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Abstract We present different means of classifying pro-
tein structure. One is made rigorous by mathematical
knot invariants that coincide reasonably well with or-
dinary graphical fold classification and another classi-
fication is by packing analysis. Furthermore when con-
structing our mathematical fold classifications, we utilize
standard neural network methods for predicting protein
fold classes from amino acid sequences. We also make an
analysis of the redundancy of the structural classifica-
tions in relation to function and ligand binding. Finally
we advocate the use of combining the measurement of
the VA, VCD, Raman, ROA, EA and ECD spectra with
the primary sequence as a way to improve both the ac-
curacy and reliability of fold class prediction schemes.

1 Introduction

Finding all the genes of the genome of an organism nat-
urally leads to the question of what proteins these genes
represent or correspond to and to what class they be-
long. Concerning the classification it seems obvious to
classify the proteins according to their sequence of ei-
ther nucleotide or amino acids - a task which is not
straight forward due to the alignment problems etc. The
classification according to sequence is more likely to tell
about functionality rather than structure. Such classes
are called families. However, the structure of a protein is
much sought after in biotechnology, e.g., in drug-design.
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We shall in this paper address the issue of making
a rigorous structural classification of proteins and how
to predict such classes of proteins from their sequences.
Concerning general structural classifications it has been
shown [1, 2] that all the known 3-dimensional protein
structures can be grouped into a smaller number of char-
acteristic structural classes consisting of domains from
homologous proteins with a similar topological configu-
ration of their backbones. These structural domains or
the so-called folds of the proteins were introduced in or-
der to clarify the notion of structural similarity. Such
fold classes could contain entire proteins or well-defined
sub-domains of proteins. Pascarella and Argos [1] have
used topological similarity as a measure of fold class ho-
mology, while Holm and Sanders [3] have used similar-
ity of distance matrices to determine fold class mem-
bership. Orengo et al., [4] have reported a classification
of proteins from the protein structural database into ei-
ther 150 homologous folds or 112 analogous folds from
structural comparison. Chothia [2] has postulated, based
on known protein sequences and structures that the to-
tal number of fold classes is expected to be circa 1000.
While it is feasible to define membership to a fold class
once the three dimensional structure of the protein is
determined, efforts to predict fold classes only from se-
quences have rendered little success. The exceptions are
those where there is significant sequence homology be-
tween the protein whose structure is to be determined
and one whose structure is established. Most frequently,
sequences which have very much homology are known to
belong to the same fold class.

In addition, spectroscopic measurements have been
shown to aid fold class assignment. Specifically the com-
bination of vibrational absorption (VA), vibrational cir-
cular dichroism (VCD), Raman and Raman optical ac-
tivity (ROA) in combination with molecular dynamics
simulations and density functional theory (DFT) the-
ory calculations has been shown to be able to deter-
mine the backbone (secondary structure) of L-alanine,
N-acetyl L-alanine N’-methyl amide, L-alanyl L-alanine
and Leu-enkephalin [5–15]. A preliminary study docu-
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menting the use of neural networks to predict the struc-
ture of peptides based on a combination of experimental
and DFT simulated VA, VCD, Raman spectra has ap-
peared [16, 17]. A very feasible extension of this work
is to use the characteristic VA, VCD, Raman and ROA
spectra of proteins of known fold class and combine with
work with the above aforementioned work on sequence
with known structure, to predict the fold class of an
unknown protein not only from the sequence, but also
the measured VA, VCD, Raman and ROA spectra. Our
preliminary work above, shows that this work is well
worth pursuing, and is being pursued by us. This work
will be presented in a future publication. In addition to
the VA, VCD, Raman and ROA spectra we foresee the
use of the electronic absorption (EA), electronic circu-
lar dichroism (ECD) and Resonance Raman spectra to
be of use [18–22]. Recently the feasibility of the calcula-
tion of all of the above aforementioned spectra has been
shown, but mostly in the gas phase, using continuum sol-
vent models, using explicit water molecules and finally
combining these approaches [7, 9, 14].

