidmy describing the merging of gravimetric
quasigeoid models with GPS-levelling using secoedegation wavelets, supplemented with case studies
in Norway and Australia.

* In Australia, there is an inconsistency between &d8id98 (Featherstone et al. 2001) and the
Australian Height Datum (AHD; Roelse et al. 1971).addition to the above-mentioned factors, these
inconsistencies are mostly due to a north-southd{revhich is mostly caused by an un-modelled sea

surface topography on the 30 tide gauges usekiAHD (Featherstone 2002, 2004).



« In Norway, although the recent gravimetric quasigexver Norway, OCTAS02 (Omang et al. 2004),
exhibits a shift compared to the GPS-levelling détlhas a good relative precision compared to its
Australian counterpart. In Norway, heights arecinefd to the NN1954 Norwegian height system,
which is based on precise levelling, conductedmui916-1954 and adjusted in 1956 (Lysaker 2003),
but the height system remains ambiguous.

Acknowledging these inconsistencies, has becomessacy to fit gravimetric quasigeoid models to GPS-

levelling as an interim solution to GPS heightimgilthe AHD[1971] and NN1954 vertical datums ahé t

respective quasigeoid models are refined.

In this regard, wavelets are a very powerful toohumerical data analysis. They are widely used
in image and signal processing for de-noisingefiiitg and compressing signals (e.g., Mallat 199R)\e
advantage of wavelets over Fourier transformseg# tpace-localization property in the frequencgndm
that lets them detect local as well as global fezmpies. Wavelets have been used in several geodeti
studies (e.g., Freeden and Schneider 1998, Kelled,2Zhou et al. 2001, Lio and Sideris 2003; Kuubis
and Keller 2005, Freeden afthreiner2005, Hu et al. 2005), which demonstrate some adgas over

traditional spectral-analysis techniques.

However, classical wavelets are based on Foureryh which requires regularly spaced/sampled
data, whereas GPS-levelling observations are rgitildlited in this way. Second-generation wavelets
(Sweldens 1997) are thus a more attractive optiorofir purpose because they do not require regularl
spaced data. In addition, they are conceptuapgsar to LSC, because they do not require théosiatity
assumption, which is not always fulfilled in reatdsets. In practice, LSC often requires ahpriori
removal of a trend to attempt to achieve statidpawhich can be subjective (e.g., planes or amgiéui

order surfaces could be used).



2. Wavelets and multiscale decomposition

In general, wavelet analysis is based on two Hasictions: the scaling functiog(x) and the wavelet, or
detail, functiong/(x) . A classical wavelet system comprises an infind#ection of translated and scaled

versions of¢(x ) and¢/(x) according to (e.g., Antoniadis 1999)

¢j,k(x):2i2¢(2jx—k) j,kOZ o
zp,,k(x):zlfzp(zix—k) j,kOz

Considering the functiorf (x) and the mother wavelgy(x), f (Xx) can be expressed as a linear

combination of basis functiong; , (x) as:
f (X):Za]',kwj,k(x) 3)
j .k

wherea, , are the detail or wavelet coefficients.

Unlike the Fourier transform, which is only loc&in the [global] frequency domain, the wavelet
transform is localized in both the space (or tigwel frequency domains. This property introducesaled

analysis as a powerful tool to deal with signalsosén spectral content changes in space (or time). |

essence, a high frequency g will only affect the coefficient/; , corresponding to the location and

frequency atx,. Readers interested in the mathematical dethit$assical wavelets are referred to, e.g.,

Mallat (1999), Daubechies (1992) and Antoniadis9@)9

Considering a multi-resolution analysis (MRA) I, a sequence of subspa({ééi} Ois defined

j=

such that

V, 0V, and clog JV = L,. (4)
j=0



Besides, there are complement spadésso thatV,,, =V, U W . Therefore, a fine-resolution spade

can be decomposied into a coarser space and compiespaces,
-1
v, =V, 0w (5)

This is called multiscale decomposition (MSD).