In most definitions of fold classes, each member would
have more than 50% sequence identity to each other, al-
though domains with far less sequence similarity could
belong to the same class. It is important that each pro-
tein within a class would have a structure with a large
topological similarity and a similar packing pattern to
other members of the class. The details of the primary
sequence in itself are less important.

The notion of fold classes is important for predict-
ing new protein structures using homology modeling.
In homology modeling an unknown 3-dimensional pro-
tein structure is inferred from other known 3-dimensional
protein structures whose amino acid sequences are sim-
ilar to the sequence of the protein in question. It has
been shown [26–28] that one can predict or model pro-
tein structures to high accuracy by using structural in-
formation from proteins belonging to the same fold class
or family.

However, for protein sequences with very little ho-
mology to other proteins there exists no method that
can predict the 3-dimensional structure to high accu-
racy from their sequence data alone. On the other hand
proteins with little sequence homology could be similar
in structure to a whole class of other structures or do-
mains. It is apparent that protein folding into a structure
is coded by information that is not transparent from se-
quential similarity alone. Several techniques have been
developed for inferring homology at the structural level
from fold class membership. Some of these incorporate a
combination of secondary structure prediction schemes,
functional similarity, recognition of key structural mo-
tifs and use of machine learning methods for sequence-
structure mapping [3, 29–33]. One method that success-
fully utilizes the information of the structure of homol-
ogous proteins uses artificial neural networks. The neu-
ral networks can be trained exclusively on homologous

proteins as a basis for predicting a new protein struc-
ture from the corresponding sequence. Such a scheme is
useful only when the protein in question has any rela-
tionship to any of the existing fold classes. The above
aforementioned approach which combines the sequence
information with VA, VCD, Raman, ROA, EA and ECD
information also appears to be very promising.

The proposed scheme, which consists of two steps,
rests on the result that neural networks can be effectively
trained to induce features from a system that character-
izes it. In the first step, a feed-forward neural network is
used to determine the fold class of a protein from its se-
quence data. In the second step, the predicted fold class
with its characteristic domains is used as input into a
large recurrent neural network to predict the distance
matrix for the protein. Such a distance matrix predic-
tion should be accurate enough for constructing the 3-
dimensional backbone structure for the protein, which
can then be subsequently refined by side chain place-
ment and molecular mechanics methods.

2 Classification of protein folds by knot

invariants

The Writhe, that is known from the famous formula
“Link=Twist+Writhe” and steers coiling of double stranded
DNA and the Average Crossing Number, that is related
to the speed of DNA in electro gel experiments, are two
examples of global geometric measures of closed space
curves. Both of these geometric measures make sense for
open space curves and more interestingly they constitute
the basic building blocks of an infinite family of geomet-
ric measures called generalized Gauss integrals stemming
from modern Knot Theory.

One of these Gauss integrals is

I(1,3)(2,4) =

∫

△4

ω(t1, t3)ω(t2, t4)dt1dt2dt3dt4, (1)

where △4 is the 4-simplex given by 0 < t1 < t2 < t3 <
t4 < 1 and

ω (t, s) =
[γ′(t), γ(t) − γ(s), γ′(s)]

|γ(t) − γ(s)|
3 . (2)

In a planar projection of the curve, γ, the configura-
tion (t1, t3)(t2, t4) defines a specific configuration of two
crossings. In the planar limiting case, I(1,3)(2,4) counts
the number of times this crossing configuration occurs in
this planar projection. The family of generalized Gauss
integrals has the property that for any configuration of
n crossings there is a generalized Gauss integral that
counts the occurrences of this crossing configuration.

Calculating some of these Gauss integrals for pro-
tein backbones, one gets an absolute measure of protein
geometry in terms of real numbers. In currently unpub-
lished work of P. Røgen and B. Fain, it is shown that the
CATH1.7 protein structure classification essentially can
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be reproduced based on 30 such geometric measures of
the full length CATH domains. Hence, the diversity of
protein structures is captured by 30 numbers [49].

3 Methodology

The basic elements of an artificial neural network, the
neurons, are the processing units which produce output
from a characteristic non-linear function of a weighted
sum of input data. A neural network is a group of such
neurons and the neurons can communicate with each
other through mutual interconnections. The network will
gradually acquire a global information processing capac-
ity for classifying data by being exposed (trained) to
many pairs of corresponding input and output data such
that new output can be generated from new input. If a
set of input is denoted by {xj} and the corresponding
output is denoted by {yi} the process at each neuron i
in the network can be described by

yi = f(
∑

j

Wijxj + ηi) (3)

where Wij are the weights of the connections leading to
the neuron i, ηi and f are the characteristics of the non-
linear function for the neuron. As is obvious from the
equation, such type of networks can be considered as a
non-linear map between the input and output data.

The most straightforward type of neural networks
employed for this study were feed-forward networks of
the multi-layered perceptron type. These layers of neu-
rons are referred as, mentioned in the consecutive order,
the input layer, the hidden layers and the output layer.
The reason for choosing this network among many other
types is its ability to be generalizable to molecular biol-
ogy data [34–37]. The simple structure both with respect
to processing of data and training is an additional advan-
tage with such a network. The training was carried out
using the back-propagation error algorithm [38] which is
also the most commonly used. The training procedure
is performed until a cost function C has reached a local
minimum e.g. by a gradient descent. The cost function
C is normally written as,

C =
1

2

∑

α,i

(tαi − zα
i )2 (4)

which is simply the squared sum of errors; ti being the
correct target value and zi the actual value of the output
neurons.

In order to evaluate the performance of the network,
various statistical measures have been proposed. In the
case of a dual valued output the Mathews correlation
coefficient, CM [40–42], was used to monitor the perfor-
mance. If two possible output values are denoted by 0
and 1 (signifying fold class membership or non member-
ship) and if p is the number of correctly predicted exam-
ples of 1s, p̄ the number of correctly predicted examples

of 0s, q the number of examples of 1s incorrectly pre-
dicted and q̄ is the number of examples of 0s incorrectly
predicted then we define the coefficient CM as:

CM =
pp̄− qq̄

√

(p+ q)(p+ q̄)(p̄+ q)(p̄+ q̄)
(5)

For complete coincidence with the correct decisions (ideal
performance) the measure is 1 and for complete anti-
coincidence the value of CM is −1. A poor net will give
C = 0 indicating that it does not capture any correlation
in the training set in spite the fact that it might be able
to predict several correct values.

4 Implementation

4.1 Integral classifications

In the next sections we distinguish strongly between inte-
ger and real number classifications of protein folds. We
shall first be discussing how protein fold with integer
values are represented in neural networks and how the
prediction scheme is implemented. Later we shall turn
to real valued classification of folds by either knots or
packing.

The actual neural networks for predicting fold classes
are of the feed-forward type. The networks are trained
on a selection of proteins from each of 42 fold classes con-
taining domain segments of proteins or often the whole
proteins. The input representation for each protein do-
main is a 20× 20 matrix containing the relative frequen-
cies of dipeptides occurring in neighboring positions in
the primary sequence of the domain. To calculate these
frequencies, the number of occurrences of a dipeptide
is counted in the protein sequence and divided by the
total number of residues in that sequence. All protein
domains are transformed this way into one input pat-
tern of fixed size. Small insertions and deletions from the
protein sequence cause only small changes in the dipep-
tide frequencies. The same holds true for rearrangements
of larger elements in the sequence that do not change
the local sequences. There are many cases where mem-
bers of the same fold class differ mostly by permutations
of sequence elements. Such permutations of the primary
sequence lead to very similar dipeptide matrices which
supports similar classification results. Each fold class is
represented by one output unit which should have an
activation close to 1.0 if the domain coded in the input
layer is a member of that fold class. In all other cases
the activity should be close to 0. When an unknown se-
quence is classified, the fold class corresponding to the
largest activation at the output unit is assigned to the
sequence. This is the usual “winner-takes-all” evaluation
of the output of a classifier. In order to facilitate the in-
terpretation of misclassifications all the fold classes were
grouped into larger super-fold classes that have a natural
one dimensional order inferred from physical properties
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of the folds. The super-fold class prediction and the fine
grained classification should then assign classes that are
close in this order.