The space¥; andW, are spanned by sca{aﬁjyk} and wavelel{lpjyk} functions respectively. The

scale and wavelet functions at a coarser levetamgputed from scale functions at a finer level ggome

refinement coefficientsr, and g, such that

¢j,k =zhjlk¢j+lk and ¢, :zgjlm¢j+1,l (6a)
| |

or

$=¢.,H, and ¥, =¢,G, (6b)

where @ and ¥, are row vectors containing the functioql’;k and ¢ respectively, andH ; and

j.m

G ;are the refinement matrices.

In biorthogonal cases, different basis functiores @sed for the decomposition and reconstruction
of a signal. Thafp} and ij are used in the reconstruction stage and thelsdtftp and qu , are used for

decomposition. Any functiofi (X) can now be expressed by wavelet basis functions as

P00 =28, (R+ 2 4, (3 %
where
sio,k=<f,¢joyk> and d;, =(f.¢,) ®)



and the dual operatotd ; andG, are defined as

9=¢g.,H ad ¥ =¢.G (9)

In this case, the biorthogonality conditions on tenement matrices and their duals (i.e., filters

would be
HH, =1, GH, =0
HG, =0, G/H =I (10)

where * indicates the Hermitian conjugate ands the identity matrix. Les, :{ q’k} anddj :{dj ’k} .
The forward wavelet transform is then given by

s;=H’s, and d,=G’S, (11)
and the inverse transform is

S.=Hs+Gd (12)

Signals subjected to wavelet analysis are somethigdy correlated. This is the case for GPS-
levelling data, where for example systematic digias occur in the levelling data tied to one \@ti
datum. Depending on the amount of correlatiorhim gignal (here, the vales efande' in Eq. (1)), the
wavelet coefficients will be small, and those bebkpweertain threshold value can be set to zeros dllows
the signal to be expressed by fewer coefficienticlvis why wavelets are useful for image compssi
(e.g., the JPEG image format). The inverse wauetgtsform can then be applied to the thresholded
wavelet coefficients to recover the original sigmdthout significant (depending on the thresholduea
loss of information. In some cases, the resulsigppal is de-noised when some frequencies have been
filtered out during thresholding in the wavelet dom Later in this paper, we shall investigaterible of

thresholding in the merging of quasigeoid-GPS-lavgldata.



3. Second-generation wavelets: a summary

As stated, the classical wavelet transform reliethe Fourier transform, so cannot be appliedregirlarly
spaced datasets. The simplest solution would bgritbthe data and then apply the classical wavelet
transform. However, during data gridding we losens (mainly high-frequency) information and the
geometric structure of the original observationsreover, gridding is subject to aliasing. Sid€1i995)
developed a technique to implement the Fouriersfcam on irregular datasets, but it still fundanadigt

relies on a regular grid where empty cells ardseero or include interpolated data.

To deal with irregular datasets, second-generatianelets have been developed by Sweldens
(1997), which are not necessarily translates atatedi of one function, as is the case for the iaks
wavelet. Second-generation wavelets are constfumsed on a lifting scheme (Sweldens 1997), which
works in the space domain and thus does not reRoamier transformation, and hence avoids griddiAg.
such, it preserves the geometry of the observatiofise lifting scheme can be used where no Fourier
transform is possible, such as for wavelets on Bedndomains, wavelets on curves and surfaces, and
wavelets on irregular data sets (Sweldens 1998grefore, second-generation wavelets are well gtiite

modelling the residuals in Egs. (1) and (2).

Considering two initial pairs of biorthoginal fiteas H;,G;”) and (I-Tj",éjo), it is possible to
improve their properties using the liting schenée lifting scheme states that for any operdpr a new
pair of biorthogonal filters can be found as (Ddletet al. 2003)

(H, =H?+G°P, G =G° and (H, =H?, G, =G°-H°P) (13a)

which interchange the role of primal and dual féteand for any operatdJ ,



(H,=H?, G, =G°-H’U)) and (H,=H +GU,, G =Q°) (13b)

J J J J

The operations in Eq. (13) are called the predictiod update steps, respectively.