4.2 Real valued classifications

In connection with neural networks, the strength of hav-
ing absolute measures of protein geometry is that the re-
lation between amino acid sequences and protein geome-
tries may be studied and predicted directly. In particular
a neural network can be trained to predict the Gauss in-
tegral values on fragments of proteins with known struc-
ture. Combined with the above mentioned result on pro-
tein structure classification this neural network then pre-
dicts fold class from amino acid sequences. The construc-
tion of such an neural network is an issue of current re-
search.

5 Fold-classification from packing analysis

Protein fold classifications from the literature, such as
the 3D-ALI, have been used so far. At a more primi-
tive level, we have classified proteins into large classes of
alpha, beta, alpha+beta and alpha-beta proteins follow-
ing Lesk and Chothia [44]. In a more detailed scheme,
the classification of Pascarella and Argos [1], further en-
hanced by Walsh [45] has been utilized. In addition, a
novel method for characterizing the fold topology of a
protein is presented here. While the average density in-
side a protein is nearly a constant, the packing of residues
is determined by the overall topology [46]. Arguably,
all the information pertaining to the three dimensional
structure and hence the topology of the protein is con-
tained at the most refined level in the distance matrix
and at a less refined level in the packing density. We
define the latter as the number of pairwise atomic con-
tacts in the protein as a function of distance. The max-
ima and minima that occur in this packing density are
very dependent on the nature of the overall protein fold.
We have obtained this packing density for all the pro-
teins in the database and classified them based on the
similarity of the packing density features. Not surpris-
ingly, this classification groups proteins into classes that
are entirely similar to the earlier classification of Pas-
carella and Argos. Table 1, presents the 13 super-fold
classes obtained from the packing density analysis. How-
ever, this method enables the creation of a coarse-grained
set of folds that encompasses several fold class members
of the Pascaralla and Argos set. This super-fold class de-
lineation is used in training the neural networks. To our
knowledge, this is the first effort to use a hierarchy of
fold classifications to obtain sequence-structure correla-
tion and prediction.

The frequency of contacts between atoms at various
distances within a domain or a whole protein is plotted

against the measure of distances in Å along the horizon-
tal axis and the normalized frequency (occurrence) along
the vertical axis. This results in a characteristic contact
distribution for each structure of protein domains (see
Fig. 1). Some structures are represented by a very broad
distribution while others have a sharp delta-like distri-
bution. The maxima in the normalized frequency of the
distribution is a characteristic signature of the underly-
ing lattice structure of the domain. For example a typ-
ical protease structure like a zig-zag lattice will have a
distinct peak in the pair correlation distribution at the
lattice spacing length. The position, τ , of the peak in the
distribution was taken as a simple measure of the domain
structure and all the domain structures were hence classi-
fied into distinct groups of folds using this criterion. Folds
with the smallest values of peak positions, τ , turned out
to be small peptides, while intermediate ranges of τ usu-
ally could represent globular proteins. Large values of
τ represented immunoglobulins and ac-proteases. Small
values of τ thus signified little regularity and large val-
ues represented highly regular underlying lattice frames.
The results of the performance of the neural networks
using the data provided by the τ dependent fold class
grouping will be presented in the following section.

6 Results

The main results in this paper are concerning the pre-
diction of fold classes from sequence alone since the fold
class represents both the secondary structure and the
tertiary structure of the protein. The training set and
testing set are both constructed from the data set of the
42 classes of domains. Roughly half of each fold class do-
mains are used for training. The rationale for choosing
the 42 classes from the Pascarella and Argos definition
of folds, was to make certain that there are enough mem-
bers in each class in order to perform a valid test. The
fold class predictions are performed in three different lev-
els of detail. The first classification uses the 4 super-fold
classes based entirely on the secondary structure com-
position and arrangement in the proteins. The classifi-
cations are based on proteins containing the secondary
structures, only alpha, only beta, one alpha and one beta
domain and one containing a combination of alpha and
beta secondary structure elements, respectively. In the
second scheme, 13 fold classes each containing 3 mem-
bers or more are defined by the packing density scheme
described above. By using the τ measure we define a set
of 13 super-fold classes that are used for prediction of
the coarse fold class. In a third scheme, the full set of 42
classes is used for fine grained classification mentioned
in ref. [54]

For the first case of 4 super-fold classes a network
trained up to 97.2% accuracy and had a test score of
90.4% with an average Mathews coefficient of 0.81 which
is a very high performance compared to other secondary
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structure content predictors [40]. The analogous results,
where the 13 super-fold class set obtained from packing
density analysis is used, were presented in Table 1. This
fold classification gives a less accurate performance of
training being up to 90% correct and the test being 65%
correct which render this classification to be less useful
for neural network based prediction schemes. The third
case that is based on much better distributed classifi-
cation yields a remarkable performance of 100% on the
training set and with a test score of 78% in predicting a
fold class correct on the basis of the sequence. Further-
more, adding the output of the 4 super-fold classes net-
work to the input of the 42 class based network enhanced
its performance to 81.6% on the test with an average
Mathews coefficient of 0.7. The fold class prediction is
still more than 71% correct for those test sequences with
0 to 25% sequence identity to the training set, which is
an important property for a large scale application of
this prediction method.

The results of predicting fold classes based on knot
invariance from sequence data is done by characterizing
each fold by 30 Gauss integrals being real numbers be-
tween -10 to +10. The corresponding sequences to these
folds are input and outputs are vectors each of 30 real
numbers. A network trained to predict such vectors is
about 80 percent correct as long a fold class has more
than one member. The single member fold classes are
called singletons and present a problem.

7 Fold-class database

As a spin-off of the rather successful fold class predictions
a database has been constructed for public domain usage
[24]. The DEF (Database for Expected Fold-classes) is
made for protein fold-class predictions from sequences
in the SWISS-PROT protein sequence data base and is
used for making predictions of fold-classes for any new
sequence. In the DEF database a sequence of amino acids
is assigned a specific overall fold-class, a super fold-class
with respect to secondary structure content and a profile
of possible fold-classes along the sequence.

8 Discussion

An artificial neural network system has been constructed
to classify 3-dimensional protein structures by predicting
what fold class they belong to on the basis of their se-
quence alone. Once that is decided one may predict the
corresponding distance matrix e.g. by recurrent neural
networks that are trained on proteins from the chosen
fold class and subsequently construct a 3-dimensional
structure for the test protein by a minimization pro-
cedure. The networks appear to train surprisingly well
(81.2% correct and an average Mathews coefficient of
0.7) on the task of predicting fold classification, even for

test proteins with a maximal sequence identity of less
than 25% to all training proteins.

The determination of the folds is similar to the de-
termination of the topology of the protein backbone and
that, on the other hand, depends only on the overall
packing of secondary structural elements. Furthermore
the new classification of folds that we proposed is par-
tially dependent on the content of secondary structures.
Low values of the τ parameter represent alpha-rich fold
classes and high values of τ represent beta-rich fold classes.

In the case of prediction of fold classes based on knot
invariants the success rate is as good as other methods
(around 80 percent correct), but the issue of singletons is
problematic. However, a classification of protein by real
numbers is itself an achievement.