Now we may consider the model
g=mx y)+n (14)
where g from Eq. (1) is located at the two-dimensionalalben (X, y) and n is the noise ing. A

wavelet-type transform, adapted to irregularly gghiwvo-dimensional data, is used to estimate thetion
m(%, y). Some compactly supported scaling functi{)tﬂgs,(;g} at the finest level (wherdis the level of

observation) are defined, and then the scalingveactlet functions at coarser levgls J-1,J-2, ... are

obtained using Eqgs. (6a) or (6b) and appropriéter$i.

However, the output of second-generation waveletg deliver unacceptable results. The problem
is that the non-equispaced transform is unstalde,far from orthogonal. Consequently, small-nitugie
coefficients may turn out to carry crucial informeat, while other large-magnitude coefficients maptain
mostly noise (Jansen and Oonincx 2005). Indeedeshe basis is oblique (non-orthogonal), songelar
scale features can leak into the small-scale gdaheowavelet spectrum. This instability can bembated
by a variance-normalization or update step. Theirmim norm update operator is used here to keep the

basis close to orthogonal by minimizing the updatefficients’ norm (Delouille et al. 2003).

3.1. Lifting scheme in one dimension
It is instructive to first consider the one-dimearsil case. The classical fast wavelet transforthsacond-

generation wavelet transform are shown in FigThe classical wavelet transform starts by applYiiag-

pass and low-pass filters on the original sighp] The results are then downsampled to detailsawelet

coefficients (/, ;) and a coarser version of original signdl ). This process is repeated dp_l to get



Y-, and 4, _,, then continues until it reachgg and A,. This approach can be used in MRA, where a

signal is spectrally analysed at different (spactnae) scales.
Figure 1 near here

The second-generation wavelet transform is basetth@so-called lifting scheme and starts with

the “lazy wavelet”, which downsamples the signakt@n and odd samples. The odd samples are then

used to predict the even ones. The dgtgi| is the predicted value subtracted from the evempta The

details are then used to update the odd sampleemthe mean value of the signal unchanged.

Let Ay, =f (k), kOZ, be the original signal. The first approximatioased on applying the

lazy wavelet is
Ay =Aog, kKDOZ (15)

and the detail, or wavelet coefficients, are

1
Syt Ay k0Z (16)

Vak = /]0,2k+1_

If the signal is correlated, the wavelet coeffitge(y; ; ) are small and values below some threshold may be

ignored (described later). In order to keep themef approximation 4 ) constant, the approximated

values (1_;, ) must be updated using the detail or wavelet aoefits. Equation (15) is thus modified to

i~ 1
Ay =gy +Z(V-1,k—1+ y.u), kOZ (17)

Figure 2 near here
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The above computations are represented schemgtioalfig. 2. One can use a higher-order

scheme to predict the odd-indexed values from tee enes. For examplg ,, ., can be predicted based

on cubic polynomial interpolation through the valyg 5 _;, ¥; x » Vi a1 @AY, 5.,- As such, there is

some interpolation embedded in the second-genarativelet technique, but this applies to the treatm

of the wavelet coefficients only, and not the argjidata.

The inverse second-generation wavelet transforsingply applied by reversing the update and

prediction steps.

3.2 Lifting scheme in two dimensions

In two-dimensions, which applies to our case (cf- E4), the above one-dimensional splitting intd add
even samples is not possible. Therefore, a diffespatial geometry should be used for construdiieg
second-generation wavelets and defining the neigtifomds. In our study, Delaunay triangulations and
Voronoi tessellations are used for this purposedoé Santos and Escobar 2004). The benefit ofyusi
Delaunay and Voronoi methods (also known as trikaigd irregular networks (TINS)) is that they prese
the spatial structure of the original GPS-levelloizservations. This allows more detail to be usaateas

of dense data, which would be smoothed out by aridd classical wavelets were to be used.