As example of the VA, VCD, Raman and ROA spec-
tra being used as supplementary data in addition to the
primary sequence, we show a comparison for Phenylala-
nine (Fig. 2) of the DFT based VA, VCD (Fig. 3) and
Raman and ROA (Fig. 4) spectra simulations with the
experimentally reported spectra [50, 51, 53]. As one can
see by the good agreement between the calculated and
experimental VA, VCD, Raman and ROA spectra, the
combination of experimental and theoretical simulation
of these spectra can be used to not only interpret and
assign the vibrational spectra of biomolecules, but also
used to assign the secondary structure. By combining ex-
perimental VA, VCD, Raman and ROA spectra of pep-
tides and proteins with either know X-ray or NMR struc-
tures with supplementary spectra for other higher energy
structures, the combined approach of measuring the VA,
VCD, Raman and ROA spectra of proteins of known se-
quence and presenting this data along with the sequence
data, one may hope to improve greatly the accuracy and
reliability of fold class prediction, not only of the native
state, but also of unfolded states.

We also present the VA, VCD and Raman spectra
for the L-alanine zwitterion (LAZ). Here we have ex-
tended our previous models of LAZ + 4 and 9 water
molecules, up to 20 water molecules. In the previous work
we only kept the strongly interacting hydrogen bonded
water molecules. In this work a complete solvation shell
of hydrogen bonded water molecules has been added.
The initial positions were determined by taking the low-
est energy structure from our Born Oppenheimer molec-
ular dynamics simulation of the LAZ in a droplet of wa-
ter [56]. The optimized structure of the LAZ plus 20
water molecule is shown in Fig. 5 and the correspond-
ing VA, VCD and Raman spectra with and without the
explicit water molecules included in Fig. 6. This is the
quenched structure of the complex and shows the real
complexity of assigning the bands of a biomolecule to
only the solute. The bands are in similar regions with
those of the solvent. This results in strong coupling be-
tween the solvent and solute modes. Additionally the
strong hydrogen bonding with the solute results in the
water modes in this first solvation shell inherently differ-
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ent than those in the bulk, When one tries to do a solvent
subtraction, one is only subtracting out the bulk solvent
modes. If one wishes to subtract out the water modes
strongly hydrogen bonded with the solute, then one has
a more difficult problem. One of the work arounds for
this has been to fit the bands with either either Gaus-
sian or Lorentzian line shape functions (or to simulate
the spectra with one of these functions). But here one
is really sweeping the problem under the rug, where one
does not see and or realize that a problem exists. Our
point here is only to point out this problem, which we
will present a more thorough report on our progress in
this area at a later date.

Another problem is to correlate the complicated band
shape features in the VA, VCD, Raman and ROA spec-
tra to specific structural information which can be used
as the so called identifiers. Here one can use not only the
frequencies, but also VA, VCD, Raman and ROA inten-
sities or lack of intensities. But to do this requires one to
really be able to identify the principle components in the
spectra. In the past one has assumed that the features
are only due to the solvent, but we think that our exam-
ple for the LAZ has shown this not necessarily always to
be the case.

Finally we would like to present one last example,
the so called alanine depeptide, N-acetyl L-alanine N’-
methyl amide (NALANMA), This has been one of the
most studied peptides, but surprising until 1998 the con-
former of this molecule had not been solved, either by
NMR, EA, ECD, VA, VCD, Raman and ROA or even
a combination. This again was due to the problem of
the structure in aqueous solution is not one of the struc-
tures which are stable minimum on the PES of the iso-
lated state. In Fig. 7 we show the structure determined
at the B3PW91/aug-cc-pVDZ level of theory. The values
of the φ and ψ angles for at this level of theory are -98.68
and 133.36 degrees, versus the values at the B3LYP/6-
31G* plus Onsager continuum solvent model of -93.55
and 127.62 degrees, respectively. At the B3LYP/aug-cc-
pVDZ + PCM level of theory the values are -91.68 and
133.36 degrees, respectively. So the effect of the larger ba-
sis set, the alternative hybrid exchange correlation func-
tional and the alternative continuum solvation models
do not appear to be too large, and most importantly, all
levels of theory the complex is stable.