Delaunay triangulation (Fig. 3) comprises trianglesnecting the nearest-neighbour vertices (here,
GPS-levelling points). The Delaunay triangulatisthen used to build a Voronoi diagram: a seteifs¢
each of which contains the locations closer to age vertex than the others (Fig. 3). The edges o

Voronoi polygons are bisectors of the sides ofetaunay triangles (e.g., Delouille et al. 2003).

Figures3and 4 near here
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The wavelet scaling functiog,, (x), corresponding to a vertex, (Fig. 4), at the observation

level is the characteristic function of the Vororegll of the vertexv, in which the medians of the
immediate neighbouring triangles are used instdattheo bisectors (Delouille et al. 2003). The aofa

support of the scaling functionA Vo) for the vertex v, is thus equal to integral of scaling function

#;y,(x), and is shown in Fig. 4.

In two-dimensional cases, at any given scilenly one scaling coefficient or observation
corresponding to a certain vertex is predicted, thed that coefficient is used to update its neiginb (cf.

the one-dimensional lifting scheme), as will belaikped below. Choosing a vertex for predictiobésed
on the support of scaling functions at all verticéhe vertexv, that has the smallest support from the

scaling function at each level is selected andiptredl.

The initial filters of the two-dimensional liftingcheme are
G =GP ={v,} and HY=H;={N, } (18)

where N (v,) are neighbouring points (vertices) of the vertex. The detail/wavelet coefficient

corresponding to the vertay, is (Delouille et al. 2003):

0 — ~ol 1p0 —_
di,, =G5, =G $.~ PH s.= 86, iRu)iSnwo) (19)

where S,. and S, are the observations #} and its neighbouring pointd\((v,)), respectively,

1y +1N q)

andP;  , are the prediction weights.

In our case, the vertices are the GPS-levellingtscand their valuess(, ) at the finest level are

the algebraic differences between the gravimetngspeoid model and GPS-levelling data (iekin Eq.

12



(1b)). The detail/wavelet coefficients are thdati#nces between the wavelet scaling coefficiemdstheir
predicted values (Eq. 19). The number of neighingupoints used in prediction can be varied, and
depends on the method of prediction, which carelg, a plane or a polynomial of degreeAs for the
one-dimensional case, the interpolation appligheéavavelet coefficients, which preserves the gepnud

the observations.

After predicting the scale coefficient\a§ and subtracting it from the observed value (Eq, it®s

replaced with the computed detail, and then thatexeis eliminated from the Delaunay triangulation.

Another Delaunay triangulation is then applied lba temaining data and a new set of Voronoi polygons

built. The area previously occupied W is now taken by a new area corresponding to itghturs

+1y 0

(¢j N (vo))' In this study, planar and second-order surfagdermined using unweighted least-squares, are

used for the coefficient prediction. The immediaggghbours (first ring) are used for the lineagdiction,

and both the first and second ring neighbours aeel dior the second-order polynomial prediction (Big

Figure 5 near here

The prediction step is followed by an update stehich updates the scaling coefficients at

neighbouring vertices (Eq. 13b),

—go — o0 - —
Sineg = HiSu= H'50+ U Gsu= sy )t VA, (20)
The update coefficientt); are computed to keep the value Eksj’k A« unchanged. This is

equivalent to providing the primal wavel¢tw0with one vanishing moment (e.g., Mallat 1999). To

achieve this, we have to impose that (Jansen atiid#li 1999)

Ay, = Z AUy (21)

KON (Vo)
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The update coefficients can then be computed uisgminimum norm update operator (Jansen and

Bultheel 1999)

A\J' K A] +1vo

2
ZIDN (Vo) AJ',I

Ujp = (22)

Since the update step modifies the primal wavedsisbfunctions, large update coefficients will
cause the lifted wavelet function to be close t® ¢pace spanned by scaling function at a coarget. le
This means that the wavelet and scaling functiomlévde far from orthogonal, as stated earlier. The
minimum norm update operator (Eq. 22) avoids thigtability by minimizing the update coefficients
(Delouille et al. 2003), thus making it more suitedur problem of merging quasigeoid and GPS-lal

data.

3.3 Thresholding

When applying thresholding to second-generationeles, any coefficients smaller than a specified
threshold value are replaced by zeros (Swelden8)19khis is analogous to multiple regression eiquat
Therefore, the signal of interest is expressedgugia remaining coefficients. Finding an optintakshold
value is an important part in smoothing or filtgrinA small threshold will cause the output to be same

as noisy input signal, and a large threshold intoed the risk of losing real signal in additiomtnse.

The following model of data (corrupted by noisgand its wavelet transform are considered:

y=f+n (23)

w=Wy (24)

14



whereW is the forward wavelet transform amd is the vector of wavelet coefficients. The canéints
below a threshold valud are replaced with zero and the others are leftugfted (hard thresholding) or
shrunk by the factord (soft thresholding). Applying the inverse waveletnsform to the thresholded

coefficients yields the filtered data

Y, =W, (25)

An optimal threshold value can be computed by miziimg the generalized cross validation (GCV)

function (Jansen and Bultheel 1999). Note that ihinot the same as the cross validation in Sedtib.

1

GCV (,1)=NN—2
0

N

Jeo-a
(26)

whereN is the number of all coefficients (not to be cagd with the geoid height)\ , is the number of

coefficients replaced with zero during thresholdsigp, andw and & are vectors of the original and
thresholded coefficients, respectively. GCV iseshold that minimizes the MSE (mean square eafor)

the function with respect to the data (Jansen arth&el 1999).

Because the standard deviation of each coefficsedifferent for the coefficients computed by the
second-generation wavelet transform (Jansen andhdhl1999), they must be normalized before
thresholding, as follows. If the covariance of tlada C) is known, the variances of coefficienB)(can be

computed by

D =WCW' (27)

15



where the superscrigtindicates matrix transposition. The normalizedfiicients can then be computed

by dividing them by their standard deviations

~ _cy

@=") o (28)
Dii

To verify the efficiency of the GCV method for fimg) the optimal threshold, we also look for an
optimal threshold value by considering the standkdation of results after applying the crossdatiion
technique (Section 4.1, not Eq. (26)). In thisecakifferent threshold values are trialled, andrtteximum
threshold is selected that gives the minimum stahdaviation in the cross-validation with GPS-Idivng)
data. The detail/wavelet coefficients below thiseshold are ignored because they are assumeatairco
unnecessary high-frequency information or noisejes to the problem of possible leakage due the no
orthogonality of the second-generation waveletoigsed earlier). Some similarity can be seen letwe

this method and LSC, where we look for the sigmal meglect the noise to find a smoothed surface.

4, Numerical Experiments, Results and Analysis

4.1 Cross validation

The cross validation technique is a well-known apph in areas such as soil science, and is deddribe
Fotopoulos (2003) and Featherstone and Sproule6j2fa® the case of fitting gravimetric quasigeoid
models to GPS-levelling data. To summarise, ong-«{&kelling point is omitted from the merged sabuti
then the difference between the resulting mergeabigeoid-type surface and the GPS-levelling heaght
that unused point is computed. This is repeatedlfdzPS-levelling points in the dataset to giveample

from which descriptive statistics are computed.

The benefit of this approach is that the same dedanot used twice; i.e., once to compute the
merged surface, then again to test it. As suchhelieve that it gives a more realistic and argyafbre

independent indication of the performance of thegmé surface. In the case of our second-generation

16



wavelet merging, the Delaunay triangulation andovioi cells are changed every time a point is omhitte
and used for cross-checking. This is repeatedlfgoints in the dataset. While this is time aaméng for
both methods, it only needs to be done during ¢lstst then all data used with the optimal pararadter

produce the final merged quasigeoid-type ‘product’.