But the ultimate criterion for us has been the agree-
ment between the VA, VCD, Raman and ROA spectral
simulations and the experimental spectra [7]. In Fig. 8
we present a comparison of the experimental Raman
spectra of NALANMA and our spectral simulation at
the B3LYP/aug-cc-pVDZ + PCM level of theory for the
NALANMA plus 4 water molecule complex. In addition,
we present our spectral simulation for the VA and VCD
spectra. Here we have subtracted out the contributions
due to water molecules. The agreement with the experi-
mental Raman spectra if noticable better using the PCM
continuum solvent model and the aug-cc-pVDZ basis set.

An additional measured and reported value for many
chiral molecules is the αD value. Here we report the pre-
dicted αD for the NALANMA plus 4 water molecule
complex to be 79.39 degrees. This is the first reported
value of this quantity for a dipeptide molecular com-
plex. As shown by our VA, VCD, Raman and ROA sim-
ulations, this complex appears to be stable. Hence it
would be interesting to try to measure the αD for the
NALANMA plus 4 water molecular complex in a molec-
ular beam experiment. The relative strength of the hy-
drogen bonds between water and other water molecules
and water and the dipeptide group is fundamental to
biochemistry. X-ray and neutron diffraction studies have
shown that the mobility of these water molecules are dif-
ferent. Hence it would be nice to do not only temperature
dependent VA, VCD, Raman and ROA experiments, but
also temperature αD measurements, to see if this value
changes as the NALANMA plus N water molecular com-
plexes freeze in. Previously it has been shown that ex-
plicit water molecules are necessary to stabilize struc-
tures which are not stable on the gas phase or isolated
state potential energy surface or using continuum solvent
models [57].

The calculation of the tensors for the ROA spectral
simulations requires one to calculate the G’ and A ten-
sor derivatives numerically, that is, calculate them at 6N
displaced geometries, in addition to calculating them at
the optimized geometry. For the NALANMA plus 4 wa-
ter complex, this requires 6 × 34 = 204 solutions to the
coupled perturbed Kohn Sham equations. Hence we will
report the complete set of VA, VCD, Raman and ROA
spectral simulations in a future work. The aug-cc-pVDZ
basis set has been shown to give almost quantitative
values for the VA, VCD, Raman and ROA spectral in-
tensities, but this basis set does not appear to optimal
for simulations where the amino acids, dipeptides and
polypeptides are completely solvated, as was the case
for LAZ20WC simulation presented in Fig. 6 due to its
large size. A compromise appears to be to use either the
6-31G* basis set (which we have used) or the slightly
larger 6-31G** or DZP. But here by adding polarization
functions on the hydrogens, this will increase the size of
the basis set by 3 × the number of hydrogens, which
for the LAZ20WC would 47 × 3 = 141 more basis func-
tions. In a future work we will further document the ef-
fect on using various basis sets, but the main point which
we wish to end with is that the spectral simulations of
the vibrational spectra of amino acids, dipeptides and
polypeptides must take into account the effects of the
first solvation shell of water molecules since they have
been shown to not only change the potential energy sur-
face of the isolated molecules, but also have large effects
on the frequencies and the intensities. Additionally the
properties of these waters are interesting in themselves,
as they are the water molecules which must be replaced
on ligand bonding. Hence the relative binding strength
of the of water and ligands in the binding pocket can
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Fig. 1 Packing density for typical fold classes. Normalized
frequency of pair-wise contacts vs Distance in Å.

be studied with time and temperature dependent vibra-
tional spectroscopy studies. The combination of knowl-
edge based methods (neural networks and knot theory)
and high level ab initio and density functional theory
appears to be a viable alternative to the methods which
other groups are pursuing to study these problems, with-
out some of the problems with labels (fluorescence spec-
troscopy being one of the alternative techniques being
used by many research groups).
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