4.2 Data description

The two case-study regions of Norway and Austrabae chosen principally for reasons of convenidnce
the authors, but they also exhibit different spatensities of GPS-levelling data (1724 stationBlorway
(Fig. 6) and 254 stations in Australia (Fig. 7J.onsidering the areas of two countries (Austradia24
times bigger than Norway), the GPS-levelling datdlorway are much more dense, especially in théhsou
It will be shown later that, as expected for theosel-generation wavelet technique, the denser #8-G

levelling data, the better the results.

Figures6 and 7 near here

The most recent publicly available Australian qgasid model, AUSGeo0id98 (Featherstone et al.
2001), which is on a 2 arc-minute by 2 arc-minutil,gand the latest Norwegian quasigeoid model,
OCTASO02 (Omang et al. 2004), which is on a 6 amtt@ by 3 arc-minute grid, were used in this study.
The gravimetric quasigeoid heights were bilineantgrpolated to the GPS-levelling points. The |

heights refer to the AHD (Roelse et al. 1971) aimnLB54 (Lysaker 2003) local vertical datums.

The AHD uses a variant of the normal-orthometrighiesystem, which is based on a truncated
formula (Featherstone and Kuhn 2006). The heigstesn used in NN1954 is rather ambiguous (Lysaker
2003), but will be assumed to be a normal heigsitesy. As such, the heights on each local vertiaalm

will have to be assumed compatible with each raspgequasigeoid model, notwithstanding the various

17



errors affecting their practical realisation (sée tntroduction). Finally, the GPS-derived ellijukd

heights in Norway are referred to the EUREF89 dadumchthose in Australia refer to the ITRF2000 datum

In this study, the variance of all these observetiwill be assumed zero, which is unrealistic but
we do not have any reliable variance informatiompratsent. Also, since we seek a merged surfade tha

makesh — H*—{=¢e' = 0 (cf. Eq. (1b)), which is enforced by assumingpzeriance.

4.3 LSC merging

For the sake of comparison, and to show the eff@ief the second-generation wavelet method, LSE wa
also applied to the same datasets. Since covari@mctions are generally not available, they havee
determined empirically (e.g., Moritz 1980), andrttean analytic function fit to them in order to appSC.
Normally, only isotropic (i.e., azimuth-independeadvariance functions are considered, which isthet

case with second-generation wavelets.

Figure 8 near here

Figure 8 shows empirical covariances computed flioenNorwegian and Australian quasigeoid-
GPS-levelling difference<(in Eqg. (1b)), as well as an exponential analyticvariance function fitted to
them using unweighted least-squares. From Figh&,empirical covariances decay faster in Norway
(correlation length of 200 km) than in Australisofielation length of 1,000 km), which reflects the
spatially more dense data in Norway. Note thatctbreelation length for Australia differs from tB¢500
km calculated in a different way by Featherstong Sproule (2006). The correlation lengths of 266 a

1,000 km were used for Norway and Australia, respely.

The difference between empirical and analytic ciawvere functions at zero-distance was taken to

be the variance of the noise, which gave £3.6 cmNforway and +11.4 cm for Australia. The smaller

18



noise for Norway indicates both a better dataset aretter initial fit of OCTAS02 to the EUREF89-
NN1954 data (i.e., gravimetric quasigeoid to theS@&velling) than the AUSGe0id98-ITRF2000-
AHDI[1971] data. Note that a planar surface haflirtd be removed from the data before the covadanc

functions were determined, unlike the second-géineravavelet method.

The LSC results were evaluated using the crosslatidin approach (Section 4.1), and the results

will be presented in Section 4.4, together withsthobtained from the second-generation wavelebappr

4.4 Wavelet merging
The second-generation wavelet transform based erliftng scheme (Section 3.2) was applied to the
Norwegian and Australian quasigeoid-GPS-levellingfetences. Both planar and second-degree

polynomial surfaces were tested for detail predictiand the resulting wavelet coefficients werstfir

normalized using Eq. (28). Because the covariafitke observations is unknow®, = g?l is assumed

as their covariance matrix, wheee is the standard deviation of the noise.

These normalized coefficients were soft-thresholdét the optimal threshold value computed
from the GCV method (Eqg. 26), which gave [dimenkisg] values of 0.0040 for Norway and 0.0084 for
Australia. As for the LSC covariance function, theger value for Australia indicates a combinatain

poorer data and a poorer initial fit of the AUSGHE8-ITRF2000-AHD data.

To verify the threshold values computed using GEY.(26), a range of different threshold values
were also applied, and assessed using the GP3iHgweloss-validation technique (Fig. 9). In Nogwthe
standard deviation of the cross-validation increasih increasing threshold. In Australia, it deases
until threshold of 0.16 and increases after thdthe first ten threshold values, corresponding eross
validation standard deviation, and number of tholtdd (removed) wavelet coefficients for Norway and

Australia are summarized in Table 1.
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Figure9and Table 1 near here

Comparing the values in Table 1 with the valuesiolietd from GCV method (0.0040 for Norway
and 0.0084 for Australia) shows that the GCV metiad successful in finding the optimal thresholtliga
for Norway, but not in Australia. Assuming 0.5 nas an acceptable tolerance for the standard dewjati
the maximum threshold value of 0.25 was selectethaptimal value for both Norway and Australia
(marked in bold in Table 1). The normalized caééints were then soft-thresholded using this veadne,

then the inverse wavelet transformation was appbegive the [slightly smoothed] merged surface.

The final surfaces (for a threshold of 0.25) werent validated with the unused GPS-levelling
points based on the cross-validation method (Seetid). The results in both absolute and relataeses
(cf. Featherstone 2001) are summarized in Table® 2, and 5. All possible baselines between GPS-
levelling points were considered in relative valida (i.e., 32,131 and 1,485,226 baselines for ralist
and Norway, respectively). Table 4 includes thesstvalidation statistics for the LSC combination b
Featherstone and Sproule (2006), which used 288dame GPS-levelling points (one value was reject

as an outlier).

Tables2,3,4 and 5 near here

In terms of standard deviation of the cross-vaéidadifferences after fitting, the soft-thresholded
second-generation wavelet method is slightly beattan LSC in Australia and slightly worse in Norway
Considering the maximum and minimum columns in €al? and 4, however, wavelets have been more
successful than LSC at decreasing the maximum anignom differences (ignore the last row of Table 4,

which rejected one suspected outlier).
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Both sets of results in Tables 4 and 5 show prapaatly more improvement in Norway (~75%)
than in Australia (~50%), which is due mostly te gpatially denser GPS-levelling data in Norwayonfr
Tables 2 to 5, the linear and second-order detadiption in the second-generation wavelets yiekay

similar results, with the second-order method bsiightly worse in Norway.

5. Summary, discussion and conclusion

To improve the accuracy of normal height deternimaton a local vertical datum by GPS, second-
generation wavelets based on the lifting schenggther with coefficient thresholding, has beenddtrced
and implemented on the differences between graviengtiasigeoid models and discrete GPS-levelling

data over Norway and Australia.

Unlike the classical wavelet transform, the secgederation wavelet can be applied directly to
irregular datasets. The second-generation wagekfficients were soft-thresholded by a verifiedimogl
threshold value from the GCV method, and then iverise wavelet transformation was applied to diee t
merged surface. Importantly, this method is aplie to non-stationary data. As such, removingan
priori trend, which is necessary for LSC-based mergimgot required for the second-generation wavelet

method.

The resulting merged quasigeoid-type surfaces tinene cross-validated using GPS-levelling data
not used to compute them. The results show tH#reinces between the new surfaces and the unused
GPS-levelling have decreased in both absolute etative senses (~75% for Norway, and ~50% for
Australia). The differences in standard deviati@miween the results from LSC and wavelets are a few
millimetres, but the wavelets have been more sgfgest decreasing the maximum and/or minimum
differences than LSC. Therefore, second-generatiavelets are another alternative method that ean b

used for merging gravimetric quasigeoid/geoid meadeld GPS-levelling data on a local vertical datum.
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Figure 3: Delaunay triangulation (solid line) andrgnoi tessellation (dashed line) in 2D space

Figure 4: Support of scaling functiogﬁJ Vo (X) by a Voronoi cell associated with the Vertgx.
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Figure 5: (left) Immediate/first-ring neighboursight) first and second-ring neighbours
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Figure 6: Spatial distribution of GPS-levellingtstas in Norway (Lambert projection)
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Figure 7: Spatial distribution of GPS-levellingtsdas in Australia (Lambert projection)
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Figure 8: Empirical covariances and fitted expoie@nalytical covariance function (top: Norwayttom: Australia)
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(linear wavelet coefficient prediction)
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Table 1: The first ten threshold values, their correspogdiross-validation standard deviation, and the remolb

thresholded coefficients for Norway and Australingar and second-order wavelet coefficient préoligt

Threshold | 0.00 0.05 0.10 0.15 0.20| 0.25 0.30 0.35 0.40 0.45
STD for Norway with linear
prediction (cm) 2.48 2.48 2.49 2.50 2.52| 2.53 2.57 2.59 2.62 2.65
Number of thresholded coeffs 0 140 252 369 497 593 687 750 822 889
STD for Norway with second-
order prediction (cm) 2.48 2.49 2.49 2.51 2.52| 2.53 2.56 2.60 2.63 2.67
Number of thresholded coeffs 0 141 254 373 499 594 686 748 818 882
STD for Australia with linear
prediction (cm) 15.60 15.58 15.57 15.57 15.58 15.61 15.65 15.71 15.77 15.84
Number of thresholded coeffs 0 9 16 25 37 46 54 64 73 83
STD for Australia with second-
order prediction (cm) 15.60 15.58 15.58 15.59 15.61 15.63 15.69 15.74 15.80 15.86
Number of thresholded coeffs 0 10 20 36 42 49 55 62 70 77

Table 2: Absolute cross-validation statistics fog therged quasigeoid-type

surface at 1,724 GPS-levelling stations in Norway)(

Mean | Max | Min Std
OCTAS-02 -59.6| -30.8/ -93.9 10.
Wavelet (linear) 0.0 11.8 -11.4 2.5
Wavelet (second-order 0. 13p -11 25
LSC 0.0 13.3| -13.8 2.2
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Table 3: Relative cross-validation statistics fog merged quasigeoid-type

surface over 1,485,226 GPS-levelling baselinesdnady (cm)

Mean | Max | Min Std
OCTAS-02 -45| 63.0/ -60.5 14.6
Wavelet (linear) 0.0/ 23.8 -234 3.5
Wavelet (second-order 0. 228 -24)2 3.6
LSC 0.0 | 27.0| -239 3.1

Table 4: Absolute cross-validation statistics foe the merged quasigeoid-type

surface at 254 GPS-levelling stations in Austré&ia)

Mean | Max | Min Std

AUSGe0id98 76| 86.5 -72.1 286
Wavelet (linear) -0.1f 50.1 -64.1 15p
Wavelet (second-order) 0.1 50p -635 156
LSC 0.0 | 61.0| -56.7] 15.5
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Table 5: Relative cross-validation statistics fog tmerged quasigeoid-type surface over 32,131 @Rslihg

baselines in Australia (in cm)

Mean | Max Min Std
AUSGeo0id98 1.2| 1409 -158.7 404
Wavelet (linear) 24| 112.2 -1054 221
Wavelet (second-order 26 1114 -1026 22.1
LSC -1.6 | 103.8| -118.11 21.4
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